Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks

Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 17; H. 12; S. 2720
Hauptverfasser: Zhong, Jiandan, Lei, Tao, Yao, Guangle
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 24.11.2017
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.
AbstractList Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.
Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were developed and achieved acceptable performance, but these models are time-consuming in the detection phase. Recently, with the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art detectors have been designed based on deep CNNs. However, these CNN-based detectors are inefficient when applied in aerial image data due to the fact that the existing CNN-based models struggle with small-size object detection and precise localization. To improve the detection accuracy without decreasing speed, we propose a CNN-based detection model combining two independent convolutional neural networks, where the first network is applied to generate a set of vehicle-like regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps combine the advantage of the deep and shallow convolutional layer, the first network performs well on locating the small targets in aerial image data. Then, the generated candidate regions are fed into the second network for feature extraction and decision making. Comprehensive experiments are conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset. The proposed cascaded detection model yields high performance, not only in detection accuracy but also in detection speed.
Author Yao, Guangle
Lei, Tao
Zhong, Jiandan
AuthorAffiliation 1 Institute of Optics and Electronics, Chinese Academy of Sciences, No. 1, Guangdian Avenue, Chengdu 610209, China; taoleiyan@ioe.ac.cn (T.L.); guangle.yao@std.uestc.edu.cn (G.Y.)
2 School of Optoelectronic Information, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, China
3 University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100039, China
AuthorAffiliation_xml – name: 2 School of Optoelectronic Information, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, China
– name: 3 University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100039, China
– name: 1 Institute of Optics and Electronics, Chinese Academy of Sciences, No. 1, Guangdian Avenue, Chengdu 610209, China; taoleiyan@ioe.ac.cn (T.L.); guangle.yao@std.uestc.edu.cn (G.Y.)
Author_xml – sequence: 1
  givenname: Jiandan
  orcidid: 0000-0001-5686-7955
  surname: Zhong
  fullname: Zhong, Jiandan
– sequence: 2
  givenname: Tao
  orcidid: 0000-0002-0900-1582
  surname: Lei
  fullname: Lei, Tao
– sequence: 3
  givenname: Guangle
  surname: Yao
  fullname: Yao, Guangle
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29186756$$D View this record in MEDLINE/PubMed
BookMark eNplkktrFEEQxxuJmIce_AIy4EUPa_r9uAhxfS0EBVHBU9PTXbPpdXY66Z6J-O3tySYhiacqqn71p16HaG9IAyD0nOA3jBl8XIgilCqKH6EDwilfaErx3h1_Hx2WssGYMsb0E7RPDdFSCXmAfn1L7VTG5iecRd9D8x5G8GNMQxOH5gRydH2z2ro1lOadKxCamlm64l2o_jINl6mfZrxiX2DKV2b8k_Lv8hQ97lxf4Nm1PUI_Pn74vvy8OP36abU8OV14Ls248KYDQXUrghY8BEIlo5oR6oXDqoaJ6bSSQWiq2pZJKTqNTSCSSpCCm5YdodVONyS3sec5bl3-a5OL9iqQ8tq6PM7DWQEGY0YU7qTjDhvDeMcNptAaronmVevtTut8arcQPAxjHeme6P3MEM_sOl1aoQQR1FSBV9cCOV1MUEa7jcVD37sB0lQsMQpLqo0iFX35AN2kKddFzpTWglGjZaVe3O3otpWbC1bgeAf4nErJ0FkfRzefpDYYe0uwnX_E3v5IrXj9oOJG9H_2H8hMuI0
CitedBy_id crossref_primary_10_3390_electronics13020319
crossref_primary_10_3390_s19194062
crossref_primary_10_1155_2022_3247229
crossref_primary_10_3390_s18030774
crossref_primary_10_1002_dac_4928
crossref_primary_10_1109_LGRS_2019_2912582
crossref_primary_10_3390_rs11141708
crossref_primary_10_1016_j_sysarc_2021_102152
crossref_primary_10_1080_13682199_2023_2174651
crossref_primary_10_1109_JSEN_2020_3007883
crossref_primary_10_3390_rs12030417
crossref_primary_10_1155_2022_1828848
crossref_primary_10_3390_s22186837
crossref_primary_10_1109_ACCESS_2020_3040290
crossref_primary_10_3390_rs13193908
crossref_primary_10_3233_JIFS_169907
crossref_primary_10_1109_ACCESS_2023_3234281
crossref_primary_10_1007_s11760_019_01592_4
crossref_primary_10_3390_data7040047
crossref_primary_10_3390_rs11182176
crossref_primary_10_4018_IJSWIS_331083
crossref_primary_10_3390_computers12080151
crossref_primary_10_1109_ACCESS_2021_3049741
crossref_primary_10_1016_j_isprsjprs_2019_11_023
crossref_primary_10_1016_j_trc_2018_12_004
crossref_primary_10_1109_TITS_2021_3072872
crossref_primary_10_1109_JSTARS_2022_3179026
crossref_primary_10_3390_electronics13112140
crossref_primary_10_1080_23249935_2025_2511818
crossref_primary_10_1109_LGRS_2019_2930308
crossref_primary_10_1109_ACCESS_2020_2990870
crossref_primary_10_1109_JSTARS_2019_2933501
crossref_primary_10_1016_j_infrared_2019_04_008
crossref_primary_10_3390_rs13050862
crossref_primary_10_1007_s00371_024_03689_5
crossref_primary_10_1109_TGRS_2021_3051383
crossref_primary_10_1007_s11554_024_01457_1
crossref_primary_10_1109_JSTARS_2022_3169128
crossref_primary_10_3390_ijgi10080549
crossref_primary_10_3390_rs14246270
crossref_primary_10_3390_s24175661
crossref_primary_10_1109_LGRS_2019_2909541
crossref_primary_10_3390_electronics12061312
crossref_primary_10_3390_rs12172734
crossref_primary_10_3390_rs13214196
crossref_primary_10_1155_2019_9282141
crossref_primary_10_3390_agriculture10030057
crossref_primary_10_1016_j_isprsjprs_2019_07_009
crossref_primary_10_1109_ACCESS_2019_2947143
crossref_primary_10_3390_s23041865
crossref_primary_10_1109_JSTARS_2022_3181594
crossref_primary_10_1109_ACCESS_2020_2994379
crossref_primary_10_1007_s11760_022_02328_7
crossref_primary_10_1049_ipr2_12038
crossref_primary_10_3390_s18072386
crossref_primary_10_1007_s11042_020_08807_8
Cites_doi 10.1109/CVPR.2016.91
10.1007/978-3-540-88693-8_52
10.1162/neco.1989.1.4.541
10.1023/B:VISI.0000029664.99615.94
10.1109/ICCV.2015.296
10.1109/CVPR.2016.97
10.3390/s17020336
10.1007/s10043-015-0067-8
10.1109/TPAMI.2012.28
10.1109/CVPR.2015.7298621
10.3390/s16081325
10.1109/TPAMI.2015.2465908
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2014.49
10.1109/ICCV.2015.169
10.1109/TPAMI.2012.120
10.1007/978-3-319-10590-1_53
10.1109/JSTARS.2017.2694890
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2014.414
10.1007/978-3-319-10602-1_26
10.3390/rs61111315
10.1007/s11042-015-2520-x
10.1145/1961189.1961199
10.1109/ICCV.2015.285
10.3390/rs9040312
10.1109/CVPR.2015.7298965
10.1007/s11263-013-0620-5
10.1109/TCSVT.2014.2358031
10.1109/TPAMI.2011.231
10.1109/LGRS.2015.2439517
10.1109/TPAMI.2016.2577031
10.1145/2647868.2654889
10.1007/978-3-662-44851-9_15
10.1109/CVPR.2016.98
10.1109/CVPR.2014.81
10.1109/CVPR.2014.276
10.1007/s11263-009-0275-4
10.1016/j.jvcir.2015.11.002
10.1007/978-3-642-15555-0_16
10.1109/TPAMI.2009.167
10.1007/s11042-016-4043-5
ContentType Journal Article
Copyright Copyright MDPI AG 2017
2017 by the authors. 2017
Copyright_xml – notice: Copyright MDPI AG 2017
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s17122720
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5e9003170f6a4a09934f4902eb948184
PMC5751529
29186756
10_3390_s17122720
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-c9fe528b5d854dd126328312c5a078b519f876d5827bb3665f809d1626e6549b3
IEDL.DBID DOA
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423285800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:50:41 EDT 2025
Tue Nov 04 01:50:59 EST 2025
Thu Sep 04 19:23:08 EDT 2025
Sat Nov 29 14:55:21 EST 2025
Tue Feb 25 01:06:50 EST 2025
Tue Nov 18 21:47:11 EST 2025
Sat Nov 29 07:10:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords vehicle detection
deep learning
aerial image
convolutional neural network
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-c9fe528b5d854dd126328312c5a078b519f876d5827bb3665f809d1626e6549b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5686-7955
0000-0002-0900-1582
OpenAccessLink https://doaj.org/article/5e9003170f6a4a09934f4902eb948184
PMID 29186756
PQID 1988532986
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5e9003170f6a4a09934f4902eb948184
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5751529
proquest_miscellaneous_1970628971
proquest_journals_1988532986
pubmed_primary_29186756
crossref_citationtrail_10_3390_s17122720
crossref_primary_10_3390_s17122720
PublicationCentury 2000
PublicationDate 20171124
PublicationDateYYYYMMDD 2017-11-24
PublicationDate_xml – month: 11
  year: 2017
  text: 20171124
  day: 24
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chang (ref_7) 2011; 2
Alexe (ref_12) 2012; 54
Ren (ref_19) 2017; 39
ref_14
ref_13
ref_11
Razakarivony (ref_42) 2016; 34
Tang (ref_1) 2017; 76
Felzenszwalb (ref_9) 2010; 32
ref_18
ref_16
ref_15
Bergh (ref_32) 2013; 7578
Gu (ref_4) 2015; 22
ref_24
ref_22
LeCun (ref_45) 1989; 4
ref_21
ref_20
Everingham (ref_47) 2010; 88
ref_28
ref_27
ref_26
Liu (ref_43) 2015; 12
Lowe (ref_6) 2004; 60
Hosang (ref_25) 2016; 38
ref_36
ref_35
ref_34
ref_33
ref_31
ref_30
ref_38
ref_37
He (ref_17) 2015; 37
Leitloff (ref_50) 2014; 6
ref_46
Qu (ref_39) 2016; 76
Uijlings (ref_10) 2013; 104
ref_44
ref_40
Carreira (ref_23) 2012; 34
Achanta (ref_29) 2012; 34
ref_3
Wen (ref_2) 2015; 25
ref_49
ref_48
Deng (ref_41) 2017; 10
ref_8
ref_5
References_xml – ident: ref_5
– ident: ref_36
  doi: 10.1109/CVPR.2016.91
– ident: ref_30
  doi: 10.1007/978-3-540-88693-8_52
– volume: 4
  start-page: 541
  year: 1989
  ident: ref_45
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– ident: ref_16
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_6
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref_22
  doi: 10.1109/ICCV.2015.296
– ident: ref_26
  doi: 10.1109/CVPR.2016.97
– ident: ref_40
  doi: 10.3390/s17020336
– volume: 22
  start-page: 197
  year: 2015
  ident: ref_4
  article-title: Vision-based multi-scaled vehicle detection and distance relevant mix tracking for driver assistance system
  publication-title: Opt. Rev.
  doi: 10.1007/s10043-015-0067-8
– volume: 54
  start-page: 2189
  year: 2012
  ident: ref_12
  article-title: Measuring the objectness of image windows
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.28
– ident: ref_8
– ident: ref_33
  doi: 10.1109/CVPR.2015.7298621
– ident: ref_37
  doi: 10.3390/s16081325
– volume: 38
  start-page: 814
  year: 2016
  ident: ref_25
  article-title: What makes for effective detection proposals?
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2465908
– ident: ref_13
– ident: ref_20
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_27
  doi: 10.1109/CVPR.2014.49
– ident: ref_18
  doi: 10.1109/ICCV.2015.169
– volume: 34
  start-page: 2274
  year: 2012
  ident: ref_29
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– ident: ref_49
  doi: 10.1007/978-3-319-10590-1_53
– volume: 10
  start-page: 3652
  year: 2017
  ident: ref_41
  article-title: Toward Fast and Accurate Vehicle Detection in Aerial Images Using Coupled Region-Based Convolutional Neural Networks
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2694890
– volume: 7578
  start-page: 1
  year: 2013
  ident: ref_32
  article-title: SEEDS: Superpixels Extracted via Energy-Driven Sampling
  publication-title: Int. J. Comput. Vis.
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_17
  article-title: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_3
– ident: ref_11
  doi: 10.1109/CVPR.2014.414
– ident: ref_24
  doi: 10.1007/978-3-319-10602-1_26
– volume: 6
  start-page: 11315
  year: 2014
  ident: ref_50
  article-title: An operational system for estimating road traffic information from aerial images
  publication-title: Remote Sens.
  doi: 10.3390/rs61111315
– volume: 76
  start-page: 5817
  year: 2017
  ident: ref_1
  article-title: Vehicle detection and recognition for intelligent traffic surveillance system
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-015-2520-x
– volume: 2
  start-page: 389
  year: 2011
  ident: ref_7
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– ident: ref_28
  doi: 10.1109/ICCV.2015.285
– ident: ref_38
  doi: 10.3390/rs9040312
– ident: ref_14
– ident: ref_34
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_21
– volume: 104
  start-page: 154
  year: 2013
  ident: ref_10
  article-title: Selective search for object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– volume: 25
  start-page: 508
  year: 2015
  ident: ref_2
  article-title: Efficient Feature Selection and Classification for Vehicle Detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2014.2358031
– volume: 34
  start-page: 1312
  year: 2012
  ident: ref_23
  article-title: CPMC: Automatic object segmentation using constrained parametric min-cuts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.231
– volume: 12
  start-page: 1938
  year: 2015
  ident: ref_43
  article-title: Fast Multiclass Vehicle Detection on Aerial Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2439517
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_19
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_46
  doi: 10.1145/2647868.2654889
– ident: ref_48
  doi: 10.1007/978-3-662-44851-9_15
– ident: ref_44
  doi: 10.1109/CVPR.2016.98
– ident: ref_15
  doi: 10.1109/CVPR.2014.81
– ident: ref_35
  doi: 10.1109/CVPR.2014.276
– volume: 88
  start-page: 303
  year: 2010
  ident: ref_47
  article-title: The Pascal Visual Object Classes (VOC) Challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– volume: 34
  start-page: 187
  year: 2016
  ident: ref_42
  article-title: Vehicle detection in aerial imagery: A small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.11.002
– ident: ref_31
  doi: 10.1007/978-3-642-15555-0_16
– volume: 32
  start-page: 1627
  year: 2010
  ident: ref_9
  article-title: Object detection with discriminatively trained part based models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.167
– volume: 76
  start-page: 21651
  year: 2016
  ident: ref_39
  article-title: Vehicle detection from high-resolution aerial images using spatial pyramid pooling-based deep convolutional neural networks
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-4043-5
SSID ssj0023338
Score 2.4756489
Snippet Vehicle detection in aerial images is an important and challenging task. Traditionally, many target detection models based on sliding-window fashion were...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2720
SubjectTerms aerial image
Computer vision
convolutional neural network
deep learning
Neural networks
vehicle detection
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgy4EeeD8CBRnEgUu0sR3H9gm1CxU9UK0QoPYUObHdrgRJu8n29zOT9YYuqjhxihRPJEfz9oy_IeQdCI3NgzKpMCKkuQoitUxnqRfgbqvAjZX1MGxCHR_rkxMzj9eju9hWubGJg6Feoz1j3zYY4alrazwxn0KqDH6GG118uLhMcYYU1lrjQI3bZAeBt_SE7MyPvsxPxwRMQD62RhcSkOpPO6YYxzrklk8aoPtvijf_bpu85ocO7__fP3hA7sV4lO6vBeghueWbR2T3GkrhY3L6ta1WXU9_-HOkoR99P_RvNXTR0P1BgunRL7BLHT0An-gorMxsh433js7a5ipKN5AhFMjwGHrPuyfk--Gnb7PPaZzIkNaQRvdpbYKXXFfSaZk7xxDsXQvGa2kh1KggGgxgXZ3UXFWVKAoZdGYcg6TJF5CIVuIpmTRt458Tmqlgg-RF5YPMgxPWZK5G2PPgIKgyKiHvNzwp6whXjlMzfpaQtiD7ypF9CXk7kl6sMTpuIjpAxo4ECKs9vGiXZ2XU0lJ6PNhlKguFzS0EzyIPucm4rxDURucJ2duwtoy63pV_OJmQN-MyaCmWXmzj2xXSKLysahRLyLO1FI074QZBBSV8rbbka2ur2yvN4nxAAseimeTmxb-39ZLc5RiMMJbyfI9M-uXKvyJ36qt-0S1fRyX5DR_nIuU
  priority: 102
  providerName: ProQuest
Title Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/29186756
https://www.proquest.com/docview/1988532986
https://www.proquest.com/docview/1970628971
https://pubmed.ncbi.nlm.nih.gov/PMC5751529
https://doaj.org/article/5e9003170f6a4a09934f4902eb948184
Volume 17
WOSCitedRecordID wos000423285800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH6CwQEOaPwOjMogDlyixXYc28e168QOq6oJUHeKnNjWKo0ULe2O_O08O2nUoklcuCSS_SI5z89-34tfvgfwGY3G5F7qlGvu01x6nhqqstRxdLeVZ9qIOhabkLOZWiz0fKfUV8gJ6-iBO8UdCxe-tVGZ-cLkBvEMz32uM-aqwDOiIhMoop5tMNWHWhwjr45HiGNQf9xSSVk4cdzzPpGk_z5k-XeC5I7HOTuEZz1UJCfdEJ_DA9e8gKc7BIIv4epyVW3aNfnhroMMOXXrmFrVkGVDTqJxkfOfuGW0ZIzuyhLsmZg25MRbMlk1d73hoVhg6Yi3mBbevoLvZ9Nvk69pXywhrTHCXae19k4wVQmrRG4tDTzsilNWC4MooEKg5nHjs0IxWVW8KIRXmbYU4xlXYIxY8ddw0Kwa9xZIJr3xghWV8yL3lhud2TowknuLeEfLBL5slVjWPZN4KGhxU2JEEfRdDvpO4NMg-qujz7hPaBxmYhAIjNexAe2g7O2g_JcdJHC0nceyX4ZtSbVCOMK0KhL4OHTjAgqnIqZxq02QkeE_Ui1pAm-6aR9GwnTg-xP4tNwziL2h7vc0y-tI0h3OswTT7_7Hu72HJyygCUpTlh_Bwfp24z7A4_puvWxvR_BQLmS8qhE8Gk9n88tRXA14vfg9xbb5-cX86g9lnQw0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58H4sFDAIJC5REzuO4wNC7Zaqq5YVQgVtTyGJ7XYlSMpmt4g_xW9kJq92UcWtB06R4knkxJ_nYY-_AXiFoElDp7QntHBeqJzw0iD2PSvQ3GaO61TmdbEJNR7Hk4n-uAK_u7MwlFbZ6cRaUZsypzXyDQyO0bJwHUfvTn54VDWKdle7EhoNLPbsr58YslVvR9s4vq8533l_MNz12qoCXo6h4NzLtbOSx5k0sQyNCYiwPBYBz2WK5jJDj8ahhjAy5irLRBRJF_vaBOj42wiDqUzge6_AVdTjilLI1OQswBMY7zXsRUJof6MKVMBpn3PJ5tWlAS7yZ_9Oyzxn53Zu_W9_6DbcbD1qttlMgTuwYou7cOMcz-I9OPxUZotqzr7YY5Jh23ZeZ6AVbFqwzXoOstF31KwV20Krbhi2DNOKjg4YNiyL03Z-ohiRmdSXOnu-ug-fL-XbHsBqURb2ETBfudRJHmXWydAZkWrf5ETc7gy6hVoN4E036kneEq5T3Y9vCQZeBJCkB8gAXvaiJw3LyEVCWwSdXoCIwesb5ewoafVMIi0tTQfKd1Eapuj-i9CF2uc2I1qeOBzAegeepNVWVXKGnAG86JtRz9DmUVrYckEyio7bahUM4GGD074nXBMtosSn1RKCl7q63FJMj2suc9r2k1w__ne3nsP13YMP-8n-aLz3BNY4uVZB4PFwHVbns4V9Ctfy0_m0mj2rJySDr5eN7z83a2-W
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB0tC0Jw4PsjsIBBIHGJmthxHB8Q2m2pqBZVKwSonEIS22wlSJYmXcRf49cxkybdLVpx2wOnSvGkctrnmXnx-A3AcwRNFjmlfaGF8yPlhJ-FSeBbgeE2d1xnsmibTajpNJnN9MEW_O7PwlBZZe8TW0dtqoLekQ-QHGNk4TqJB64rizgYjV8f_fCpgxTttPbtNFYQ2be_fiJ9q19NRvhfv-B8_ObD8K3fdRjwC6SFjV9oZyVPcmkSGRkTknh5IkJeyAxDZ47ZjUNvYWTCVZ6LOJYuCbQJkQTYGIlVLvB7L8BFJYSithFqdkL2BHK_lZKREDoY1KEKOe15bsS_tk3AWbnt3yWap2Le-Pr__GvdgGtdps12V0vjJmzZ8hZcPaW_eBs-v6_yZd2wT_aQbNjINm1lWsnmJdtt1yabfEePW7M9jPaG4cgwq-lIgWHDqjzu1i2akchJ-9FW1dd34OO5PNtd2C6r0t4HFiiXOcnj3DoZOSMyHZiCBN2dwXRRKw9e9ghIi06InfqBfEuRkBFY0jVYPHi2Nj1aqY-cZbRHMFobkGB4e6FafE07_5NKS6-sQxW4OIsypAUicpEOuM1JrieJPNjpgZR2XqxOT1DkwdP1MPof2lTKSlstyUbRMVytQg_urTC7ngnXJJco8W61geaNqW6OlPPDVuOctgMl1w_-Pa0ncBlhnb6bTPcfwhVOGVcY-jzage1msbSP4FJx3MzrxeN2bTL4ct7w_gNLJnhK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Vehicle+Detection+in+Aerial+Images+Based+on+Cascaded+Convolutional+Neural+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.date=2017-11-24&rft.eissn=1424-8220&rft.volume=17&rft.issue=12&rft_id=info:doi/10.3390%2Fs17122720&rft_id=info%3Apmid%2F29186756&rft.externalDocID=29186756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon