Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography
Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photopl...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 20; H. 14; S. 3829 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
09.07.2020
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization, the cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal. |
|---|---|
| AbstractList | Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization, the cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal. Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization, the cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal.Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG). A total of 18 patients are utilized. LeNet-5- and U-Net-based DCAEs, respectively abbreviated LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the gold standard. Moreover, in order to investigate the data generalization, the cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the systolic blood pressure (SBP) estimation. Meanwhile, the LDCAE gives a slightly better result for the diastolic blood pressure (DBP) prediction. Finally, the genetic algorithm-based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. In conclusion, this study exhibits that systolic blood pressure (SBP) and diastolic blood pressure (DBP) can also be accurately achieved by only utilizing a single PPG signal. |
| Author | Abbod, Maysam F. Lin, Chien-Hung Fan, Shou-Zen Shieh, Jiann-Shing Mathunjwa, Bhekumuzi Sadrawi, Muammar Lin, Yin-Tsong |
| AuthorAffiliation | 2 AI R&D Department, New Era AI Robotic Inc., Taipei 105, Taiwan; lotusytlin@neweraai.com (Y.-T.L.); lance_lin@neweraai.com (C.-H.L.) 4 Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK; Maysam.Abbod@brunel.ac.uk 3 Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; shouzen@gmail.com 1 Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan; muammarsadrawi@yahoo.com (M.S); mathunjwabhekie@gmail.com (B.M.) |
| AuthorAffiliation_xml | – name: 3 Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; shouzen@gmail.com – name: 1 Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan; muammarsadrawi@yahoo.com (M.S); mathunjwabhekie@gmail.com (B.M.) – name: 4 Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK; Maysam.Abbod@brunel.ac.uk – name: 2 AI R&D Department, New Era AI Robotic Inc., Taipei 105, Taiwan; lotusytlin@neweraai.com (Y.-T.L.); lance_lin@neweraai.com (C.-H.L.) |
| Author_xml | – sequence: 1 givenname: Muammar surname: Sadrawi fullname: Sadrawi, Muammar – sequence: 2 givenname: Yin-Tsong surname: Lin fullname: Lin, Yin-Tsong – sequence: 3 givenname: Chien-Hung surname: Lin fullname: Lin, Chien-Hung – sequence: 4 givenname: Bhekumuzi surname: Mathunjwa fullname: Mathunjwa, Bhekumuzi – sequence: 5 givenname: Shou-Zen orcidid: 0000-0002-6849-8453 surname: Fan fullname: Fan, Shou-Zen – sequence: 6 givenname: Maysam F. orcidid: 0000-0002-8515-7933 surname: Abbod fullname: Abbod, Maysam F. – sequence: 7 givenname: Jiann-Shing surname: Shieh fullname: Shieh, Jiann-Shing |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32660088$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkk1v1DAQhiNURD_gwB9AlrjAYenEdhLngrQsUCpVogc4W4492fXKGwfbWWn_PQ7bVm052bKf99FoZs6Lk8EPWBRvS_jEWAuXkULJmaDti-Ks5JQvBKVw8uh-WpzHuAWgjDHxqjhltK4BhDgrDlc4YLKafEUcycoPe--mZP2gHFlOyeOgvcFAluPoLBrS-0DmSFDJ7nEOJDtMfopkGRIGm2NfnPeG3AaMcQpI9laR241PfnSYNoe48-ugxs3hdfGyVy7im7vzovj9_duv1Y_Fzc-r69XyZqF53aaFrjtsNTc1a7FUHVNUQN9Q3pu-rHvWdwpAaTDalE1dI4UKVAVoGO-54BzYRXF99BqvtnIMdqfCQXpl5b8HH9ZShdwBh7LCHgRwbQxXnFHRKjQKWVcyoStoeHZ9PrrGqduh0TikoNwT6dOfwW7k2u9lw0tKOc2CD3eC4P9MGJPc2ajROTVgbqKcGQGsbpuMvn-Gbv0U8lyOFGtrqKpMvXtc0UMp9xPOwOUR0MHHGLCX2iY1TzgXaJ0sQc47JB92KCc-PkvcS_9n_wIN-Mh_ |
| CitedBy_id | crossref_primary_10_1038_s41569_025_01127_0 crossref_primary_10_1109_JBHI_2023_3324319 crossref_primary_10_3390_s22103953 crossref_primary_10_3390_s22062189 crossref_primary_10_1038_s41597_023_02020_6 crossref_primary_10_1088_1361_6579_acd164 crossref_primary_10_3390_s22114132 crossref_primary_10_1038_s41746_023_00835_6 crossref_primary_10_3390_s21186022 crossref_primary_10_3390_s21186264 crossref_primary_10_1016_j_eswa_2024_123809 crossref_primary_10_1155_2022_8094351 crossref_primary_10_1109_ACCESS_2024_3525152 crossref_primary_10_1016_j_bspc_2021_102984 crossref_primary_10_1016_j_measen_2025_101866 crossref_primary_10_3390_bioengineering12050493 crossref_primary_10_1109_JIOT_2024_3460382 crossref_primary_10_3390_s21062167 crossref_primary_10_1109_JBHI_2022_3172514 crossref_primary_10_3390_bioengineering10040400 crossref_primary_10_1007_s10462_022_10353_8 crossref_primary_10_3390_s24092721 crossref_primary_10_1016_j_bspc_2021_102972 crossref_primary_10_1063_5_0206980 crossref_primary_10_3390_s23031559 crossref_primary_10_3390_bioengineering10010027 crossref_primary_10_1016_j_engappai_2025_112099 crossref_primary_10_3390_healthcare10030547 crossref_primary_10_1155_2021_8563181 crossref_primary_10_1109_TAI_2024_3396126 |
| Cites_doi | 10.1016/j.compbiomed.2018.09.013 10.1007/s10916-018-0999-1 10.1109/SMARTCOMP.2016.7501681 10.3390/s120201816 10.3390/sym10030071 10.3390/s17112445 10.1038/srep45644 10.1007/978-3-319-24574-4_28 10.3390/jcm8010012 10.3390/e21121229 10.3390/app10062137 10.1109/ACCESS.2019.2912273 10.1093/bmb/ldh050 10.3390/s19153420 10.1155/2015/536863 10.1016/j.bspc.2019.02.028 10.1016/j.eswa.2014.08.007 10.1016/S0140-6736(08)60655-8 10.1016/S0002-8703(99)70312-1 10.1016/S0004-3702(02)00190-X 10.1109/IECBES.2016.7843473 10.3390/s20082338 10.1038/s41591-018-0268-3 10.1016/j.renene.2019.07.065 10.1109/CYBERNETICSCOM.2019.8875637 10.3390/en13071621 10.1109/5.726791 10.1016/j.compbiomed.2017.09.017 10.1038/nature14539 10.1109/IECBES.2016.7843455 10.1007/s00542-020-04782-0 10.3390/s19081866 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s20143829 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_5ef0804cdd4a43289aedae3b138c5074 PMC7412242 32660088 10_3390_s20143829 |
| Genre | Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-c6be9c4d639e1ab3a280f724fdf16f3fba00ac0dcd1766e2050a50ed34f484403 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556384900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:02:51 EDT 2025 Tue Nov 04 01:43:18 EST 2025 Fri Sep 05 11:09:37 EDT 2025 Tue Oct 07 07:09:34 EDT 2025 Mon Jul 21 05:57:40 EDT 2025 Sat Nov 29 07:09:09 EST 2025 Tue Nov 18 22:30:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | genetic algorithm deep convolutional autoencoder diastolic blood pressure photoplethysmography continuous arterial blood pressure systolic blood pressure |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-c6be9c4d639e1ab3a280f724fdf16f3fba00ac0dcd1766e2050a50ed34f484403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6849-8453 0000-0002-8515-7933 |
| OpenAccessLink | https://doaj.org/article/5ef0804cdd4a43289aedae3b138c5074 |
| PMID | 32660088 |
| PQID | 2423396055 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5ef0804cdd4a43289aedae3b138c5074 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7412242 proquest_miscellaneous_2423803697 proquest_journals_2423396055 pubmed_primary_32660088 crossref_citationtrail_10_3390_s20143829 crossref_primary_10_3390_s20143829 |
| PublicationCentury | 2000 |
| PublicationDate | 20200709 |
| PublicationDateYYYYMMDD | 2020-07-09 |
| PublicationDate_xml | – month: 7 year: 2020 text: 20200709 day: 9 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lawes (ref_3) 2008; 371 Acharya (ref_29) 2018; 100 Phillips (ref_8) 2012; 12 ref_35 ref_12 He (ref_2) 1999; 138 ref_11 ref_33 ref_10 Zaidan (ref_20) 2015; 42 ref_32 Mlakar (ref_16) 2019; 19 Silitonga (ref_18) 2020; 146 ref_19 ref_17 ref_15 Liu (ref_30) 2019; 7 Hannun (ref_28) 2019; 25 Sadrawi (ref_21) 2015; 2015 Liu (ref_31) 2018; 42 ref_24 ref_23 ref_22 Wong (ref_4) 2005; 73 Tang (ref_6) 2017; 7 LeCun (ref_27) 2015; 521 LeCun (ref_34) 1998; 86 ref_1 Zhou (ref_25) 2002; 137 Tanveer (ref_13) 2019; 51 Zadi (ref_14) 2018; 102 ref_26 ref_9 ref_5 ref_7 |
| References_xml | – volume: 102 start-page: 104 year: 2018 ident: ref_14 article-title: Arterial blood pressure feature estimation using photoplethysmography publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.09.013 – volume: 42 start-page: 148 year: 2018 ident: ref_31 article-title: Design and evaluation of a real time physiological signals acquisition system implemented in multi-operating rooms for anesthesia publication-title: J. Med. Syst. doi: 10.1007/s10916-018-0999-1 – ident: ref_12 doi: 10.1109/SMARTCOMP.2016.7501681 – volume: 12 start-page: 1816 year: 2012 ident: ref_8 article-title: Evaluation of electrical and optical plethysmography sensors for noninvasive monitoring of hemoglobin concentration publication-title: Sensors doi: 10.3390/s120201816 – ident: ref_26 doi: 10.3390/sym10030071 – ident: ref_32 – ident: ref_22 doi: 10.3390/s17112445 – volume: 7 start-page: 45644 year: 2017 ident: ref_6 article-title: Identification of atrial fibrillation by quantitative analyses of fingertip photoplethysmogram publication-title: Sci. Rep. doi: 10.1038/srep45644 – ident: ref_35 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_7 doi: 10.3390/jcm8010012 – ident: ref_10 doi: 10.3390/e21121229 – ident: ref_9 doi: 10.3390/app10062137 – ident: ref_1 – volume: 7 start-page: 53731 year: 2019 ident: ref_30 article-title: Spectrum analysis of eeg signals using cnn to model patient’s consciousness level based on anesthesiologists’ experience publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912273 – volume: 73 start-page: 57 year: 2005 ident: ref_4 article-title: Hypertensive retinopathy signs as risk indicators of cardiovascular morbidity and mortality publication-title: Br. Med. Bull. doi: 10.1093/bmb/ldh050 – volume: 19 start-page: 3420 year: 2019 ident: ref_16 article-title: Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network publication-title: Sensors doi: 10.3390/s19153420 – volume: 2015 start-page: 13 year: 2015 ident: ref_21 article-title: Computational depth of anesthesia via multiple vital signs based on artificial neural networks publication-title: Biomed Res. Int. doi: 10.1155/2015/536863 – volume: 51 start-page: 382 year: 2019 ident: ref_13 article-title: Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2019.02.028 – volume: 42 start-page: 539 year: 2015 ident: ref_20 article-title: Bayesian hierarchical models for aerospace gas turbine engine prognostics publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.08.007 – volume: 371 start-page: 1513 year: 2008 ident: ref_3 article-title: Global burden of blood-pressure-related disease, 2001 publication-title: Lancet doi: 10.1016/S0140-6736(08)60655-8 – ident: ref_33 – volume: 138 start-page: S211 year: 1999 ident: ref_2 article-title: Elevated systolic blood pressure and risk of cardiovascular and renal disease: Overview of evidence from observational epidemiologic studies and randomized controlled trials publication-title: Am. Heart J. doi: 10.1016/S0002-8703(99)70312-1 – volume: 137 start-page: 239 year: 2002 ident: ref_25 article-title: Ensembling neural networks: Many could be better than all publication-title: Artif. Intell. doi: 10.1016/S0004-3702(02)00190-X – ident: ref_11 doi: 10.1109/IECBES.2016.7843473 – ident: ref_15 doi: 10.3390/s20082338 – volume: 25 start-page: 65 year: 2019 ident: ref_28 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 146 start-page: 1278 year: 2020 ident: ref_18 article-title: Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization publication-title: Renew. Energy doi: 10.1016/j.renene.2019.07.065 – ident: ref_17 doi: 10.1109/CYBERNETICSCOM.2019.8875637 – ident: ref_19 doi: 10.3390/en13071621 – volume: 86 start-page: 2278 year: 1998 ident: ref_34 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 100 start-page: 270 year: 2018 ident: ref_29 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 521 start-page: 436 year: 2015 ident: ref_27 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_5 doi: 10.1109/IECBES.2016.7843455 – ident: ref_23 doi: 10.1007/s00542-020-04782-0 – ident: ref_24 doi: 10.3390/s19081866 |
| SSID | ssj0023338 |
| Score | 2.452898 |
| Snippet | Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3829 |
| SubjectTerms | Algorithms Arterial Pressure Blood Pressure Blood Pressure Determination Cardiac arrhythmia continuous arterial blood pressure Datasets deep convolutional autoencoder Deep learning diastolic blood pressure Electrocardiography Gas turbine engines genetic algorithm Humans Hypertension Hypertension - diagnosis Neural networks Patients Photoplethysmography systolic blood pressure Vital signs |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4EeeEMDBRnEgUtUx3YS54TY0orTaoVA6i1y_KArlWRJsivx75lJvGkXVVy4xrYyysx4vrEn3xDyPjepKVKuY8VtEctMgM95UEhaOV5hROGJHppN5IuFurgoluHArQtllbs9cdiobWPwjPwE474AuJ2mH9e_YuwahberoYXGXXKATGVyRg7mZ4vl1ynlEpCBjXxCsJiddBzp7NSAJ6-j0EDWfxvC_LtQ8kbkOX_4vzI_Ig8C5qSfRiN5TO64-gk5vMFE-JT8RvppGKafnVvT06beBpPEdZu-QbpL61oaQCsFqEtHxmrcLnFBv6o3zabDtwxGTedYEk_H3w9bR7crTZeXTY8F62gcPwNX9jPy_fzs2-mXOHRliA2k0n1sssoVRlqANi7RldBcMZ9z6a1PMi98pRnThlljkXvScZYynTJnhfRSScnEczKrm9odEaoyZrzTnic-lVaLSifKV1me5yrxMiki8mGnpdIEynLsnHFVQuqCCi0nhUbk3TR1PfJ03DZpjqqeJiC19vCgaX-UwVPL1HlA0dJYK7UUkI9qZ7UTVSKUAfAsI3K8U3YZ_L0rrzUdkbfTMHgqXr_o2sH3H-YoAAxFHpEXo11NkgCIBuSpVETyPYvbE3V_pF5dDmzgAAkBhvGX_xbrFbnP8aQAD6aLYzLr2417Te6Zbb_q2jfBbf4AF0wmpg priority: 102 providerName: ProQuest |
| Title | Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32660088 https://www.proquest.com/docview/2423396055 https://www.proquest.com/docview/2423803697 https://pubmed.ncbi.nlm.nih.gov/PMC7412242 https://doaj.org/article/5ef0804cdd4a43289aedae3b138c5074 |
| Volume | 20 |
| WOSCitedRecordID | wos000556384900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BwgEOiG8CS2UQBy7VJrYTO0e6dAWHrSIEUjlFjj-0lZZ01aaV9rK_nZkkDS1aiQuXHOyx4njG8XvO5Bngg7KpzVNuxpq7fCwzgXMuoEPSyvOKVhSemPawCTWb6fk8L_aO-qKcsE4euBu4k9QHBDXSOieNFEgPjHfGiyoR2iKWaZVA0WBHpnqqJZB5dTpCAkn9yZqTjJ1uceSf1acV6b8NWf6dILm34pw9hkc9VGSfui4-gTu-fgoP9wQEn8E1qUZjNfvs_RU7XdbbPpKo3aZZkkql8yvWY02GCJV1QtP0lqMGzaLeIPmnu7SxyCaUyc66vwZXnm0XhhUXy4byzMmnv3qJ6-fw42z6_fTLuD9MYWyRATdjm1U-t9IhIvGJqYThOg6Ky-BCkgURKhPHxsbOOpKM9DxOY5PG3gkZpJYyFi_gqF7W_hUwncU2eBN4ElLpjKhMokOVKaV0EmSSR_BxN8il7ZXG6cCLyxIZB_mjHPwRwfvB9KqT17jNaEKeGgxIEbstwDgp-zgp_xUnERzv_Fz203RdEpgUyOHSNIJ3QzVOMPpqYmqP49_aaFzncxXByy4shp4g9kXAqHUE6iBgDrp6WFMvLloRb0RyiJ746__xbG_gAadtANp1zo_hqFlt_Fu4b7fNYr0awV01V-1Vj-DeZDorvo3a2YLX85splhVfz4ufvwFa2h37 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk48E0xFFgQSFys2ut1vD4gRFuqRm2jHIpUTma9HzRSsUPiBPVP8RuZsR23QRW3Hrh6d-21_WbmzXr9BuBtomOdxlz5kpvUF_0Ibc7hC4lzy3OKKDxUdbGJZDiUJyfpaA1-L_-FoW2VS59YO2pTaloj36K4HyHdjuOPk58-VY2ir6vLEhoNLA7s-S9M2WYfBrv4ft9xvvf5eGffb6sK-BpTwcrX_dymWhgMzTZUeaS4DFzChTMu7LvI5SoIlA6MNqSdaHkQByoOrImEE1KIIMLz3oB1gWCXPVgfDY5GX7sUL8KMr9EvwskGWzNO8nmy5q8XUa8uDnAVo_17Y-alSLd37397Rvfhbsup2afGCB7Ami0ewp1LSouP4JzktbGZ7Vo7YTtlsWhNjsbNq5LkPI2dspaUM6TyrFHkpnBAA6pxMS_nM7pKbbRsm7b8s-b3yqlli7Fio9Oyog35BP4frRb4Y_hyLff-BHpFWdinwGQ_0M4qx0MXC6OiXIXS5f0kSWToRJh68H6Jiky3kuxUGeQsw9SMAJR1APLgTdd10uiQXNVpm6DVdSDp8PpAOf2etZ4oi63DLEFoY4QSEebbyhplozyMpMbkQHiwuQRX1vqzWXaBLA9ed83oiejzkiosPv-6j0RClCYebDQ47maCSQIyayk9SFYQvjLV1ZZifFqrnSPlRZrJn_17Wq_g1v7x0WF2OBgePIfbnFZFaBE-3YReNZ3bF3BTL6rxbPqyNVkG367bAv4A1-6E4w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFiE48E0xFFgQSFys2Ot1vD4gRBsiokKUA0jlZNb7QSMVOyROUP8av44Z23EbVHHrgat3ba_tNzNv1rtvAF4mOtZpzJUvuUl90Y_Q5hx-kDi3PKeIwkNVF5tIxmN5dJROtuD3ei8MLatc-8TaUZtS0xx5j-J-hHQ7jnuuXRYxGQzfzn76VEGK_rSuy2k0EDm0p78wfVu8GQ3wW7_ifPj-88EHv60w4GtMCytf93ObamEwTNtQ5ZHiMnAJF864sO8il6sgUDow2pCOouVBHKg4sCYSTkghggivewV2kJILtLGdyejT5GuX7kWY_TVaRjjwoLfgJKUnay57FgHrQgEXsdu_F2mei3rDW__z-7oNN1uuzd41xnEHtmxxF26cU2C8B6cku43NbGDtjB2Uxao1RTpvWZUk82nsnLVknSHFZ41SN4UJOqGaFstyuaC71MbM9mkrAGu2Xc4tW00VmxyXFS3UJ6P40WqE34cvl_LsD2C7KAv7EJjsB9pZ5XjoYmFUlKtQuryfJIkMnQhTD16vEZLpVqqdKoacZJiyEZiyDkwevOi6zhp9kos67RPMug4kKV4fKOffs9ZDZbF1mD0IbYxQIsI8XFmjbJSHkdSYNAgP9tZAy1o_t8jOUObB864ZPRT9dlKFxfdf95FIlNLEg90G091IMHlAxi2lB8kG2jeGutlSTI9rFXSkwkg_-aN_D-sZXEPYZx9H48PHcJ3TZAnNzad7sF3Nl_YJXNWrarqYP22tl8G3yzaAP1rijaM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Deep+Convolutional+Autoencoder+Applied+for+Generative+Continuous+Arterial+Blood+Pressure+via+Photoplethysmography&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sadrawi%2C+Muammar&rft.au=Lin%2C+Yin-Tsong&rft.au=Lin%2C+Chien-Hung&rft.au=Mathunjwa%2C+Bhekumuzi&rft.date=2020-07-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=14&rft.spage=3829&rft_id=info:doi/10.3390%2Fs20143829&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20143829 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |