Complex Matrix Decomposition and Quadratic Programming
This paper studies the possibilities of the linear matrix inequality characterization of the matrix cones formed by nonnegative complex Hermitian quadratic functions over specific domains in the complex space. In its real-case analog, such studies were conducted in Sturm and Zhang [Sturm, J. F., S....
Uložené v:
| Vydané v: | Mathematics of operations research Ročník 32; číslo 3; s. 758 - 768 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Linthicum
INFORMS
01.08.2007
Institute for Operations Research and the Management Sciences |
| Predmet: | |
| ISSN: | 0364-765X, 1526-5471 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper studies the possibilities of the linear matrix inequality characterization of the matrix cones formed by nonnegative complex Hermitian quadratic functions over specific domains in the complex space. In its real-case analog, such studies were conducted in Sturm and Zhang [Sturm, J. F., S. Zhang. 2003. On cones of nonnegative quadratic functions. Math. Oper. Res. 28 246–267]. In this paper it is shown that stronger results can be obtained for the complex Hermitian case. In particular, we show that the matrix rank-one decomposition result of Sturm and Zhang [Sturm, J. F., S. Zhang. 2003. On cones of nonnegative quadratic functions. Math. Oper. Res. 28 246–267] can be strengthened for the complex Hermitian matrices. As a consequence, it is possible to characterize several new matrix co-positive cones (over specific domains) by means of linear matrix inequality. As examples of the potential application of the new rank-one decomposition result, we present an upper bound on the lowest rank among all the optimal solutions for a standard complex semidefinite programming (SDP) problem, and offer alternative proofs for a result of Hausdorff [Hausdorff, F. 1919. Der Wertvorrat einer Bilinearform. Mathematische Zeitschrift 3 314–316] and a result of Brickman [Brickman, L. 1961. On the field of values of a matrix. Proc. Amer. Math. Soc. 12 61–66] on the joint numerical range. |
|---|---|
| AbstractList | This paper studies the possibilities of the linear matrix inequality characterization of the matrix cones formed by nonnegative complex Hermitian quadratic functions over specific domains in the complex space. In its real-case analog, such studies were conducted in Sturm and Zhang [Sturm, J. F., S. Zhang. 2003. On cones of nonnegative quadratic functions.
Math. Oper. Res.
28
246-267]. In this paper it is shown that stronger results can be obtained for the complex Hermitian case. In particular, we show that the matrix rank-one decomposition result of Sturm and Zhang [Sturm, J. F., S. Zhang. 2003. On cones of nonnegative quadratic functions.
Math. Oper. Res.
28
246-267] can be strengthened for the complex Hermitian matrices. As a consequence, it is possible to characterize several new matrix co-positive cones (over specific domains) by means of linear matrix inequality. As examples of the potential application of the new rank-one decomposition result, we present an upper bound on the lowest rank among all the optimal solutions for a standard complex semidefinite programming (SDP) problem, and offer alternative proofs for a result of Hausdorff [Hausdorff, F. 1919. Der Wertvorrat einer Bilinearform.
Mathematische Zeitschrift
3
314-316] and a result of Brickman [Brickman, L. 1961. On the field of values of a matrix.
Proc. Amer. Math. Soc.
12
61-66] on the joint numerical range. This paper studies the possibilities of the linear matrix inequality characterization of the matrix cones formed by nonnegative complex Hermitian quadratic functions over specific domains in the complex space. In its real-case analog, such studies were conducted in Sturm and Zhang [Sturm, J. F., S. Zhang. 2003. On cones of nonnegative quadratic functions. Math. Oper. Res. 28 246–267]. In this paper it is shown that stronger results can be obtained for the complex Hermitian case. In particular, we show that the matrix rank-one decomposition result of Sturm and Zhang [Sturm, J. F., S. Zhang. 2003. On cones of nonnegative quadratic functions. Math. Oper. Res. 28 246–267] can be strengthened for the complex Hermitian matrices. As a consequence, it is possible to characterize several new matrix co-positive cones (over specific domains) by means of linear matrix inequality. As examples of the potential application of the new rank-one decomposition result, we present an upper bound on the lowest rank among all the optimal solutions for a standard complex semidefinite programming (SDP) problem, and offer alternative proofs for a result of Hausdorff [Hausdorff, F. 1919. Der Wertvorrat einer Bilinearform. Mathematische Zeitschrift 3 314–316] and a result of Brickman [Brickman, L. 1961. On the field of values of a matrix. Proc. Amer. Math. Soc. 12 61–66] on the joint numerical range. This paper studies the possibilities of the linear matrix inequality characterization of the matrix cones formed by nonnegative complex Hermitian quadratic functions over specific domains in the complex space. In its real-case analog, such studies were conducted in Sturm and Zhang [Sturm, J. F., S. Zhang. 2003. On cones of nonnegative quadratic functions. Math. Oper. Res. 28 246-267]. In this paper it is shown that stronger results can be obtained for the complex Hermitian case. In particular, we show that the matrix rank-one decomposition result of Sturm and Zhang [Sturm, J. F., S. Zhang. 2003. On cones of nonnegative quadratic functions. Math. Oper. Res. 28 246-267] can be strengthened for the complex Hermitian matrices. As a consequence, it is possible to characterize several new matrix co-positive cones (over specific domains) by means of linear matrix inequality. As examples of the potential application of the new rank-one decomposition result, we present an upper bound on the lowest rank among all the optimal solutions for a standard complex semidefinite programming (SDP) problem, and offer alternative proofs for a result of Hausdorff [Hausdorff, F. 1919. Der Wertvorrat einer Bilinearform. Mathematische Zeitschrift 3 314-316] and a result of Brickman [Brickman, L. 1961. On the field of values of a matrix. Proc. Amer. Math. Soc. 12 61-66] on the joint numerical range. [PUBLICATION ABSTRACT] |
| Audience | Academic |
| Author | Huang, Yongwei Zhang, Shuzhong |
| Author_xml | – sequence: 1 fullname: Huang, Yongwei – sequence: 2 fullname: Zhang, Shuzhong |
| BookMark | eNqFkcurEzEUxoNcwd6rW3dCcSMupuYkk0y6vNTXhSu-wV04zSTTlJlJTVKs_70ZRhGlIlkEkt93Ht93SS7GMFpCHgJdAVPNsyGEuALa0BVlUt0hCxBMVqJu4IIsKJd11Ujx5R65TGlPKYgG6gWRmzAcentavsEc_Wn53JryEJLPPoxLHNvl-yO2EbM3y3cxdBGHwY_dfXLXYZ_sg5_3Ffn88sWnzevq9u2rm831bWVquc6VaZA7oyzbSofYcHC1lOiMNVuEljMOrTACAFvTyi0XSEXNlGyVWyvHHfAr8niue4jh69GmrPfhGMfSUjMoW1LOVIGqGeqwt9qPLuSIprOjjdgXj5wvz9cg1RrWTMjCr87w5bR28Oas4OkfgsJke8odHlPSNx8_nC1uYkgpWqcP0Q8Yv2ugespJTznpKSc95VQE9V8C4zNO9pepfP9v2aNZtk-5fPxqwgQIUIz9NmXaLw7p_2M8mfmd73bffJyNmYQD5l1BOdNcN0LxHy1avwg |
| CODEN | MOREDQ |
| CitedBy_id | crossref_primary_10_1109_TSP_2008_929657 crossref_primary_10_1109_TVT_2012_2226612 crossref_primary_10_1109_TSP_2012_2236832 crossref_primary_10_1109_TSP_2009_2032993 crossref_primary_10_1109_TSP_2017_2649488 crossref_primary_10_1007_s11227_019_03084_1 crossref_primary_10_1109_TAP_2021_3069485 crossref_primary_10_1109_TSP_2010_2049570 crossref_primary_10_1109_LSP_2014_2370033 crossref_primary_10_1109_TWC_2016_2550028 crossref_primary_10_1109_LSP_2015_2419571 crossref_primary_10_1109_TWC_2013_111013_121386 crossref_primary_10_1109_TSP_2010_2087327 crossref_primary_10_1007_s12597_016_0263_8 crossref_primary_10_1109_TSP_2009_2020002 crossref_primary_10_1137_07070601X crossref_primary_10_1109_TSP_2013_2297683 crossref_primary_10_1109_TSP_2010_2050317 crossref_primary_10_1016_j_sigpro_2020_107961 crossref_primary_10_1109_TEMC_2018_2832445 crossref_primary_10_1109_TSP_2009_2031732 crossref_primary_10_1109_TSP_2023_3240312 crossref_primary_10_1109_TSP_2019_2918997 crossref_primary_10_1287_moor_1080_0331 crossref_primary_10_1109_TAP_2017_2748383 crossref_primary_10_1007_s10107_009_0304_7 crossref_primary_10_1016_j_automatica_2022_110846 crossref_primary_10_1109_TWC_2013_060313_120650 crossref_primary_10_1137_130909597 crossref_primary_10_1109_TCOMM_2023_3281880 crossref_primary_10_1109_TIFS_2011_2158538 crossref_primary_10_1109_TWC_2017_2723466 crossref_primary_10_1049_iet_rsn_2016_0239 crossref_primary_10_1016_j_sigpro_2013_03_025 crossref_primary_10_1109_TSP_2013_2269049 crossref_primary_10_1109_LSP_2018_2871612 crossref_primary_10_1109_TVT_2022_3164896 crossref_primary_10_1007_s10957_012_9993_9 crossref_primary_10_1109_TCCN_2015_2498615 crossref_primary_10_1109_TSP_2013_2263500 crossref_primary_10_1109_JSAC_2011_110209 crossref_primary_10_1007_s10107_024_02105_z crossref_primary_10_1137_19M1273761 crossref_primary_10_1007_s10898_010_9545_5 crossref_primary_10_1109_TSP_2020_2981208 crossref_primary_10_1016_j_phycom_2019_100945 crossref_primary_10_1109_TSP_2008_2008249 crossref_primary_10_1109_WCL_2012_053112_120212 crossref_primary_10_1108_COMPEL_11_2014_0309 crossref_primary_10_1137_130915261 crossref_primary_10_1007_s10107_016_1095_2 crossref_primary_10_1109_TSP_2014_2303422 crossref_primary_10_3390_e20080547 crossref_primary_10_1109_TWC_2012_100112_120082 crossref_primary_10_1016_j_ifacol_2023_10_1881 crossref_primary_10_1049_iet_com_2010_0811 crossref_primary_10_1109_ACCESS_2019_2928451 crossref_primary_10_1109_TWC_2011_011811_100356 crossref_primary_10_1049_iet_spr_2015_0181 crossref_primary_10_1109_TSP_2016_2543207 crossref_primary_10_1103_PhysRevApplied_14_014007 crossref_primary_10_1109_TSP_2018_2887186 crossref_primary_10_1109_TWC_2020_2979456 crossref_primary_10_1109_TSP_2015_2394443 crossref_primary_10_1109_TSP_2011_2128313 crossref_primary_10_1109_TSP_2011_2169061 crossref_primary_10_1016_j_mechatronics_2020_102440 crossref_primary_10_1109_TSP_2012_2229276 crossref_primary_10_1109_TVT_2010_2064344 crossref_primary_10_1016_j_dsp_2014_10_004 crossref_primary_10_1109_TSP_2022_3202315 crossref_primary_10_1155_2022_1090582 crossref_primary_10_1109_TSP_2015_2500879 crossref_primary_10_1109_MSP_2010_936019 crossref_primary_10_1109_MSP_2010_936015 crossref_primary_10_1109_TAP_2020_3026921 crossref_primary_10_1137_070679041 crossref_primary_10_1109_TSP_2016_2540606 crossref_primary_10_1007_s10898_022_01210_7 crossref_primary_10_1109_TSP_2012_2189389 crossref_primary_10_1007_s11590_023_02044_2 crossref_primary_10_1109_WCL_2012_051112_120163 crossref_primary_10_1002_dac_3173 crossref_primary_10_1109_TSP_2011_2107906 crossref_primary_10_1007_s10898_019_00813_x crossref_primary_10_1109_JSEN_2023_3264458 crossref_primary_10_1109_TVT_2014_2377297 |
| Cites_doi | 10.1287/moor.23.2.339 10.1007/BF02574037 10.1090/S0002-9939-1961-0122827-1 10.1137/S105262340139001X 10.1023/A:1021798932766 10.1287/moor.28.2.246.14485 10.1007/BF01292610 |
| ContentType | Journal Article |
| Copyright | Copyright 2007 Institute for Operations Research and the Management Sciences COPYRIGHT 2007 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Aug 2007 |
| Copyright_xml | – notice: Copyright 2007 Institute for Operations Research and the Management Sciences – notice: COPYRIGHT 2007 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Aug 2007 |
| DBID | AAYXX CITATION ISR 3V. 7WY 7WZ 7XB 87Z 8AL 8AO 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V M0C M0N M2O M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
| DOI | 10.1287/moor.1070.0268 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Computing Database Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1526-5471 |
| EndPage | 768 |
| ExternalDocumentID | 1343456271 A168919256 10_1287_moor_1070_0268 25151822 moor.1070.0268 mathor_32_3_758 |
| Genre | Research Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 08R 29M 3V. 4.4 4S 5GY 7WY 85S 8AL 8AO 8FE 8FG 8FL 8G5 8H 8VB AAKYL AAPBV ABBHK ABEFU ABFLS ABJCF ABPPZ ABUWG ACIWK ACNCT ADCOW ADGDI ADMHP ADODI AEILP AENEX AEUPB AFKRA AFXKK AKVCP ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BDTQF BENPR BEZIV BGLVJ BHOJU BKOMP BPHCQ CBXGM CHNMF CS3 CWXUR CZBKB DQDLB DSRWC DWQXO EBA EBE EBO EBR EBS EBU ECEWR ECR ECS EDO EFSUC EJD EMK EPL FEDTE FRNLG GIFXF GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HECYW HQ6 IAO ICW IEA IGG IOF ISR ITC JAA JBU JMS JPL JSODD JST K6 K60 K6V K7- L6V M0C M0N M2O M7S MBDVC MV1 N95 NIEAY P2P P62 PADUT PQEST PQQKQ PQUKI PRG PRINS PROAC PTHSS QWB RNS RPU RXW SA0 TAE TH9 TN5 TUS U5U WH7 X XHC XI7 ZL0 ZY4 1AW 1OL ACYGS AELPN BES F20 HGD HVGLF H~9 P-O XFK Y99 -~X .DC 18M 2AX 8H~ AAOAC AAWIL AAWTO ABAWQ ABDNZ ABFAN ABKVW ABQDR ABXSQ ABYRZ ABYWD ABYYQ ACDIW ACGFO ACHJO ACMTB ACTMH ACUHF ACVFL ACXJH ADULT AEGXH AELLO AEMOZ AFVYC AGLNM AHAJD AHQJS AIAGR AIHAF AKBRZ ALRMG AMVHM APTMU ASMEE BAAKF CCPQU IPSME JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ PHGZM PHGZT PQBIZ PQBZA WHG AADHG AAYXX AFFHD CITATION PQGLB XOL 7XB 8FK JQ2 L.- PKEHL Q9U |
| ID | FETCH-LOGICAL-c469t-c7a3fc8e2b6faa731f466afcecba1d3231d5c511adcd6b35a054286d8f98f3f13 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 129 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000249599400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0364-765X |
| IngestDate | Sun Aug 17 23:52:34 EDT 2025 Mon Nov 24 15:49:05 EST 2025 Tue Nov 04 18:50:59 EST 2025 Thu Nov 13 16:24:11 EST 2025 Sat Nov 29 03:29:12 EST 2025 Tue Nov 18 22:33:56 EST 2025 Thu Jun 19 15:26:16 EDT 2025 Wed Jan 06 02:47:58 EST 2021 Fri Jan 15 03:34:58 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-c7a3fc8e2b6faa731f466afcecba1d3231d5c511adcd6b35a054286d8f98f3f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 212680328 |
| PQPubID | 37790 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1287_moor_1070_0268 crossref_citationtrail_10_1287_moor_1070_0268 proquest_journals_212680328 jstor_primary_25151822 informs_primary_10_1287_moor_1070_0268 gale_infotracgeneralonefile_A168919256 gale_infotracacademiconefile_A168919256 highwire_informs_mathor_32_3_758 gale_incontextgauss_ISR_A168919256 |
| ProviderPackageCode | Y99 RPU NIEAY |
| PublicationCentury | 2000 |
| PublicationDate | 20070801 20070800 2007-08-00 |
| PublicationDateYYYYMMDD | 2007-08-01 |
| PublicationDate_xml | – month: 08 year: 2007 text: 20070801 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Linthicum |
| PublicationPlace_xml | – name: Linthicum |
| PublicationTitle | Mathematics of operations research |
| PublicationYear | 2007 |
| Publisher | INFORMS Institute for Operations Research and the Management Sciences |
| Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
| References | B2 B3 B10 B4 B11 B5 B6 B7 B8 B9 B1 Au-Yeung Y.-H. (B1) 1979; 3 |
| References_xml | – ident: B8 – ident: B9 – ident: B11 – ident: B10 – ident: B3 – ident: B2 – ident: B1 – ident: B4 – ident: B7 – ident: B5 – ident: B6 – ident: B6 doi: 10.1287/moor.23.2.339 – volume: 3 start-page: 85 year: 1979 ident: B1 publication-title: Southeast Asian Bull. Math. – ident: B2 doi: 10.1007/BF02574037 – ident: B3 doi: 10.1090/S0002-9939-1961-0122827-1 – ident: B11 doi: 10.1137/S105262340139001X – ident: B8 doi: 10.1023/A:1021798932766 – ident: B9 doi: 10.1287/moor.28.2.246.14485 – ident: B5 doi: 10.1007/BF01292610 |
| SSID | ssj0015714 |
| Score | 2.1972048 |
| Snippet | This paper studies the possibilities of the linear matrix inequality characterization of the matrix cones formed by nonnegative complex Hermitian quadratic... |
| SourceID | proquest gale crossref jstor informs highwire |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 758 |
| SubjectTerms | Analysis complex co-positivity cone Equation roots Inequalities (Mathematics) Linear equations Mathematical inequalities Mathematical optimization Mathematical sets Mathematical theorems Mathematical vectors Matrices Matrix Matrix decomposition matrix rank-one decomposition Operations research Optimal solutions Quadratic functions quadratic optimization Quadratic programming S-procedure Studies |
| Title | Complex Matrix Decomposition and Quadratic Programming |
| URI | http://mor.journal.informs.org/cgi/content/abstract/32/3/758 https://www.jstor.org/stable/25151822 https://www.proquest.com/docview/212680328 |
| Volume | 32 |
| WOSCitedRecordID | wos000249599400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1526-5471 dateEnd: 20091130 omitProxy: false ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: 7WY dateStart: 19990201 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1526-5471 dateEnd: 20091130 omitProxy: false ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: M0C dateStart: 19990201 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1526-5471 dateEnd: 20091130 omitProxy: false ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: P5Z dateStart: 19990201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1526-5471 dateEnd: 20091130 omitProxy: false ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: K7- dateStart: 19990201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1526-5471 dateEnd: 20091130 omitProxy: false ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: M7S dateStart: 19990201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1526-5471 dateEnd: 20091130 omitProxy: false ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: BENPR dateStart: 19990201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1526-5471 dateEnd: 20091130 omitProxy: false ssIdentifier: ssj0015714 issn: 0364-765X databaseCode: M2O dateStart: 19990201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSH2wKAwrQyqCCF4Cmvixnae0BibQGilbCAKL5bjj4G0JaNp0f587hKnouLrgRdLUS5OrDuf7-KffwfwWA6LvEgLog11ho7ksFhroVEhzIrCOFxjhk2xCTEey-k0nwRsTh1glZ1PbBy1rQz9I99DF8slkb89v_wWU9Eo2lwNFTTWYINIEpIGuXe63ETIRBLYo0ax4Nk0cDZijrB3UVUzTFzF8BnmIHJlTeo8c0cX3BxzogCy7iCLv7jtZi062vrPUdyGWyEIjfZbq7kD11zZgxsdBr4HW12thyhM_R5s_kRceBc4CZy7q-iYGP6vopeOoOkB_xXp0kbvFtqScZlo0iLALvDBe_Dh6PD9was4VGCIDabN89gIzbyRLi24RxWyxI841944U-jEMowNbWYwZNPWWF6wTGMAmEpupc-lZz5h27BeVqXbgaiQmjnvXK4x4BylVqMZOC-0ZznPrfB9iDsdKBPoyalKxrmiNAV1pkhninSmSGd9eLqUv2yJOf4o-YhUqojtoiQ4zZle1LV6fXqi9hMuc4xxM47dBSFf4WuNDqcT8OOJIGtF8smK5FlLD_47waizIRUsSGEW8gW_jaWKKczUsK_uzr_GsN2Y3lIMw9IMU8O0D7udoangfWq1tLL7f727CzfbP9UEZ3wA6_PZwj2E6-b7_Gs9G8Ca-PhpABsvDseTE7x6I2Jsj4cH1KZvB81cw3aSff4B3s0s3A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgngcKAQqQnlYiMfJNPHGu-sDQhWlapQ2KlCk3Jb1PgpSm5Q4gfKj-I_M2LsREa9TD5w9Xq-937zWs98APJadsiizkmhDnaEjOSzVWmhcEGZFaRz6mE7dbEIMh3I0Kg5W4Hs8C0NlldEm1obaTgztkW-iieWSyN9enn5OqWkU_VyNHTQaVAzct6-YsVUv-tu4vE-ybOf14avdNDQVSA1mgrPUCM28kS4rucdZsa7vca69cabUXcsw3LG5wShEW2N5yXKNMU0muZW-kJ75LsNxL8DFHpOC1Gog0sVPi1x0A1tVLxU8HwWOSMxJNk8mkykmyqLzHHMeueQDoyeI9MT1sSoKWKtYIvmLm6h9387af_bVbsD1EGQnW41W3IQVN27B5Vjj34K12MsiCaatBdd-Ima8BZwEjt1Zsk8dDM6SbUel96G-LdFjm7yZa0vKY5KDpsLtBG-8De_P5bXWYXU8Gbs7kJRSM-edKzQG1L3MaoS580J7VvDCCt-GNK65MoF-nbqAHCtKwxAjijCiCCOKMNKGZwv504Z45I-SjwhCitg8xlQudKTnVaX6796qrS6XBcbwOcfhgpCf4GONDqcvcPJEALYk-XRJ8qihP_-dYBIxqwJiFWZZH3FuLFNMYSaKY8Ur_3qH9RrqCzEMu3NMfbM2bERgq2BdK7VA9d2_Xn0IV3YP9_fUXn842ICrza48lW7eg9XZdO7uwyXzZfapmj6o9TiBD-etAj8AWdaGOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complex+matrix+decomposition+and+quadratic+programming&rft.jtitle=Mathematics+of+operations+research&rft.au=Huang%2C+Yongwei&rft.au=Zhang%2C+Shuzhong&rft.date=2007-08-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.volume=32&rft.issue=3&rft.spage=758&rft_id=info:doi/10.1287%2Fmoor.1070.0268&rft.externalDocID=A168919256 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon |