Contraction Heuristics for Tensor Decision Diagrams

In this paper, we study the equivalence problem for quantum circuits: Given two quantum circuits, are they equivalent? We reduce this problem to the contraction problem of a tensor network. The order in which the contraction operations between tensors are applied has a crucial impact on efficiency,...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Vol. 26; no. 12; p. 1058
Main Authors: Larsen, Christian Bøgh, Olsen, Simon Brun, Larsen, Kim Guldstrand, Schilling, Christian
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 05.12.2024
MDPI
Subjects:
ISSN:1099-4300, 1099-4300
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we study the equivalence problem for quantum circuits: Given two quantum circuits, are they equivalent? We reduce this problem to the contraction problem of a tensor network. The order in which the contraction operations between tensors are applied has a crucial impact on efficiency, which is why many heuristics have been proposed. In this work, we use an efficient representation of tensors as a tensor decision diagram. Since existing contraction heuristics do not perform well in combination with these diagrams, we propose two new contraction heuristics. We demonstrate experimentally that our heuristics outperform other state-of-the-art heuristics. We also demonstrate that our framework yields state-of-the-art performance for equivalence checking.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:1099-4300
1099-4300
DOI:10.3390/e26121058