AD-VAE: Adversarial Disentangling Variational Autoencoder

Face recognition (FR) is a less intrusive biometrics technology with various applications, such as security, surveillance, and access control systems. FR remains challenging, especially when there is only a single image per person as a gallery dataset and when dealing with variations like pose, illu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 25; číslo 5; s. 1574
Hlavní autoři: Silva, Adson, Farias, Ricardo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 04.03.2025
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Face recognition (FR) is a less intrusive biometrics technology with various applications, such as security, surveillance, and access control systems. FR remains challenging, especially when there is only a single image per person as a gallery dataset and when dealing with variations like pose, illumination, and occlusion. Deep learning techniques have shown promising results in recent years using VAE and GAN, with approaches such as patch-VAE, VAE-GAN for 3D Indoor Scene Synthesis, and hybrid VAE-GAN models. However, in Single Sample Per Person Face Recognition (SSPP FR), the challenge of learning robust and discriminative features that preserve the subject’s identity persists. To address these issues, we propose a novel framework called AD-VAE, specifically for SSPP FR, using a combination of variational autoencoder (VAE) and Generative Adversarial Network (GAN) techniques. The proposed AD-VAE framework is designed to learn how to build representative identity-preserving prototypes from both controlled and wild datasets, effectively handling variations like pose, illumination, and occlusion. The method uses four networks: an encoder and decoder similar to VAE, a generator that receives the encoder output plus noise to generate an identity-preserving prototype, and a discriminator that operates as a multi-task network. AD-VAE outperforms all tested state-of-the-art face recognition techniques, demonstrating its robustness. The proposed framework achieves superior results on four controlled benchmark datasets—AR, E-YaleB, CAS-PEAL, and FERET—with recognition rates of 84.9%, 94.6%, 94.5%, and 96.0%, respectively, and achieves remarkable performance on the uncontrolled LFW dataset, with a recognition rate of 99.6%. The AD-VAE framework shows promising potential for future research and real-world applications.
AbstractList Face recognition (FR) is a less intrusive biometrics technology with various applications, such as security, surveillance, and access control systems. FR remains challenging, especially when there is only a single image per person as a gallery dataset and when dealing with variations like pose, illumination, and occlusion. Deep learning techniques have shown promising results in recent years using VAE and GAN, with approaches such as patch-VAE, VAE-GAN for 3D Indoor Scene Synthesis, and hybrid VAE-GAN models. However, in Single Sample Per Person Face Recognition (SSPP FR), the challenge of learning robust and discriminative features that preserve the subject’s identity persists. To address these issues, we propose a novel framework called AD-VAE, specifically for SSPP FR, using a combination of variational autoencoder (VAE) and Generative Adversarial Network (GAN) techniques. The proposed AD-VAE framework is designed to learn how to build representative identity-preserving prototypes from both controlled and wild datasets, effectively handling variations like pose, illumination, and occlusion. The method uses four networks: an encoder and decoder similar to VAE, a generator that receives the encoder output plus noise to generate an identity-preserving prototype, and a discriminator that operates as a multi-task network. AD-VAE outperforms all tested state-of-the-art face recognition techniques, demonstrating its robustness. The proposed framework achieves superior results on four controlled benchmark datasets—AR, E-YaleB, CAS-PEAL, and FERET—with recognition rates of 84.9%, 94.6%, 94.5%, and 96.0%, respectively, and achieves remarkable performance on the uncontrolled LFW dataset, with a recognition rate of 99.6%. The AD-VAE framework shows promising potential for future research and real-world applications.
Face recognition (FR) is a less intrusive biometrics technology with various applications, such as security, surveillance, and access control systems. FR remains challenging, especially when there is only a single image per person as a gallery dataset and when dealing with variations like pose, illumination, and occlusion. Deep learning techniques have shown promising results in recent years using VAE and GAN, with approaches such as patch-VAE, VAE-GAN for 3D Indoor Scene Synthesis, and hybrid VAE-GAN models. However, in Single Sample Per Person Face Recognition (SSPP FR), the challenge of learning robust and discriminative features that preserve the subject's identity persists. To address these issues, we propose a novel framework called AD-VAE, specifically for SSPP FR, using a combination of variational autoencoder (VAE) and Generative Adversarial Network (GAN) techniques. The proposed AD-VAE framework is designed to learn how to build representative identity-preserving prototypes from both controlled and wild datasets, effectively handling variations like pose, illumination, and occlusion. The method uses four networks: an encoder and decoder similar to VAE, a generator that receives the encoder output plus noise to generate an identity-preserving prototype, and a discriminator that operates as a multi-task network. AD-VAE outperforms all tested state-of-the-art face recognition techniques, demonstrating its robustness. The proposed framework achieves superior results on four controlled benchmark datasets-AR, E-YaleB, CAS-PEAL, and FERET-with recognition rates of 84.9%, 94.6%, 94.5%, and 96.0%, respectively, and achieves remarkable performance on the uncontrolled LFW dataset, with a recognition rate of 99.6%. The AD-VAE framework shows promising potential for future research and real-world applications.Face recognition (FR) is a less intrusive biometrics technology with various applications, such as security, surveillance, and access control systems. FR remains challenging, especially when there is only a single image per person as a gallery dataset and when dealing with variations like pose, illumination, and occlusion. Deep learning techniques have shown promising results in recent years using VAE and GAN, with approaches such as patch-VAE, VAE-GAN for 3D Indoor Scene Synthesis, and hybrid VAE-GAN models. However, in Single Sample Per Person Face Recognition (SSPP FR), the challenge of learning robust and discriminative features that preserve the subject's identity persists. To address these issues, we propose a novel framework called AD-VAE, specifically for SSPP FR, using a combination of variational autoencoder (VAE) and Generative Adversarial Network (GAN) techniques. The proposed AD-VAE framework is designed to learn how to build representative identity-preserving prototypes from both controlled and wild datasets, effectively handling variations like pose, illumination, and occlusion. The method uses four networks: an encoder and decoder similar to VAE, a generator that receives the encoder output plus noise to generate an identity-preserving prototype, and a discriminator that operates as a multi-task network. AD-VAE outperforms all tested state-of-the-art face recognition techniques, demonstrating its robustness. The proposed framework achieves superior results on four controlled benchmark datasets-AR, E-YaleB, CAS-PEAL, and FERET-with recognition rates of 84.9%, 94.6%, 94.5%, and 96.0%, respectively, and achieves remarkable performance on the uncontrolled LFW dataset, with a recognition rate of 99.6%. The AD-VAE framework shows promising potential for future research and real-world applications.
Audience Academic
Author Silva, Adson
Farias, Ricardo
AuthorAffiliation Systems Engineering and Computer Science Program (PESC/COPPE/UFRJ), Federal University of Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
AuthorAffiliation_xml – name: Systems Engineering and Computer Science Program (PESC/COPPE/UFRJ), Federal University of Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
Author_xml – sequence: 1
  givenname: Adson
  orcidid: 0000-0002-7403-6407
  surname: Silva
  fullname: Silva, Adson
– sequence: 2
  givenname: Ricardo
  surname: Farias
  fullname: Farias, Ricardo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40096455$$D View this record in MEDLINE/PubMed
BookMark eNpdkktvFSEUx4mpsQ9d-AXMTdzoYipwGB5umklbtUkTN9ot4fIYuZkLFWaa-O2lvfWmNSwg5_z4n-cxOkg5eYTeEnwKoPCnSnvck16wF-iIMMo6SSk-ePI-RMe1bjCmACBfoUOGseKs74-QGi66m-Hy82pwd75UU6KZVhex-jSbNE4xjaube-Mcc2qeYZmzTzY7X16jl8FM1b95vE_Qzy-XP86_ddffv16dD9edZVzNnQUwjGMPjFPisHc0UMDQWydNALZmICAwHMJaCSJ7Zai3gXDoBaFMCg8n6Gqn67LZ6NsSt6b80dlE_WDIZdSmzNFOXmNCwStlBVsbZrGQyjgjWhjPKQbKmtbZTut2WW-9s63KYqZnos89Kf7SY77ThKjWPIGbwodHhZJ_L77Oehur9dNkks9L1UCEpIpjKhr6_j90k5fSuvhAcWCSK96o0x01mlZBTCG3wLYd57fRtjmH2OyDBAJSAYP24d3TGvbJ_5tpAz7uAFtyrcWHPUKwvt8Xvd8X-AsF7K4Z
Cites_doi 10.1016/j.patcog.2016.12.028
10.1109/ICIP.2016.7532911
10.1109/ISPA54004.2022.9786302
10.1016/j.patcog.2017.10.020
10.1109/CVPR.2019.00123
10.1109/ICCV.2013.91
10.1109/ACCESS.2020.2999030
10.1145/954339.954342
10.1109/TPAMI.2021.3087709
10.1109/TPAMI.2012.70
10.1109/34.927464
10.1109/34.879790
10.1109/TIFS.2020.2965301
10.1109/TIP.2017.2675341
10.1007/s10462-022-10237-x
10.1109/ACCESS.2020.3017479
10.1109/TSMCA.2007.909557
10.1109/ICCV48922.2021.01382
10.1007/978-3-030-58574-7_10
10.1109/TPAMI.2018.2868350
10.1007/s10462-022-10240-2
10.1155/2023/3368647
10.1109/TIFS.2021.3050055
10.1007/s10462-017-9578-y
10.20944/preprints202303.0023.v1
10.1109/CVPR.2013.58
10.1016/j.cma.2020.113375
10.1109/TNNLS.2021.3103194
10.1109/CVPR52729.2023.01223
10.1016/j.neucom.2016.12.059
10.1109/CVPR.2017.141
10.1109/TPAMI.2017.2757923
10.1109/TPAMI.2008.79
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25051574
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef



Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0123e99c74ba4c0789ada7af3e620324
PMC11902370
A831389343
40096455
10_3390_s25051574
Genre Journal Article
GeographicLocations Arkansas
GeographicLocations_xml – name: Arkansas
GrantInformation_xml – fundername: Coordenação de Aperfeicoamento de Pessoal de Nível Superior
  grantid: 05282407493
– fundername: Insituto Federal de Educação, Ciências e Tecnologia da Paraíba IFPB
  grantid: 3162563
– fundername: Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB)
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-c33a460e34621d0ed2f23035cd8af34b4373f40ffb971859a2ecf1635712487e3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001444154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:50:47 EDT 2025
Tue Nov 04 02:03:33 EST 2025
Fri Sep 05 14:35:37 EDT 2025
Tue Oct 07 07:38:56 EDT 2025
Tue Nov 04 18:24:40 EST 2025
Mon Jul 21 06:02:07 EDT 2025
Sat Nov 29 07:10:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords face recognition
single sample
GAN
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-c33a460e34621d0ed2f23035cd8af34b4373f40ffb971859a2ecf1635712487e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-7403-6407
OpenAccessLink https://doaj.org/article/0123e99c74ba4c0789ada7af3e620324
PMID 40096455
PQID 3176348696
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0123e99c74ba4c0789ada7af3e620324
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11902370
proquest_miscellaneous_3178296027
proquest_journals_3176348696
gale_infotracacademiconefile_A831389343
pubmed_primary_40096455
crossref_primary_10_3390_s25051574
PublicationCentury 2000
PublicationDate 20250304
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 3
  year: 2025
  text: 20250304
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Pang (ref_24) 2023; 34
ref_36
ref_13
ref_34
ref_33
ref_10
ref_32
Lu (ref_6) 2013; 35
ref_19
Yang (ref_40) 2017; 66
ref_18
Georghiades (ref_29) 2001; 23
ref_38
Liu (ref_2) 2023; 56
ref_37
Lahasan (ref_1) 2017; 52
Abdelmaksoud (ref_14) 2020; 8
Deng (ref_12) 2018; 77
Cheng (ref_9) 2020; 372
Phillips (ref_30) 2000; 22
Hu (ref_16) 2017; 235
Deng (ref_39) 2018; 40
Wright (ref_35) 2009; 31
Pang (ref_7) 2021; 16
ref_23
ref_45
Gao (ref_11) 2017; 26
ref_22
ref_44
Li (ref_8) 2023; 2023
ref_21
ref_43
ref_20
Gao (ref_31) 2008; 38
Tran (ref_25) 2019; 41
ref_41
Deng (ref_42) 2021; 44
Zhao (ref_4) 2003; 35
ref_28
ref_27
Yang (ref_17) 2020; 15
ref_26
Minaee (ref_3) 2023; 56
ref_5
Ding (ref_15) 2020; 8
References_xml – ident: ref_28
– volume: 66
  start-page: 117
  year: 2017
  ident: ref_40
  article-title: Joint and collaborative representation with local adaptive convolution feature for face recognition with single sample per person
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.12.028
– ident: ref_13
  doi: 10.1109/ICIP.2016.7532911
– ident: ref_18
  doi: 10.1109/ISPA54004.2022.9786302
– ident: ref_32
– volume: 77
  start-page: 426
  year: 2018
  ident: ref_12
  article-title: From one to many: Pose-Aware Metric Learning for single-sample face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.020
– ident: ref_26
– ident: ref_34
– ident: ref_41
  doi: 10.1109/CVPR.2019.00123
– ident: ref_38
  doi: 10.1109/ICCV.2013.91
– volume: 8
  start-page: 102212
  year: 2020
  ident: ref_14
  article-title: A Novel Neural Network Method for Face Recognition with a Single Sample Per Person
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999030
– volume: 35
  start-page: 399
  year: 2003
  ident: ref_4
  article-title: Face recognition: A literature survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/954339.954342
– volume: 44
  start-page: 5962
  year: 2021
  ident: ref_42
  article-title: ArcFace: Additive Angular Margin Loss for Deep Face Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3087709
– volume: 35
  start-page: 39
  year: 2013
  ident: ref_6
  article-title: Discriminative Multimanifold Analysis for Face Recognition from a Single Training Sample per Person
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.70
– volume: 23
  start-page: 643
  year: 2001
  ident: ref_29
  article-title: From few to many: Illumination cone models for face recognition under variable lighting and pose
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927464
– ident: ref_37
– ident: ref_23
– volume: 22
  start-page: 1090
  year: 2000
  ident: ref_30
  article-title: The FERET evaluation methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879790
– ident: ref_21
– volume: 15
  start-page: 2469
  year: 2020
  ident: ref_17
  article-title: Adaptive Convolution Local and Global Learning for Class-Level Joint Representation of Facial Recognition with a Single Sample Per Data Subject
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.2965301
– volume: 26
  start-page: 2545
  year: 2017
  ident: ref_11
  article-title: Semi-Supervised Sparse Representation Based Classification for Face Recognition with Insufficient Labeled Samples
  publication-title: Trans. Img. Proc.
  doi: 10.1109/TIP.2017.2675341
– volume: 56
  start-page: 8647
  year: 2023
  ident: ref_3
  article-title: Biometrics recognition using deep learning: A survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10237-x
– volume: 8
  start-page: 158281
  year: 2020
  ident: ref_15
  article-title: Uniform Generic Representation for Single Sample Face Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017479
– volume: 38
  start-page: 149
  year: 2008
  ident: ref_31
  article-title: The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
  doi: 10.1109/TSMCA.2007.909557
– ident: ref_33
– ident: ref_45
  doi: 10.1109/ICCV48922.2021.01382
– ident: ref_22
  doi: 10.1007/978-3-030-58574-7_10
– ident: ref_27
– volume: 41
  start-page: 3007
  year: 2019
  ident: ref_25
  article-title: Representation Learning by Rotating Your Faces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2868350
– volume: 56
  start-page: 2723
  year: 2023
  ident: ref_2
  article-title: Deep learning based single sample face recognition: A survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10240-2
– volume: 2023
  start-page: 3368647
  year: 2023
  ident: ref_8
  article-title: Deep Generative Modeling Based on VAE-GAN for 3D Indoor Scene Synthesis
  publication-title: Int. J. Comput. Games Technol.
  doi: 10.1155/2023/3368647
– volume: 16
  start-page: 2246
  year: 2021
  ident: ref_7
  article-title: VD-GAN: A Unified Framework for Joint Prototype and Representation Learning From Contaminated Single Sample per Person
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2021.3050055
– volume: 52
  start-page: 949
  year: 2017
  ident: ref_1
  article-title: A survey on techniques to handle face recognition challenges: Occlusion, single sample per subject and expression
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9578-y
– ident: ref_10
  doi: 10.20944/preprints202303.0023.v1
– ident: ref_5
  doi: 10.1109/CVPR.2013.58
– ident: ref_36
– volume: 372
  start-page: 113375
  year: 2020
  ident: ref_9
  article-title: An advanced hybrid deep adversarial autoencoder for parameterized nonlinear fluid flow modelling
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113375
– ident: ref_43
– volume: 34
  start-page: 867
  year: 2023
  ident: ref_24
  article-title: DisP+V: A Unified Framework for Disentangling Prototype and Variation From Single Sample per Person
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3103194
– ident: ref_44
  doi: 10.1109/CVPR52729.2023.01223
– volume: 235
  start-page: 46
  year: 2017
  ident: ref_16
  article-title: Surveillance video face recognition with single sample per person based on 3D modeling and blurring
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.059
– ident: ref_19
  doi: 10.1109/CVPR.2017.141
– ident: ref_20
– volume: 40
  start-page: 2513
  year: 2018
  ident: ref_39
  article-title: Face Recognition via Collaborative Representation: Its Discriminant Nature and Superposed Representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2757923
– volume: 31
  start-page: 210
  year: 2009
  ident: ref_35
  article-title: Robust Face Recognition via Sparse Representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
SSID ssj0023338
Score 2.4498322
Snippet Face recognition (FR) is a less intrusive biometrics technology with various applications, such as security, surveillance, and access control systems. FR...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1574
SubjectTerms Access control
Algorithms
Autoencoder
Automated Facial Recognition - methods
Biometric Identification - methods
Biometry
Control systems
Datasets
Deep Learning
Dictionaries
Equipment and supplies
Face
face recognition
Facial recognition technology
GAN
Humans
Identification
Image Processing, Computer-Assisted - methods
Liquors
Methods
Neural Networks, Computer
Safety and security measures
Security systems
single sample
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgM9UJ5taEEBIXGKNomdxOaCAm0FElR7gKqcLMexy16SdrPL72cm8YaNkDhxTaLEzjw_2_MNwBurEWcY6yJn8yxCL4l-sJImougcZ3WRSN0XCn8pLi7E1ZVc-PLozh-r3PrE3lEPbM90bhud8LxuDa2YzzHq5YyLXObvb24j6iFFe62-ocZd2CPiLTGDvcXnr4sfIwBjiMcGdiGGUH_eUfhPsoJPYlJP3f-3g96JUNPTkzvh6Pzg_07kITzwaWlYDnr0CO7Y5jHs75AVPgFZnkaX5dm7sO_h3GnS3PB02RcvUS1wcx1e0sVhcTEsN-uWSDJru3oK38_Pvn38FPnGC5FBtLyODGOa57FlPE-TOrZ16hCpMOIR0I7xiuiQHI-dqySGtkzq1BqXELMdZguisOwZzJq2sUcQVrZmVqCepDhNE7uqxoTJ5QZhWWaNTAN4vf316mbg11CIS0g-apRPAB9IKOMDRIndX2hX18pbmKLk0EppCl5p_FIhpK51geO1OXWJx5e8JZEqMlyUm9G-_gDHSRRYqhSMNm0ZZwGcbCWnvEV36o-gAng13kZbpA0W3dh20z8jUoSEaRHA4aAk45g5gUWeZQGIifpMJjW90yx_9nzfCSZtKSvi5_8e1zHcT6k5MR2Q4ycwW6829gXcM7_Wy2710tvCb7hhGqM
  priority: 102
  providerName: ProQuest
Title AD-VAE: Adversarial Disentangling Variational Autoencoder
URI https://www.ncbi.nlm.nih.gov/pubmed/40096455
https://www.proquest.com/docview/3176348696
https://www.proquest.com/docview/3178296027
https://pubmed.ncbi.nlm.nih.gov/PMC11902370
https://doaj.org/article/0123e99c74ba4c0789ada7af3e620324
Volume 25
WOSCitedRecordID wos001444154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VlgMcEJSvQFmFColT1MR24phbSrdqJbpaVaVaTpbj2LCXLNoPjvx2ZpzsaiMOXLjkYOdgv4k982LPG4APziDPsM4n3hV5grsk7oO1sgl55zRvZKZMSBT-IieTcjZT071SX3QnrJMH7oA7I5_vlLJS1EZYEkc3jZHGc1dQ8e-gBIpRz5ZM9VSLI_PqdIQ4kvqzFTn6LJdi4H2CSP_fW_GeLxrek9xzPJdP4UkfMcZVN9JncODaY3i8pyP4HFR1kdxX409xKK-8MvRRxRfzkFdEabrt9_ieGrv_fnG1WS9Iv7Jxyxfw9XJ89_kq6WsiJBaJ7DqxnBtRpI6LgmVN6hrmkURwSvFHTERNSkVepN7XCr1Orgxz1mckOoeOvJSOv4TDdtG61xDXruGuRBOygiOyvm4wlvGFRcaUO6tYBKdbrPTPTvpCI2UgQPUO0AjOCcXdC6RWHRrQhrq3of6XDSP4SDbQtKYQaGv61AAcJ6lT6arkdJ7KBY_gZGsm3S-2lcYQCGdQFqqI4P2uG5cJnX2Y1i024Z2SIVtjMoJXnVV3YxbE40SeR1AO7D2Y1LCnnf8IUtwZxlOMy_TN_4DhLTxiVF2YbriJEzhcLzfuHTy0v9bz1XIED-RMhmc5gqPz8WR6OwofPT5vfo-xbXp9M_32B1tuBWo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQIC9RQ1sZ04RkIosK1adVlxKNXejOM4ZS9J2eyC-FP8Rmby2O4KiVsPXJMomcSfv5mJPd8AvHYG8wzryqB0SRwgSyIP5soG5J3DuJCRMm2h8FhOJul0qj5vwe-hFoa2VQ6c2BJ1UVv6R76Hfi7hIk1U8v78e0Bdo2h1dWih0cHi2P36iSlb8-5ohOP7hrGD_ZOPh0HfVSCwmAouAsu5EUnouEhYVISuYCWG4ZyK5E3JRU5aP6UIyzJXyNuxMszZMiLZNnSFqXQc73sFriKPS9pCJqcXCR7HfK9TL-JchXsNhRdRLMWGz2tbA_ztANY84ObuzDV3d3D7f_tQd-BWH1j7WTcT7sKWq-7BzTW5xfugslFwmu2_9dsu1I2hueePZm35FVUzV2f-KR3sfo_62XJRk8xn4eYP4Mul2P4Qtqu6co_Bz13BXYpIZ_hZbVjmBYZ8ZWIxsYydVcyDV8Pg6vNOIURjZkUI0CsEePCBhn11AYl6twfq-ZnuOUJTeOuUslLkBp8kU2UKI9Fel1Cfe7zJLoFGE_UgMqzpKyjQThLx0lnKadmZC-7BzoAN3XNSoy-A4cHL1WlkE1oiMpWrl-01KcOklkkPHnUwXNksKN0VcexBugHQjZfaPFPNvrWK5RGGnYzL8Mm_7XoB1w9PPo31-Ghy_BRuMGq1TNv9xA5sL-ZL9wyu2R-LWTN_3s47H75eNn7_AGm_aIk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceD8MBQwCcbJi7669XiSEDGlE1SrqAarc3PV6t-RilzgB8df4dcz4kSZC4tYDV9tyJvY338zn3ZkBeG016gxjXeBsEgfIksiDhTIBRecwLmWkdFsofCSn03Q2U8c78HuohaFtlQMntkRd1oa-kY8wziVcpIlKRq7fFnE8nnw4_x7QBClaaR3GaXQQObS_fqJ8a94fjPFdv2Fssv_l0-egnzAQGJSFy8BwrkUSWi4SFpWhLZnDlJxTwbx2XBTU98eJ0LlCIYfHSjNrXEQt3DAsptJyvO8VuCo5lzQ2Qs4uxB5H7dd1MuJchaOGUo0olmIr_rVjAv4OBhvRcHun5kbom9z-nx_aHbjVJ9x-1nnIXdix1T24udGG8T6obBycZPvv_HY6daPJJ_3xvC3Loirn6sw_oYPdZ1M_Wy1rav9Z2sUD-Hoptj-E3aqu7GPwC1tym6IHMHzEJnRFiamgSwwKztgaxTx4Nbzo_LzrHJKj4iI05Gs0ePCRILC-gJp9twfqxVnec0dOaa9VykhRaPwlmSpdaon22oSFmBB78JYAlBMlIUqM7isr0E5q7pVnKaflaC64B3sDTvKeq5r8AiQevFyfRpahpSNd2XrVXpMyFLtMevCog-TaZkEyWMSxB-kWWLf-1PaZav6t7WQeYTrK0Hee_NuuF3AdYZsfHUwPn8INRhOYaReg2IPd5WJln8E182M5bxbPWxf04fSy4fsHo0JxPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AD-VAE%3A+Adversarial+Disentangling+Variational+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Silva%2C+Adson&rft.au=Farias%2C+Ricardo&rft.date=2025-03-04&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=5&rft_id=info:doi/10.3390%2Fs25051574&rft.externalDocID=A831389343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon