Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography

Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photopl...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 20; no. 14; p. 3829
Main Authors: Sadrawi, Muammar, Lin, Yin-Tsong, Lin, Chien-Hung, Mathunjwa, Bhekumuzi, Fan, Shou-Zen, Abbod, Maysam F., Shieh, Jiann-Shing
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 09.07.2020
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization, the cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal.
AbstractList Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization, the cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal.
Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization, the cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal.Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization, the cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal.
Author Abbod, Maysam F.
Lin, Chien-Hung
Fan, Shou-Zen
Shieh, Jiann-Shing
Mathunjwa, Bhekumuzi
Sadrawi, Muammar
Lin, Yin-Tsong
AuthorAffiliation 2 AI R&D Department, New Era AI Robotic Inc., Taipei 105, Taiwan; lotusytlin@neweraai.com (Y.-T.L.); lance_lin@neweraai.com (C.-H.L.)
4 Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK; Maysam.Abbod@brunel.ac.uk
3 Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; shouzen@gmail.com
1 Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan; muammarsadrawi@yahoo.com (M.S); mathunjwabhekie@gmail.com (B.M.)
AuthorAffiliation_xml – name: 3 Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; shouzen@gmail.com
– name: 1 Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan; muammarsadrawi@yahoo.com (M.S); mathunjwabhekie@gmail.com (B.M.)
– name: 4 Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK; Maysam.Abbod@brunel.ac.uk
– name: 2 AI R&D Department, New Era AI Robotic Inc., Taipei 105, Taiwan; lotusytlin@neweraai.com (Y.-T.L.); lance_lin@neweraai.com (C.-H.L.)
Author_xml – sequence: 1
  givenname: Muammar
  surname: Sadrawi
  fullname: Sadrawi, Muammar
– sequence: 2
  givenname: Yin-Tsong
  surname: Lin
  fullname: Lin, Yin-Tsong
– sequence: 3
  givenname: Chien-Hung
  surname: Lin
  fullname: Lin, Chien-Hung
– sequence: 4
  givenname: Bhekumuzi
  surname: Mathunjwa
  fullname: Mathunjwa, Bhekumuzi
– sequence: 5
  givenname: Shou-Zen
  orcidid: 0000-0002-6849-8453
  surname: Fan
  fullname: Fan, Shou-Zen
– sequence: 6
  givenname: Maysam F.
  orcidid: 0000-0002-8515-7933
  surname: Abbod
  fullname: Abbod, Maysam F.
– sequence: 7
  givenname: Jiann-Shing
  surname: Shieh
  fullname: Shieh, Jiann-Shing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32660088$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQhiNURD_gwB9AlrjAYenEdhLngrQsUCpVogc4W4492fXKGwfbWWn_PQ7bVm052bKf99FoZs6Lk8EPWBRvS_jEWAuXkULJmaDti-Ks5JQvBKVw8uh-WpzHuAWgjDHxqjhltK4BhDgrDlc4YLKafEUcycoPe--mZP2gHFlOyeOgvcFAluPoLBrS-0DmSFDJ7nEOJDtMfopkGRIGm2NfnPeG3AaMcQpI9laR241PfnSYNoe48-ugxs3hdfGyVy7im7vzovj9_duv1Y_Fzc-r69XyZqF53aaFrjtsNTc1a7FUHVNUQN9Q3pu-rHvWdwpAaTDalE1dI4UKVAVoGO-54BzYRXF99BqvtnIMdqfCQXpl5b8HH9ZShdwBh7LCHgRwbQxXnFHRKjQKWVcyoStoeHZ9PrrGqduh0TikoNwT6dOfwW7k2u9lw0tKOc2CD3eC4P9MGJPc2ajROTVgbqKcGQGsbpuMvn-Gbv0U8lyOFGtrqKpMvXtc0UMp9xPOwOUR0MHHGLCX2iY1TzgXaJ0sQc47JB92KCc-PkvcS_9n_wIN-Mh_
CitedBy_id crossref_primary_10_1038_s41569_025_01127_0
crossref_primary_10_1109_JBHI_2023_3324319
crossref_primary_10_3390_s22103953
crossref_primary_10_3390_s22062189
crossref_primary_10_1038_s41597_023_02020_6
crossref_primary_10_1088_1361_6579_acd164
crossref_primary_10_3390_s22114132
crossref_primary_10_1038_s41746_023_00835_6
crossref_primary_10_3390_s21186022
crossref_primary_10_3390_s21186264
crossref_primary_10_1016_j_eswa_2024_123809
crossref_primary_10_1155_2022_8094351
crossref_primary_10_1109_ACCESS_2024_3525152
crossref_primary_10_1016_j_bspc_2021_102984
crossref_primary_10_1016_j_measen_2025_101866
crossref_primary_10_3390_bioengineering12050493
crossref_primary_10_1109_JIOT_2024_3460382
crossref_primary_10_3390_s21062167
crossref_primary_10_1109_JBHI_2022_3172514
crossref_primary_10_3390_bioengineering10040400
crossref_primary_10_1007_s10462_022_10353_8
crossref_primary_10_3390_s24092721
crossref_primary_10_1016_j_bspc_2021_102972
crossref_primary_10_1063_5_0206980
crossref_primary_10_3390_s23031559
crossref_primary_10_3390_bioengineering10010027
crossref_primary_10_1016_j_engappai_2025_112099
crossref_primary_10_3390_healthcare10030547
crossref_primary_10_1155_2021_8563181
crossref_primary_10_1109_TAI_2024_3396126
Cites_doi 10.1016/j.compbiomed.2018.09.013
10.1007/s10916-018-0999-1
10.1109/SMARTCOMP.2016.7501681
10.3390/s120201816
10.3390/sym10030071
10.3390/s17112445
10.1038/srep45644
10.1007/978-3-319-24574-4_28
10.3390/jcm8010012
10.3390/e21121229
10.3390/app10062137
10.1109/ACCESS.2019.2912273
10.1093/bmb/ldh050
10.3390/s19153420
10.1155/2015/536863
10.1016/j.bspc.2019.02.028
10.1016/j.eswa.2014.08.007
10.1016/S0140-6736(08)60655-8
10.1016/S0002-8703(99)70312-1
10.1016/S0004-3702(02)00190-X
10.1109/IECBES.2016.7843473
10.3390/s20082338
10.1038/s41591-018-0268-3
10.1016/j.renene.2019.07.065
10.1109/CYBERNETICSCOM.2019.8875637
10.3390/en13071621
10.1109/5.726791
10.1016/j.compbiomed.2017.09.017
10.1038/nature14539
10.1109/IECBES.2016.7843455
10.1007/s00542-020-04782-0
10.3390/s19081866
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s20143829
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5ef0804cdd4a43289aedae3b138c5074
PMC7412242
32660088
10_3390_s20143829
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-c6be9c4d639e1ab3a280f724fdf16f3fba00ac0dcd1766e2050a50ed34f484403
IEDL.DBID DOA
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556384900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:02:51 EDT 2025
Tue Nov 04 01:43:18 EST 2025
Fri Sep 05 11:09:37 EDT 2025
Tue Oct 07 07:09:34 EDT 2025
Mon Jul 21 05:57:40 EDT 2025
Sat Nov 29 07:09:09 EST 2025
Tue Nov 18 22:30:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords genetic algorithm
deep convolutional autoencoder
diastolic blood pressure
photoplethysmography
continuous arterial blood pressure
systolic blood pressure
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-c6be9c4d639e1ab3a280f724fdf16f3fba00ac0dcd1766e2050a50ed34f484403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6849-8453
0000-0002-8515-7933
OpenAccessLink https://doaj.org/article/5ef0804cdd4a43289aedae3b138c5074
PMID 32660088
PQID 2423396055
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5ef0804cdd4a43289aedae3b138c5074
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7412242
proquest_miscellaneous_2423803697
proquest_journals_2423396055
pubmed_primary_32660088
crossref_citationtrail_10_3390_s20143829
crossref_primary_10_3390_s20143829
PublicationCentury 2000
PublicationDate 20200709
PublicationDateYYYYMMDD 2020-07-09
PublicationDate_xml – month: 7
  year: 2020
  text: 20200709
  day: 9
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lawes (ref_3) 2008; 371
Acharya (ref_29) 2018; 100
Phillips (ref_8) 2012; 12
ref_35
ref_12
He (ref_2) 1999; 138
ref_11
ref_33
ref_10
Zaidan (ref_20) 2015; 42
ref_32
Mlakar (ref_16) 2019; 19
Silitonga (ref_18) 2020; 146
ref_19
ref_17
ref_15
Liu (ref_30) 2019; 7
Hannun (ref_28) 2019; 25
Sadrawi (ref_21) 2015; 2015
Liu (ref_31) 2018; 42
ref_24
ref_23
ref_22
Wong (ref_4) 2005; 73
Tang (ref_6) 2017; 7
LeCun (ref_27) 2015; 521
LeCun (ref_34) 1998; 86
ref_1
Zhou (ref_25) 2002; 137
Tanveer (ref_13) 2019; 51
Zadi (ref_14) 2018; 102
ref_26
ref_9
ref_5
ref_7
References_xml – volume: 102
  start-page: 104
  year: 2018
  ident: ref_14
  article-title: Arterial blood pressure feature estimation using photoplethysmography
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.09.013
– volume: 42
  start-page: 148
  year: 2018
  ident: ref_31
  article-title: Design and evaluation of a real time physiological signals acquisition system implemented in multi-operating rooms for anesthesia
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0999-1
– ident: ref_12
  doi: 10.1109/SMARTCOMP.2016.7501681
– volume: 12
  start-page: 1816
  year: 2012
  ident: ref_8
  article-title: Evaluation of electrical and optical plethysmography sensors for noninvasive monitoring of hemoglobin concentration
  publication-title: Sensors
  doi: 10.3390/s120201816
– ident: ref_26
  doi: 10.3390/sym10030071
– ident: ref_32
– ident: ref_22
  doi: 10.3390/s17112445
– volume: 7
  start-page: 45644
  year: 2017
  ident: ref_6
  article-title: Identification of atrial fibrillation by quantitative analyses of fingertip photoplethysmogram
  publication-title: Sci. Rep.
  doi: 10.1038/srep45644
– ident: ref_35
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_7
  doi: 10.3390/jcm8010012
– ident: ref_10
  doi: 10.3390/e21121229
– ident: ref_9
  doi: 10.3390/app10062137
– ident: ref_1
– volume: 7
  start-page: 53731
  year: 2019
  ident: ref_30
  article-title: Spectrum analysis of eeg signals using cnn to model patient’s consciousness level based on anesthesiologists’ experience
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912273
– volume: 73
  start-page: 57
  year: 2005
  ident: ref_4
  article-title: Hypertensive retinopathy signs as risk indicators of cardiovascular morbidity and mortality
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/ldh050
– volume: 19
  start-page: 3420
  year: 2019
  ident: ref_16
  article-title: Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network
  publication-title: Sensors
  doi: 10.3390/s19153420
– volume: 2015
  start-page: 13
  year: 2015
  ident: ref_21
  article-title: Computational depth of anesthesia via multiple vital signs based on artificial neural networks
  publication-title: Biomed Res. Int.
  doi: 10.1155/2015/536863
– volume: 51
  start-page: 382
  year: 2019
  ident: ref_13
  article-title: Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2019.02.028
– volume: 42
  start-page: 539
  year: 2015
  ident: ref_20
  article-title: Bayesian hierarchical models for aerospace gas turbine engine prognostics
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.007
– volume: 371
  start-page: 1513
  year: 2008
  ident: ref_3
  article-title: Global burden of blood-pressure-related disease, 2001
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)60655-8
– ident: ref_33
– volume: 138
  start-page: S211
  year: 1999
  ident: ref_2
  article-title: Elevated systolic blood pressure and risk of cardiovascular and renal disease: Overview of evidence from observational epidemiologic studies and randomized controlled trials
  publication-title: Am. Heart J.
  doi: 10.1016/S0002-8703(99)70312-1
– volume: 137
  start-page: 239
  year: 2002
  ident: ref_25
  article-title: Ensembling neural networks: Many could be better than all
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(02)00190-X
– ident: ref_11
  doi: 10.1109/IECBES.2016.7843473
– ident: ref_15
  doi: 10.3390/s20082338
– volume: 25
  start-page: 65
  year: 2019
  ident: ref_28
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– volume: 146
  start-page: 1278
  year: 2020
  ident: ref_18
  article-title: Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.07.065
– ident: ref_17
  doi: 10.1109/CYBERNETICSCOM.2019.8875637
– ident: ref_19
  doi: 10.3390/en13071621
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_34
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 100
  start-page: 270
  year: 2018
  ident: ref_29
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_27
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_5
  doi: 10.1109/IECBES.2016.7843455
– ident: ref_23
  doi: 10.1007/s00542-020-04782-0
– ident: ref_24
  doi: 10.3390/s19081866
SSID ssj0023338
Score 2.452898
Snippet Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3829
SubjectTerms Algorithms
Arterial Pressure
Blood Pressure
Blood Pressure Determination
Cardiac arrhythmia
continuous arterial blood pressure
Datasets
deep convolutional autoencoder
Deep learning
diastolic blood pressure
Electrocardiography
Gas turbine engines
genetic algorithm
Humans
Hypertension
Hypertension - diagnosis
Neural networks
Patients
Photoplethysmography
systolic blood pressure
Vital signs
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BlwMceD8CCzKIA5dok9hpkxOiy644oKpCgPYWOfZ4txIkJUkr8e-ZSdzsFq24cI1tZZQZj78ZT74BeGvyMp-qWIUEhvmaUWXkB40My4TwvZU2cn0RzffPs8UiOzvLlz7h1vqyyp1P7B21rQ3nyI_43JcEt9P0_fpXyF2j-HbVt9C4CQfMVKYmcDA_WSy_jCGXpAhs4BOixdFRmzCdXdbjyctTqCfrvw5h_l0oeeXkOb33vzLfh7sec4oPg5E8gBtYPYQ7V5gIH8Fvpp-mYfERcS2O62rrTZLXbbqa6S4tNsKDVkFQVwyM1ewueUG3qjb1puW39EYt5lwSL4bfDxsU25UWy4u644J1No6fniv7MXw7Pfl6_Cn0XRlCQ6F0F5ppiblRlqANxrqUOslIoYly1sVTJ12po0ibyBrL3JOYRGmk0witVE5lSkXyCUyqusJnIKwyJS1G6wg4GkefKs4xxVwZW7pUYgDvdloqjKcs584ZPwoKXVihxajQAN6MU9cDT8d1k-as6nECU2v3D-rmvPA7tUjREYomEazSSlI8qtFqlGUsM0PgWQVwuFN24fd7W1xqOoDX4zDtVL5-0RXS9-_nZAQY8lkATwe7GiUhEE3IM8sCmO1Z3J6o-yPV6qJnAydISDAsef5vsV7A7YQzBZyYzg9h0jUbfAm3zLZbtc0rv23-AKerJuM
  priority: 102
  providerName: ProQuest
Title Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography
URI https://www.ncbi.nlm.nih.gov/pubmed/32660088
https://www.proquest.com/docview/2423396055
https://www.proquest.com/docview/2423803697
https://pubmed.ncbi.nlm.nih.gov/PMC7412242
https://doaj.org/article/5ef0804cdd4a43289aedae3b138c5074
Volume 20
WOSCitedRecordID wos000556384900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BwgEOiM8lsFQGceBSbRo7jXOkS1cgsVWEAJVT5NhjbSVIV21aiQu_nRknDS1aiQuXHOyx4njG9nvJ5Bngtc2rfKxGakhgmD8zKk3roJXDKiF876SLfUii-foxm830fJ4Xe0d9cU5YKw_cDtxpip5AjbLOKaMk0QODzqCsRlJbwjJBCZQMdmSqo1qSmFerIySJ1J-uE5ax0wFH_tl9gkj_dcjy7wTJvR3n_D7c66CieNt28QHcwPoh3N0TEHwEP1k1mqrFO8Qrcbast10kcbtNs2SVSocr0WFNQQhVtELTvMpxg2ZRb4j8811CLIoJZ7KL9q_BFYrtwojictlwnjn79Ecncf0YvpxPP5-9H3aHKQwtMeBmaMcV5lY5QiQ4MpU0iSY_JMo7Pxp76SsTx8bGzjqWjMQkTmOTxuik8korFcsncFQva3wKwilbUWN0nvCe9TInEoYp5uSkyqcSI3izG-TSdkrjfODF95IYB_uj7P0Rwave9KqV17jOaMKe6g1YETsUUJyUXZyU_4qTCE52fi67abouGUxS9-M0jeBlX00TjL-amBpp_IONpn0-zyI4bsOi7wlhXwKMWkeQHQTMQVcPa-rFZRDxJiRH6Cl59j-e7TncSfg1AL91zk_gqFlt8AXctttmsV4N4GY2z8JVD-DWZDorPg3CbKHrxa8plRUfLopvvwEVoB44
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4P0wFFgQSFys2t51sj4gRFuqRk2jHApqT8beRxsJ7GA7Qf1T_EZmbMdtUMWtB67e3XhifzPzze76W4C3KkqjvvCFi2SYlhmFxDiouJsGyO81156tN9F8HQ3GY3l8HE3W4PfyWxjaVrmMiXWg1rmiOfItyvsc6XYYfpz9dOnUKFpdXR6h0cDiwJz_wpKt_DDcxff7Lgj2Ph_t7LvtqQKuwlKwclU_NZESGlOz8ZOUJ4FEgwJhtfX7lts08bxEeVpp0k40gRd6SegZzYUVUgiP4-_egHWBYJc9WJ8MDycnXYnHseJr9IvQWG-rDEg-T9b89SLr1YcDXMVo_96YeSnT7d39357RPbjTcmr2qXGC-7Bmsgdw-5LS4kM4J3ltbGa7xszYTp4tWpejcfMqJzlPbQrWknKGVJ41ityUDmhANc3m-byku9ROy7Zpyz9rPq8sDFtMEzY5yyvakE_g_9FqgT-CL9fy3x9DL8sz8xSYFirFwUZbJMbK4qvxIxOaSCid2pAbB94vURGrVpKdTgb5HmNpRgCKOwA58KbrOmt0SK7qtE3Q6jqQdHh9IS9O4zYSxaGxWCWgCVokgmO9nRidGJ76XCosDoQDm0twxW08K-MLZDnwumvGSETLS0lm8PnXfSQSomjgwJMGx50lWCQgs5bSgcEKwldMXW3Jpme12jlSXqSZwbN_m_UKbu0fHY7i0XB88Bw2ApoVoUn4aBN6VTE3L-CmWlTTsnjZuiyDb9ftAX8ANA-FIA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiE48H4YCiwIJC5WbO86sQ8I0YaIqCXKAVA5mfU-aCSwg-0E9a_x65jxqw2quPXANbubTOx5fLM7-w3ACxWn8VD4wkUwTMeMIkI_qLibBojvNdeerYtoPh-OZrPo6Cieb8Hv7i4MlVV2PrF21DpXtEc-oLjPEW6H4cC2ZRHz8eTN8qdLHaTopLVrp9GoyIE5-YXpW_l6OsZ3_TIIJu8-7r932w4DrsK0sHLVMDWxEhrDtPFlymUQoXCBsNr6Q8ttKj1PKk8rTTyKJvBCT4ae0VxYEQnhcfzeS7CDkFygje3Mpx_mX_p0j2P213AZoeDeoAyISi-qsexpBKwbBZyHbv8u0jwT9SY3_ufndROut1ibvW2M4xZsmew2XDvDwHgHToh2G4fZ2Jgl28-zdWuKtG5V5UTzqU3BWrDOEOKzhqmbwgQtqBbZKl-V9Cu1MbM9ugrAmmuXhWHrhWTz47yiQn0yih8tR_hd-HQh__0ebGd5Zh4A00KluNhoi4BZWXxNfmxCEwulUxty48CrTkMS1VK1U8eQ7wmmbKRMSa9MDjzvpy4bfpLzJu2RmvUTiFK8_iAvviWth0pCYzF7QBG0kIJjHi6NloanPo8UJg3Cgd1O0ZLWz5XJqZY58KwfRg9Fx04yM_j86zkRAqV45MD9Rqd7STB5QMQdRQ6MNrR9Q9TNkWxxXLOgIxRG-Bk8_LdYT-EKqn1yOJ0dPIKrAW2W0N58vAvbVbEyj-GyWleLsnjSWi-DrxdtAH8ArkeN4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Deep+Convolutional+Autoencoder+Applied+for+Generative+Continuous+Arterial+Blood+Pressure+via+Photoplethysmography&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sadrawi%2C+Muammar&rft.au=Lin%2C+Yin-Tsong&rft.au=Lin%2C+Chien-Hung&rft.au=Mathunjwa%2C+Bhekumuzi&rft.date=2020-07-09&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=14&rft_id=info:doi/10.3390%2Fs20143829&rft_id=info%3Apmid%2F32660088&rft.externalDocID=PMC7412242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon