CNN and LSTM-Based Emotion Charting Using Physiological Signals

Novel trends in affective computing are based on reliable sources of physiological signals such as Electroencephalogram (EEG), Electrocardiogram (ECG), and Galvanic Skin Response (GSR). The use of these signals provides challenges of performance improvement within a broader set of emotion classes in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 20; H. 16; S. 4551
Hauptverfasser: Dar, Muhammad Najam, Akram, Muhammad Usman, Khawaja, Sajid Gul, Pujari, Amit N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 14.08.2020
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Novel trends in affective computing are based on reliable sources of physiological signals such as Electroencephalogram (EEG), Electrocardiogram (ECG), and Galvanic Skin Response (GSR). The use of these signals provides challenges of performance improvement within a broader set of emotion classes in a less constrained real-world environment. To overcome these challenges, we propose a computational framework of 2D Convolutional Neural Network (CNN) architecture for the arrangement of 14 channels of EEG, and a combination of Long Short-Term Memory (LSTM) and 1D-CNN architecture for ECG and GSR. Our approach is subject-independent and incorporates two publicly available datasets of DREAMER and AMIGOS with low-cost, wearable sensors to extract physiological signals suitable for real-world environments. The results outperform state-of-the-art approaches for classification into four classes, namely High Valence—High Arousal, High Valence—Low Arousal, Low Valence—High Arousal, and Low Valence—Low Arousal. Emotion elicitation average accuracy of 98.73% is achieved with ECG right-channel modality, 76.65% with EEG modality, and 63.67% with GSR modality for AMIGOS. The overall highest accuracy of 99.0% for the AMIGOS dataset and 90.8% for the DREAMER dataset is achieved with multi-modal fusion. A strong correlation between spectral- and hidden-layer feature analysis with classification performance suggests the efficacy of the proposed method for significant feature extraction and higher emotion elicitation performance to a broader context for less constrained environments.
AbstractList Novel trends in affective computing are based on reliable sources of physiological signals such as Electroencephalogram (EEG), Electrocardiogram (ECG), and Galvanic Skin Response (GSR). The use of these signals provides challenges of performance improvement within a broader set of emotion classes in a less constrained real-world environment. To overcome these challenges, we propose a computational framework of 2D Convolutional Neural Network (CNN) architecture for the arrangement of 14 channels of EEG, and a combination of Long Short-Term Memory (LSTM) and 1D-CNN architecture for ECG and GSR. Our approach is subject-independent and incorporates two publicly available datasets of DREAMER and AMIGOS with low-cost, wearable sensors to extract physiological signals suitable for real-world environments. The results outperform state-of-the-art approaches for classification into four classes, namely High Valence—High Arousal, High Valence—Low Arousal, Low Valence—High Arousal, and Low Valence—Low Arousal. Emotion elicitation average accuracy of 98.73% is achieved with ECG right-channel modality, 76.65% with EEG modality, and 63.67% with GSR modality for AMIGOS. The overall highest accuracy of 99.0% for the AMIGOS dataset and 90.8% for the DREAMER dataset is achieved with multi-modal fusion. A strong correlation between spectral- and hidden-layer feature analysis with classification performance suggests the efficacy of the proposed method for significant feature extraction and higher emotion elicitation performance to a broader context for less constrained environments.
Novel trends in affective computing are based on reliable sources of physiological signals such as Electroencephalogram (EEG), Electrocardiogram (ECG), and Galvanic Skin Response (GSR). The use of these signals provides challenges of performance improvement within a broader set of emotion classes in a less constrained real-world environment. To overcome these challenges, we propose a computational framework of 2D Convolutional Neural Network (CNN) architecture for the arrangement of 14 channels of EEG, and a combination of Long Short-Term Memory (LSTM) and 1D-CNN architecture for ECG and GSR. Our approach is subject-independent and incorporates two publicly available datasets of DREAMER and AMIGOS with low-cost, wearable sensors to extract physiological signals suitable for real-world environments. The results outperform state-of-the-art approaches for classification into four classes, namely High Valence-High Arousal, High Valence-Low Arousal, Low Valence-High Arousal, and Low Valence-Low Arousal. Emotion elicitation average accuracy of 98.73% is achieved with ECG right-channel modality, 76.65% with EEG modality, and 63.67% with GSR modality for AMIGOS. The overall highest accuracy of 99.0% for the AMIGOS dataset and 90.8% for the DREAMER dataset is achieved with multi-modal fusion. A strong correlation between spectral- and hidden-layer feature analysis with classification performance suggests the efficacy of the proposed method for significant feature extraction and higher emotion elicitation performance to a broader context for less constrained environments.Novel trends in affective computing are based on reliable sources of physiological signals such as Electroencephalogram (EEG), Electrocardiogram (ECG), and Galvanic Skin Response (GSR). The use of these signals provides challenges of performance improvement within a broader set of emotion classes in a less constrained real-world environment. To overcome these challenges, we propose a computational framework of 2D Convolutional Neural Network (CNN) architecture for the arrangement of 14 channels of EEG, and a combination of Long Short-Term Memory (LSTM) and 1D-CNN architecture for ECG and GSR. Our approach is subject-independent and incorporates two publicly available datasets of DREAMER and AMIGOS with low-cost, wearable sensors to extract physiological signals suitable for real-world environments. The results outperform state-of-the-art approaches for classification into four classes, namely High Valence-High Arousal, High Valence-Low Arousal, Low Valence-High Arousal, and Low Valence-Low Arousal. Emotion elicitation average accuracy of 98.73% is achieved with ECG right-channel modality, 76.65% with EEG modality, and 63.67% with GSR modality for AMIGOS. The overall highest accuracy of 99.0% for the AMIGOS dataset and 90.8% for the DREAMER dataset is achieved with multi-modal fusion. A strong correlation between spectral- and hidden-layer feature analysis with classification performance suggests the efficacy of the proposed method for significant feature extraction and higher emotion elicitation performance to a broader context for less constrained environments.
Novel trends in affective computing are based on reliable sources of physiological signals such as Electroencephalogram (EEG), Electrocardiogram (ECG), and Galvanic Skin Response (GSR). The use of these signals provides challenges of performance improvement within a broader set of emotion classes in a less constrained real-world environment. To overcome these challenges, we propose a computational framework of 2D Convolutional Neural Network (CNN) architecture for the arrangement of 14 channels of EEG, and a combination of Long Short-Term Memory (LSTM) and 1D-CNN architecture for ECG and GSR. Our approach is subject-independent and incorporates two publicly available datasets of DREAMER and AMIGOS with low-cost, wearable sensors to extract physiological signals suitable for real-world environments. The results outperform state-of-the-art approaches for classification into four classes, namely High Valence—High Arousal, High Valence—Low Arousal, Low Valence—High Arousal, and Low Valence—Low Arousal. Emotion elicitation average accuracy of98.73%is achieved with ECG right-channel modality, 76.65% with EEG modality, and 63.67% with GSR modality for AMIGOS. The overall highest accuracy of 99.0% for the AMIGOS dataset and 90.8% for the DREAMER dataset is achieved with multi-modal fusion. A strong correlation between spectral- and hidden-layer feature analysis with classification performance suggests the efficacy of the proposed method for significant feature extraction and higher emotion elicitation performance to a broader context for less constrained environments.
Author Khawaja, Sajid Gul
Pujari, Amit N.
Dar, Muhammad Najam
Akram, Muhammad Usman
AuthorAffiliation 3 School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
1 Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; usman.akram@ceme.nust.edu.pk (M.U.A.); sajid.gul@ceme.nust.edu.pk (S.G.K.)
2 School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, England, UK; amit.pujari@ieee.org
AuthorAffiliation_xml – name: 2 School of Engineering and Technology, University of Hertfordshire, Hatfield AL10 9AB, England, UK; amit.pujari@ieee.org
– name: 3 School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
– name: 1 Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; usman.akram@ceme.nust.edu.pk (M.U.A.); sajid.gul@ceme.nust.edu.pk (S.G.K.)
Author_xml – sequence: 1
  givenname: Muhammad Najam
  surname: Dar
  fullname: Dar, Muhammad Najam
– sequence: 2
  givenname: Muhammad Usman
  orcidid: 0000-0002-6208-7231
  surname: Akram
  fullname: Akram, Muhammad Usman
– sequence: 3
  givenname: Sajid Gul
  surname: Khawaja
  fullname: Khawaja, Sajid Gul
– sequence: 4
  givenname: Amit N.
  orcidid: 0000-0003-1688-4448
  surname: Pujari
  fullname: Pujari, Amit N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32823807$$D View this record in MEDLINE/PubMed
BookMark eNptkt9rFDEQx4O02F8--A_Igi_6sDabSXaTF0WPqoVrFXo-h7kku5djL6nJntD_3l2vHm0pgcyQfObLN5k5IQchBkfI64p-AFD0PDNa1VyI6gU5rjjjpWSMHjzIj8hJzmtKGQDIl-QImGQgaXNMPs2urwsMtpjfLK7KL5idLS42cfAxFLMVpsGHrviVp_3n6i772MfOG-yLG98F7PMZOWzH4F7dx1Oy-HqxmH0v5z--Xc4-z0vDazWUFihSxnkt2lZy2VbApXTAHTZcITcKLQLUKCijTjkhXIsC1bSWS2zglFzuZG3Etb5NfoPpTkf0-t9BTJ2evJreaaWYHWuFAqe4ZBKNs0JibaUQ0kg7an3cad1ulxtnjQtDwv6R6OOb4Fe6i390wxtGpRgF3t0LpPh76_KgNz4b1_cYXNxmzTjUoBhVE_r2CbqO2zR93EQJKnkjYKTePHS0t_K_TSPwfgeYFHNOrt0jFdXTCOj9CIzs-RPW-AGnho6P8f0zFX8BIbiwGw
CitedBy_id crossref_primary_10_1109_JIOT_2024_3430297
crossref_primary_10_3390_app13084952
crossref_primary_10_1016_j_bspc_2022_103580
crossref_primary_10_26599_IJCS_2024_9100022
crossref_primary_10_1109_TSMC_2024_3523342
crossref_primary_10_1177_23780231211064009
crossref_primary_10_3390_s23104635
crossref_primary_10_1109_TCSS_2024_3406988
crossref_primary_10_1049_ccs2_12107
crossref_primary_10_1161_JAHA_123_034154
crossref_primary_10_1016_j_cmpb_2025_108921
crossref_primary_10_3233_JIFS_212958
crossref_primary_10_1016_j_icte_2023_09_001
crossref_primary_10_3390_sci6010010
crossref_primary_10_1038_s41598_022_18257_x
crossref_primary_10_3390_app12094236
crossref_primary_10_1109_JSEN_2021_3073888
crossref_primary_10_3390_s23208636
crossref_primary_10_3390_electronics11030496
crossref_primary_10_1109_TNNLS_2022_3190448
crossref_primary_10_1109_ACCESS_2022_3219844
crossref_primary_10_1016_j_neucom_2023_126901
crossref_primary_10_1007_s10586_023_04133_4
crossref_primary_10_1016_j_bspc_2024_107039
crossref_primary_10_1016_j_engappai_2023_107391
crossref_primary_10_1002_widm_1563
crossref_primary_10_3390_s25041180
crossref_primary_10_1007_s00371_022_02502_5
crossref_primary_10_3390_brainsci13060947
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_3389_fnins_2024_1519970
crossref_primary_10_1016_j_bspc_2024_106353
crossref_primary_10_1109_ACCESS_2024_3463746
crossref_primary_10_1109_JPROC_2023_3286445
crossref_primary_10_1016_j_compbiomed_2022_105327
crossref_primary_10_1016_j_cviu_2024_104121
crossref_primary_10_3390_s24092672
crossref_primary_10_3390_s22239480
crossref_primary_10_1016_j_eswa_2023_120883
crossref_primary_10_3389_fnhum_2022_1051463
crossref_primary_10_1016_j_bspc_2023_104928
crossref_primary_10_3390_electronics12132795
crossref_primary_10_1007_s11042_024_19467_3
crossref_primary_10_1109_ACCESS_2023_3321659
crossref_primary_10_1016_j_patrec_2022_08_018
crossref_primary_10_1016_j_ssci_2022_106019
crossref_primary_10_3390_fi16050158
crossref_primary_10_4015_S1016237224500510
crossref_primary_10_1080_10941665_2023_2293786
crossref_primary_10_1016_j_bspc_2025_107749
crossref_primary_10_1108_JEIM_12_2020_0536
crossref_primary_10_3390_mti6060047
crossref_primary_10_3390_s21031018
crossref_primary_10_1016_j_inffus_2022_03_009
crossref_primary_10_1155_2021_9951905
Cites_doi 10.1109/EMBC.2018.8512320
10.1109/JSEN.2010.2045498
10.3390/s18072074
10.1007/s00371-015-1183-y
10.1145/2973750.2973762
10.1109/T-AFFC.2011.28
10.1109/EMBC.2015.7320065
10.3390/s16101558
10.1016/j.bj.2017.11.001
10.1016/j.proeng.2011.08.452
10.1016/j.procs.2015.07.314
10.1109/BIBE.2016.40
10.1186/1475-925X-12-56
10.1109/T-AFFC.2010.7
10.1016/j.ipm.2019.102185
10.1109/JSTSP.2017.2764438
10.1007/978-981-10-7641-1_10
10.1109/T-AFFC.2011.25
10.3390/s20072034
10.1155/2017/8317357
10.1109/ICASSP40776.2020.9053985
10.1109/SMC.2014.6974415
10.5220/0006147801120118
10.1109/ICIP.2016.7532431
10.1109/TITS.2005.848368
10.1007/s11571-016-9375-3
10.3390/s19132999
10.1109/EMBC.2015.7319766
10.1037/h0077714
10.1007/978-3-642-22336-5_13
10.1089/tmj.2017.0250
10.1152/jn.90989.2008
10.1088/1741-2552/aa5a98
10.1166/jnsne.2014.1092
10.1109/ACCESS.2017.2779939
10.1109/CINC.2009.102
10.1109/SPAC.2017.8304293
10.1016/j.neucom.2019.10.008
10.1109/JBHI.2017.2688239
10.1016/j.neuroimage.2003.08.026
10.1109/T-AFFC.2010.1
10.1109/T-AFFC.2011.15
10.1109/BIBM.2016.7822545
10.1109/ICCV.2015.169
10.1016/j.bspc.2013.06.014
10.1109/ICASSP.2019.8683290
10.1109/TAFFC.2016.2625250
10.1109/ACII.2019.8925520
10.1109/ICBBE.2008.670
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s20164551
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_992da5a593e94828aced58a6d8558c8d
PMC7472085
32823807
10_3390_s20164551
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c469t-d30a024465ff848f13488e34ea749a4c9ada336a5020e9e55efa5a9a9a9bba73
IEDL.DBID PIMPY
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567263100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:42:28 EDT 2025
Tue Nov 04 02:00:48 EST 2025
Sun Nov 09 14:35:38 EST 2025
Tue Oct 07 07:26:50 EDT 2025
Wed Feb 19 02:01:59 EST 2025
Sat Nov 29 07:15:40 EST 2025
Tue Nov 18 22:41:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords convolutional neural network (CNN)
physiological signals
EEG
GSR
ECG
long short-term memory (LSTM)
emotion recognition
deep neural network
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-d30a024465ff848f13488e34ea749a4c9ada336a5020e9e55efa5a9a9a9bba73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1688-4448
0000-0002-6208-7231
OpenAccessLink https://www.proquest.com/publiccontent/docview/2435084753?pq-origsite=%requestingapplication%
PMID 32823807
PQID 2435084753
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_992da5a593e94828aced58a6d8558c8d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7472085
proquest_miscellaneous_2436392095
proquest_journals_2435084753
pubmed_primary_32823807
crossref_primary_10_3390_s20164551
crossref_citationtrail_10_3390_s20164551
PublicationCentury 2000
PublicationDate 20200814
PublicationDateYYYYMMDD 2020-08-14
PublicationDate_xml – month: 8
  year: 2020
  text: 20200814
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_58
ref_13
ref_12
Bozhkov (ref_50) 2015; 53
ref_10
Koelstra (ref_54) 2011; 3
ref_19
ref_18
Soleymani (ref_55) 2011; 3
ref_15
Alhagry (ref_27) 2017; 8
ref_59
Russell (ref_11) 1980; 39
ref_61
ref_60
Petrantonakis (ref_16) 2010; 1
Calvo (ref_5) 2010; 1
Burns (ref_52) 2010; 10
Goshvarpour (ref_66) 2017; 40
Karim (ref_64) 2017; 6
Healey (ref_6) 2005; 6
ref_25
ref_24
ref_67
ref_22
ref_21
Okamoto (ref_63) 2004; 21
Yuvaraj (ref_8) 2016; 10
ref_20
ref_29
ref_28
ref_36
Ludwig (ref_62) 2009; 101
ref_34
ref_33
Hwang (ref_1) 2018; 24
ref_32
ref_31
Agrafioti (ref_7) 2011; 3
Zheng (ref_26) 2017; 14
ref_30
ref_39
Duvinage (ref_51) 2013; 12
ref_37
Subramanian (ref_57) 2016; 9
Xianhai (ref_23) 2011; 15
Ries (ref_53) 2014; 3
Basha (ref_65) 2020; 378
Singh (ref_56) 2013; 8
ref_47
ref_46
ref_44
ref_42
ref_41
ref_3
ref_2
Min (ref_43) 2017; 18
Lan (ref_17) 2016; 32
ref_49
ref_48
ref_9
Tzirakis (ref_45) 2017; 11
Katsigiannis (ref_35) 2017; 22
ref_4
Abdulhay (ref_38) 2018; 7
Li (ref_40) 2020; 57
References_xml – ident: ref_41
  doi: 10.1109/EMBC.2018.8512320
– ident: ref_32
– volume: 10
  start-page: 1527
  year: 2010
  ident: ref_52
  article-title: SHIMMER™–A wireless sensor platform for noninvasive biomedical research
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2010.2045498
– ident: ref_9
  doi: 10.3390/s18072074
– ident: ref_42
– volume: 32
  start-page: 347
  year: 2016
  ident: ref_17
  article-title: Real-time EEG-based emotion monitoring using stable features
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1183-y
– ident: ref_4
  doi: 10.1145/2973750.2973762
– volume: 3
  start-page: 102
  year: 2011
  ident: ref_7
  article-title: ECG pattern analysis for emotion detection
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.28
– ident: ref_20
  doi: 10.1109/EMBC.2015.7320065
– ident: ref_59
  doi: 10.3390/s16101558
– volume: 40
  start-page: 355
  year: 2017
  ident: ref_66
  article-title: An accurate emotion recognition system using ECG and GSR signals and matching pursuit method
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2017.11.001
– volume: 15
  start-page: 2408
  year: 2011
  ident: ref_23
  article-title: Study of emotion recognition based on electrocardiogram and RBF neural network
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2011.08.452
– ident: ref_31
– volume: 53
  start-page: 375
  year: 2015
  ident: ref_50
  article-title: EEG-based subject independent affective computing models
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.314
– ident: ref_21
  doi: 10.1109/BIBE.2016.40
– volume: 12
  start-page: 56
  year: 2013
  ident: ref_51
  article-title: Performance of the Emotiv Epoc headset for P300-based applications
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-12-56
– volume: 1
  start-page: 81
  year: 2010
  ident: ref_16
  article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.7
– volume: 57
  start-page: 102185
  year: 2020
  ident: ref_40
  article-title: Exploring temporal representations by leveraging attention-based bidirectional LSTM-RNNs for multi-modal emotion recognition
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2019.102185
– ident: ref_13
– volume: 11
  start-page: 1301
  year: 2017
  ident: ref_45
  article-title: End-to-end multimodal emotion recognition using deep neural networks
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2017.2764438
– ident: ref_49
  doi: 10.1007/978-981-10-7641-1_10
– volume: 3
  start-page: 42
  year: 2011
  ident: ref_55
  article-title: A multimodal database for affect recognition and implicit tagging
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.25
– ident: ref_61
  doi: 10.3390/s20072034
– ident: ref_60
  doi: 10.1155/2017/8317357
– ident: ref_39
  doi: 10.1109/ICASSP40776.2020.9053985
– ident: ref_48
  doi: 10.1109/SMC.2014.6974415
– ident: ref_28
– ident: ref_2
  doi: 10.5220/0006147801120118
– ident: ref_30
– ident: ref_44
  doi: 10.1109/ICIP.2016.7532431
– volume: 6
  start-page: 156
  year: 2005
  ident: ref_6
  article-title: Detecting stress during real-world driving tasks using physiological sensors
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2005.848368
– volume: 10
  start-page: 225
  year: 2016
  ident: ref_8
  article-title: Hemispheric asymmetry non-linear analysis of EEG during emotional responses from idiopathic Parkinson’s disease patients
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-016-9375-3
– ident: ref_34
– ident: ref_46
  doi: 10.3390/s19132999
– ident: ref_19
  doi: 10.1109/EMBC.2015.7319766
– volume: 39
  start-page: 1161
  year: 1980
  ident: ref_11
  article-title: A circumplex model of affect
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/h0077714
– ident: ref_10
  doi: 10.1007/978-3-642-22336-5_13
– volume: 24
  start-page: 753
  year: 2018
  ident: ref_1
  article-title: Deep ECGNet: An optimal deep learning framework for monitoring mental stress using ultra short-term ECG signals
  publication-title: Telemed. e-Health
  doi: 10.1089/tmj.2017.0250
– volume: 101
  start-page: 1679
  year: 2009
  ident: ref_62
  article-title: Using a common average reference to improve cortical neuron recordings from microelectrode arrays
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90989.2008
– volume: 14
  start-page: 026017
  year: 2017
  ident: ref_26
  article-title: A multimodal approach to estimating vigilance using EEG and forehead EOG
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa5a98
– ident: ref_37
– ident: ref_14
– ident: ref_47
  doi: 10.1109/SMC.2014.6974415
– volume: 3
  start-page: 10
  year: 2014
  ident: ref_53
  article-title: A comparison of electroencephalography signals acquired from conventional and mobile systems
  publication-title: J. Neurosci. Neuroeng.
  doi: 10.1166/jnsne.2014.1092
– volume: 6
  start-page: 1662
  year: 2017
  ident: ref_64
  article-title: LSTM fully convolutional networks for time series classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2779939
– ident: ref_18
  doi: 10.1109/CINC.2009.102
– ident: ref_3
  doi: 10.1109/SPAC.2017.8304293
– volume: 8
  start-page: 355
  year: 2017
  ident: ref_27
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Emotion
– ident: ref_25
– volume: 378
  start-page: 112
  year: 2020
  ident: ref_65
  article-title: Impact of fully connected layers on performance of convolutional neural networks for image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.008
– ident: ref_29
– ident: ref_33
– volume: 22
  start-page: 98
  year: 2017
  ident: ref_35
  article-title: DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2688239
– volume: 21
  start-page: 99
  year: 2004
  ident: ref_63
  article-title: Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.08.026
– ident: ref_12
– volume: 1
  start-page: 18
  year: 2010
  ident: ref_5
  article-title: Affect detection: An interdisciplinary review of models, methods, and their applications
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.1
– volume: 3
  start-page: 18
  year: 2011
  ident: ref_54
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– ident: ref_24
  doi: 10.1109/BIBM.2016.7822545
– volume: 7
  start-page: 57
  year: 2018
  ident: ref_38
  article-title: Using deep convolutional neural network for emotion detection on a physiological signals dataset (AMIGOS)
  publication-title: IEEE Access
– ident: ref_15
– ident: ref_67
  doi: 10.1109/ICCV.2015.169
– volume: 8
  start-page: 740
  year: 2013
  ident: ref_56
  article-title: A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.06.014
– ident: ref_36
  doi: 10.1109/ICASSP.2019.8683290
– volume: 18
  start-page: 851
  year: 2017
  ident: ref_43
  article-title: Deep learning in bioinformatics
  publication-title: Briefings Bioinform.
– volume: 9
  start-page: 147
  year: 2016
  ident: ref_57
  article-title: ASCERTAIN: Emotion and personality recognition using commercial sensors
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2016.2625250
– ident: ref_58
  doi: 10.1109/ACII.2019.8925520
– ident: ref_22
  doi: 10.1109/ICBBE.2008.670
SSID ssj0023338
Score 2.5931716
Snippet Novel trends in affective computing are based on reliable sources of physiological signals such as Electroencephalogram (EEG), Electrocardiogram (ECG), and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4551
SubjectTerms Algorithms
Arousal
Classification
convolutional neural network (CNN)
Datasets
ECG
EEG
Electrocardiography
Electroencephalography
emotion recognition
Emotions
Eye movements
Galvanic Skin Response
GSR
Humans
long short-term memory (LSTM)
Neural networks
Neural Networks, Computer
Physiology
Support vector machines
Trends
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-RAEC1EPOhB1vUrqyutePASnKS6J90nUVH2sDsIzsFbqKQ7OiBxccb9_VYlmTCzCF4kt6QOnXrprvdI8QrgNCBRUaZJXKAdxto7iouBdzFTe8SszKiyRTNsIhuN7MODu1sY9SU9Ya09cJu4c-dST4aMw-A0ywMqgzeWht4aY0vr5fRl1jMXU53UQlZerY8Qsqg_n6biJGVMslR9GpP-j5jl_w2SCxXn9htsdlRRXbZL3IKVUH-HjQUDwW24uB6NFNVe_b4f_4mvuCJ5ddMO5lHyI116mlXTFaCaVs_5SafuJ49inLwD49ub8fWvuBuJEJesY2exxwFxVdVDU1VW2ypB3oABdaBMO9KlI0-IQzLMAoMLxoSKk-fkKgrKcBdW65c67IMKGBKGR3NMpV3hLKNJSZYVKP2m1kVwNs9UXnZ24TK14jln2SBJzfukRnDSh_5tPTI-CrqSdPcBYmvd3GCw8w7s_DOwIzicg5V3e22ap8z4BlxkDUZw3D_mXSK_PqgOL29NDFOxlPlkBHsttv1KkFWn2O5HkC2hvrTU5Sf15Klx4mYtJjNOf3zFux3AeipaXux29SGszl7fwk9YK__NJtPXo-bzfgfnT_-W
  priority: 102
  providerName: Directory of Open Access Journals
Title CNN and LSTM-Based Emotion Charting Using Physiological Signals
URI https://www.ncbi.nlm.nih.gov/pubmed/32823807
https://www.proquest.com/docview/2435084753
https://www.proquest.com/docview/2436392095
https://pubmed.ncbi.nlm.nih.gov/PMC7472085
https://doaj.org/article/992da5a593e94828aced58a6d8558c8d
Volume 20
WOSCitedRecordID wos000567263100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48H4EliogDlysNrFd26cVXXUFEo0qtodyipzY2a2E0qXtcuS3M-OkYYtWnFAkH5I5TDJve_INwHvPrS3KNGEF12MmnLGsGDnDMLXnXJXKVroIwyZUlunl0szb36O3bVvl3icGR92gPVPfNjrhoVuXtGM-TDHKj9CxSn5y9YPRDCk6a20HahxBn4C3dA_688-z-beuAONYjzXoQhxL_eE2JXwpKZODmBSg-2_LN_9um7wRh84e_t83eAQP2nw0_tgo0GO44-sncP8GSuFTODnNstjWLv5yvpixCYY9F0-b6T8xndZT43QcWg_i0E-6d6fx-eqC0JmfweJsujj9xNq5C6zEYnnHHB9ZDN1iLKtKC10lHK3cc-GtEsaK0lhnOR9biammN15KX1lpDV1FYRV_Dr16XfuXEHvuE9QBgTSVMIXRqDI2Uarg1NSqTQQf9h8-L1tMchqN8T3H2oRklHcyiuBdR3rVAHHcRjQh6XUEhJ0dbqw3F3lrirkxqUN-peHeCCw4bemd1HbstJS61C6C47388tagt_kfcUXwtnuMpkjnK7b26-tAg_leiklrBC8aVek44VjaErZ_BOpAiQ5YPXxSry4D3DcWfDRI9dW_2XoN91LaCiC0XnEMvd3m2r-Bu-XP3Wq7GcCRWqqw6gH0J9Ns_nUQth9wnf2aDlpL-Q3hjx_l
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQwCqRerm9he2wdU0dKqVbcRUvewt8iJnbISypbdLYgfxX9kJq92UcWtB5RbPIqc5PM8nMn3AbwPwrm8SGKeCzPk0lvH84G3HFN7IXShXWnyWmxCp6mZTOyXNfjd_QtDbZWdT6wdtZ8VtEe-lWBcH6ArVWL77Dsn1Sj6utpJaDSwOAq_fmLJtvh4-Bnf74ck2d8b7x7wVlWAF1gKLrkXA4eBSQ5VWRppylgghoOQwWlpnSys806IoVOYSAUblAqlU87SkedOC7zsDbiJblxTB5meXNR3Asu9hrxICDvYWiREX6VUvBLyamWAq9LZv7syL4W5_fv_2QN6APfafJp9ahbAQ1gL1SO4e4ll8TFs76Ypc5Vno5PxMd_BsO3ZXqNexKjbgBq_Wd06wep-2C4csJPpKbFLP4HxddzAU1ivZlV4DiyIECOGJdqU0ubWIORdrHUuqCnX2Ag2uzebFS2nOkl7fMuwtiIQZD0IInjXm541RCJXGe0QPHoD4v6uT8zmp1nrSjJrE4_zVVYEK7FgdkXwyrihN0qZwvgINjqAZK1DWmQX6IjgbT-MroS-D7kqzM5rG8xXE0y6I3jWYLGficDSnLQJItArKF2Z6upINf1a05VjwUpCsC_-Pa03cPtgfDzKRofp0Uu4k9C2BjEPyw1YX87Pwyu4VfxYThfz1_WiY5BdM4b_AIKgagE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcyrukFDAIpF6i3cT22j6gij5WVC1Rpe5hb5ETO2WlKlt2tyB-Wv9dZ_JqF1XcekC5JaPIjj_PI5l8H8Anz63N8jgKM64HoXDGhlnfmRBTe85Vrmyhs0psQiWJHo_N8Qpctv_CUFtl6xMrR-2mOb0j78UY1_voSiXvFU1bxPHecPv8Z0gKUvSltZXTqCFy6P_8xvJt_uVgD9f6cxwP90e738JGYSDMsSxchI73LQYpMZBFoYUuIo549lx4q4SxIjfWWc4HVmJS5Y2X0hdWWkNHllnF8bb34L7CWZFqhBpf13ocS7-ayIhz0-_NY6KykjJaCn-VSsBtqe3fHZo3Qt7wyX_8sJ7CWpNns6_1xngGK758Do9vsC--gO3dJGG2dOzoZPQ93MFw7th-rWrEqAuBGsJZ1VLBqj7ZNkywk8kpsU6_hNFdTOAVrJbT0r8G5rmPENsCbQphMqNxK9hIqYxTs642AWy1q5zmDdc6SX6cpVhzESDSDhABfOxMz2uCkduMdggqnQFxglcnprPTtHExqTGxw_FKw70RWEjb3Dup7cBpKXWuXQCbLVjSxlHN02ukBPChu4wuhr4b2dJPLyobzGNjTMYDWK9x2Y2EY8lOmgUBqCXELg11-Uo5-VHRmGMhSwKxG_8e1nt4iNBNjw6SwzfwKKa3HURILDZhdTG78G_hQf5rMZnP3lX7j0F6xxC-Aq1tcrU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN+and+LSTM-Based+Emotion+Charting+Using+Physiological+Signals&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Dar%2C+Muhammad+Najam&rft.au=Akram%2C+Muhammad+Usman&rft.au=Khawaja%2C+Sajid+Gul&rft.au=Pujari%2C+Amit+N&rft.date=2020-08-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=16&rft_id=info:doi/10.3390%2Fs20164551&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon