Few-Shot User-Adaptable Radar-Based Breath Signal Sensing

Vital signs estimation provides valuable information about an individual’s overall health status. Gathering such information usually requires wearable devices or privacy-invasive settings. In this work, we propose a radar-based user-adaptable solution for respiratory signal prediction while sitting...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 23; číslo 2; s. 804
Hlavní autori: Mauro, Gianfranco, De Carlos Diez, Maria, Ott, Julius, Servadei, Lorenzo, Cuellar, Manuel P., Morales-Santos, Diego P.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 10.01.2023
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Vital signs estimation provides valuable information about an individual’s overall health status. Gathering such information usually requires wearable devices or privacy-invasive settings. In this work, we propose a radar-based user-adaptable solution for respiratory signal prediction while sitting at an office desk. Such an approach leads to a contact-free, privacy-friendly, and easily adaptable system with little reference training data. Data from 24 subjects are preprocessed to extract respiration information using a 60 GHz frequency-modulated continuous wave radar. With few training examples, episodic optimization-based learning allows for generalization to new individuals. Episodically, a convolutional variational autoencoder learns how to map the processed radar data to a reference signal, generating a constrained latent space to the central respiration frequency. Moreover, autocorrelation over recorded radar data time assesses the information corruption due to subject motions. The model learning procedure and breathing prediction are adjusted by exploiting the motion corruption level. Thanks to the episodic acquired knowledge, the model requires an adaptation time of less than one and two seconds for one to five training examples, respectively. The suggested approach represents a novel, quickly adaptable, non-contact alternative for office settings with little user motion.
AbstractList Vital signs estimation provides valuable information about an individual’s overall health status. Gathering such information usually requires wearable devices or privacy-invasive settings. In this work, we propose a radar-based user-adaptable solution for respiratory signal prediction while sitting at an office desk. Such an approach leads to a contact-free, privacy-friendly, and easily adaptable system with little reference training data. Data from 24 subjects are preprocessed to extract respiration information using a 60 GHz frequency-modulated continuous wave radar. With few training examples, episodic optimization-based learning allows for generalization to new individuals. Episodically, a convolutional variational autoencoder learns how to map the processed radar data to a reference signal, generating a constrained latent space to the central respiration frequency. Moreover, autocorrelation over recorded radar data time assesses the information corruption due to subject motions. The model learning procedure and breathing prediction are adjusted by exploiting the motion corruption level. Thanks to the episodic acquired knowledge, the model requires an adaptation time of less than one and two seconds for one to five training examples, respectively. The suggested approach represents a novel, quickly adaptable, non-contact alternative for office settings with little user motion.
Vital signs estimation provides valuable information about an individual's overall health status. Gathering such information usually requires wearable devices or privacy-invasive settings. In this work, we propose a radar-based user-adaptable solution for respiratory signal prediction while sitting at an office desk. Such an approach leads to a contact-free, privacy-friendly, and easily adaptable system with little reference training data. Data from 24 subjects are preprocessed to extract respiration information using a 60 GHz frequency-modulated continuous wave radar. With few training examples, episodic optimization-based learning allows for generalization to new individuals. Episodically, a convolutional variational autoencoder learns how to map the processed radar data to a reference signal, generating a constrained latent space to the central respiration frequency. Moreover, autocorrelation over recorded radar data time assesses the information corruption due to subject motions. The model learning procedure and breathing prediction are adjusted by exploiting the motion corruption level. Thanks to the episodic acquired knowledge, the model requires an adaptation time of less than one and two seconds for one to five training examples, respectively. The suggested approach represents a novel, quickly adaptable, non-contact alternative for office settings with little user motion.Vital signs estimation provides valuable information about an individual's overall health status. Gathering such information usually requires wearable devices or privacy-invasive settings. In this work, we propose a radar-based user-adaptable solution for respiratory signal prediction while sitting at an office desk. Such an approach leads to a contact-free, privacy-friendly, and easily adaptable system with little reference training data. Data from 24 subjects are preprocessed to extract respiration information using a 60 GHz frequency-modulated continuous wave radar. With few training examples, episodic optimization-based learning allows for generalization to new individuals. Episodically, a convolutional variational autoencoder learns how to map the processed radar data to a reference signal, generating a constrained latent space to the central respiration frequency. Moreover, autocorrelation over recorded radar data time assesses the information corruption due to subject motions. The model learning procedure and breathing prediction are adjusted by exploiting the motion corruption level. Thanks to the episodic acquired knowledge, the model requires an adaptation time of less than one and two seconds for one to five training examples, respectively. The suggested approach represents a novel, quickly adaptable, non-contact alternative for office settings with little user motion.
Author Ott, Julius
Morales-Santos, Diego P.
De Carlos Diez, Maria
Servadei, Lorenzo
Cuellar, Manuel P.
Mauro, Gianfranco
AuthorAffiliation 2 Department of Electronic and Computer Technology, University of Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain
4 Department of Computer Science and Artificial Intelligence, University of Granada, C/. Pdta. Daniel Saucedo Aranda s/n, 18015 Granada, Spain
1 Infineon Technologies AG, Am Campeon 1-15, 85579 Neubiberg, Germany
3 Department of Electrical and Computer Engineering, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
AuthorAffiliation_xml – name: 4 Department of Computer Science and Artificial Intelligence, University of Granada, C/. Pdta. Daniel Saucedo Aranda s/n, 18015 Granada, Spain
– name: 3 Department of Electrical and Computer Engineering, Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany
– name: 1 Infineon Technologies AG, Am Campeon 1-15, 85579 Neubiberg, Germany
– name: 2 Department of Electronic and Computer Technology, University of Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain
Author_xml – sequence: 1
  givenname: Gianfranco
  orcidid: 0000-0003-3204-1555
  surname: Mauro
  fullname: Mauro, Gianfranco
– sequence: 2
  givenname: Maria
  surname: De Carlos Diez
  fullname: De Carlos Diez, Maria
– sequence: 3
  givenname: Julius
  orcidid: 0000-0001-8259-3070
  surname: Ott
  fullname: Ott, Julius
– sequence: 4
  givenname: Lorenzo
  orcidid: 0000-0003-4322-834X
  surname: Servadei
  fullname: Servadei, Lorenzo
– sequence: 5
  givenname: Manuel P.
  surname: Cuellar
  fullname: Cuellar, Manuel P.
– sequence: 6
  givenname: Diego P.
  orcidid: 0000-0002-3294-8934
  surname: Morales-Santos
  fullname: Morales-Santos, Diego P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36679598$$D View this record in MEDLINE/PubMed
BookMark eNplkl1PHCEUhklj41e96B9oJulNvZjKwMDATRM11ZqYNOnWa3IGDrtsZoctzNb474uuGrXhAgIPT14O54DsjHFEQj429Cvnmp5kximjirbvyH7TsrZWjNGdF-s9cpDzklLGOVe7ZI9L2Wmh1T7RF3hbzxZxqm4ypvrUwXqCfsDqFzhI9RlkdNVZQpgW1SzMRxiqGY45jPMP5L2HIePR43xIbi6-_z7_UV__vLw6P72ubSv1VFvqOchW8E5w2mqwrGOi89A555XwjetRAnbIgXe9V16VB3Gm0PcUgLqeH5KrrddFWJp1CitIdyZCMA8bMc0NpCnYAQ1FbIBpJiRlrW2t1r6RlKPyuoeGyuL6tnWtN_0KncVxSjC8kr4-GcPCzONfo5UUZRTBl0dBin82mCezCtniMMCIcZMN62Spt1RKFPTzG3QZN6kU8IHqSkwt2kJ9epnoOcrTDxXgZAvYFHNO6I0NE0wh3gcMg2moue8B89wD5cbxmxtP0v_Zf7sIrmw
CitedBy_id crossref_primary_10_3390_app15179670
crossref_primary_10_1016_j_mattod_2023_12_003
crossref_primary_10_1016_j_measurement_2025_117923
crossref_primary_10_1109_ACCESS_2024_3482690
crossref_primary_10_3390_s24175784
crossref_primary_10_1109_TIM_2023_3267348
crossref_primary_10_1016_j_measurement_2025_117707
crossref_primary_10_1109_JSEN_2025_3556750
Cites_doi 10.3390/s20102999
10.1371/journal.pone.0210875
10.3390/s17020341
10.1109/COMST.2019.2934489
10.1109/RISE.2017.8378141
10.1145/3450439.3451870
10.1007/978-3-642-04898-2_327
10.1109/JERM.2019.2923673
10.1049/cp.2018.0978
10.1109/TBME.2007.891930
10.1109/JSEN.2019.2949435
10.3390/s21082732
10.1109/LSENS.2020.2983706
10.1109/ACCESS.2021.3068480
10.1109/CCNC49033.2022.9700721
10.3390/rs11101237
10.1109/JSEN.2020.3036039
10.1109/RADAR.2018.8378688
10.3390/s20226695
10.3390/s20051454
10.1109/JIOT.2020.3004046
10.1109/IMBioC52515.2022.9790275
10.3390/s18082414
10.3390/s20195665
10.3390/s20082171
10.3390/s20195699
10.3390/s22010395
10.3390/s20082351
10.1109/ACCESS.2019.2912956
10.3390/s22093106
10.1109/FG.2017.43
10.1007/s00521-020-05631-x
10.3390/s17020290
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23020804
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_0ee1a29256024c4c99f1603e8f9ba106
PMC9865656
36679598
10_3390_s23020804
Genre Journal Article
GrantInformation_xml – fundername: ITEA3
  grantid: N°19006
– fundername: Innovation Fund Denmark (IFD)
– fundername: German Federal Ministry of Education and Research (BMBF)
– fundername: ITEA3 Unleash Potentials in Simulation (UPSIM) project
  grantid: N°19006
– fundername: Austrian Research Promotion Agency (FFG)
– fundername: Rijksdienst voor Ondernemend Nederland (Rvo)
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-c0f3a6453753049ac27257fa7ddf85f1dbe6ae7e3a37bf8f8390328efb0aa0db3
IEDL.DBID BENPR
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000916180400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:50:55 EDT 2025
Tue Nov 04 02:06:41 EST 2025
Sun Nov 09 10:05:37 EST 2025
Tue Oct 07 07:12:49 EDT 2025
Wed Feb 19 02:26:16 EST 2025
Sat Nov 29 07:18:46 EST 2025
Tue Nov 18 19:58:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords artificial neural networks
radar
signal processing
meta-learning
respiration signal
vital sign sensing
FMCW
variational autoencoder
autocorrelation
few-shot learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-c0f3a6453753049ac27257fa7ddf85f1dbe6ae7e3a37bf8f8390328efb0aa0db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8259-3070
0000-0003-4322-834X
0000-0003-3204-1555
0000-0002-3294-8934
OpenAccessLink https://www.proquest.com/docview/2767292954?pq-origsite=%requestingapplication%
PMID 36679598
PQID 2767292954
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_0ee1a29256024c4c99f1603e8f9ba106
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9865656
proquest_miscellaneous_2768226885
proquest_journals_2767292954
pubmed_primary_36679598
crossref_citationtrail_10_3390_s23020804
crossref_primary_10_3390_s23020804
PublicationCentury 2000
PublicationDate 20230110
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 1
  year: 2023
  text: 20230110
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Loughlin (ref_3) 2018; 44
ref_14
Wu (ref_25) 2021; 9
ref_36
ref_12
ref_34
ref_33
ref_10
ref_32
Alizadeh (ref_31) 2019; 7
ref_30
Hinton (ref_42) 2008; 9
ref_19
ref_17
Hospedales (ref_29) 2021; 44
ref_39
ref_38
Liu (ref_16) 2019; 22
ref_37
Wang (ref_18) 2020; 8
Singh (ref_15) 2020; 21
Arsalan (ref_23) 2020; 4
ref_24
ref_45
ref_22
ref_44
ref_21
Saluja (ref_26) 2019; 4
ref_43
ref_20
ref_41
ref_40
ref_1
Gong (ref_35) 2021; 5
ref_2
ref_28
ref_27
ref_9
ref_8
Ambrosanio (ref_13) 2019; 20
Garbey (ref_11) 2007; 54
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_30
– ident: ref_32
  doi: 10.3390/s20102999
– ident: ref_4
  doi: 10.1371/journal.pone.0210875
– ident: ref_7
  doi: 10.3390/s17020341
– volume: 22
  start-page: 1629
  year: 2019
  ident: ref_16
  article-title: Wireless sensing for human activity: A survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2019.2934489
– ident: ref_5
– ident: ref_9
  doi: 10.1109/RISE.2017.8378141
– volume: 5
  start-page: 1
  year: 2021
  ident: ref_35
  article-title: RF Vital Sign Sensing Under Free Body Movement
  publication-title: Proc. Acm Interact. Mob. Wearable Ubiquitous Technol.
– ident: ref_39
  doi: 10.1145/3450439.3451870
– ident: ref_43
  doi: 10.1007/978-3-642-04898-2_327
– volume: 4
  start-page: 45
  year: 2019
  ident: ref_26
  article-title: A supervised machine learning algorithm for heart-rate detection using Doppler motion-sensing radar
  publication-title: IEEE J. Electromagn. Microw. Med. Biol.
  doi: 10.1109/JERM.2019.2923673
– ident: ref_40
– ident: ref_37
  doi: 10.1049/cp.2018.0978
– volume: 54
  start-page: 1418
  year: 2007
  ident: ref_11
  article-title: Contact-free measurement of cardiac pulse based on the analysis of thermal imagery
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.891930
– volume: 20
  start-page: 2064
  year: 2019
  ident: ref_13
  article-title: A multi-channel ultrasound system for non-contact heart rate monitoring
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2949435
– ident: ref_44
– ident: ref_21
– ident: ref_34
  doi: 10.3390/s21082732
– volume: 4
  start-page: 1
  year: 2020
  ident: ref_23
  article-title: Improved contactless heartbeat estimation in FMCW radar via Kalman filter tracking
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2020.2983706
– volume: 44
  start-page: 494
  year: 2018
  ident: ref_3
  article-title: Respiratory rate: The forgotten vital sign—Make it count!
  publication-title: Jt. Comm. J. Qual. Patient Saf.
– volume: 9
  start-page: 49614
  year: 2021
  ident: ref_25
  article-title: A non-contact vital signs detection in a multi-channel 77 GHz LFMCW radar system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3068480
– ident: ref_17
  doi: 10.1109/CCNC49033.2022.9700721
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_42
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref_33
  doi: 10.3390/rs11101237
– volume: 21
  start-page: 4061
  year: 2020
  ident: ref_15
  article-title: Multi-resident non-contact vital sign monitoring using radar: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3036039
– ident: ref_22
  doi: 10.1109/RADAR.2018.8378688
– ident: ref_36
  doi: 10.3390/s20226695
– ident: ref_14
  doi: 10.3390/s20051454
– volume: 8
  start-page: 1294
  year: 2020
  ident: ref_18
  article-title: ViMo: Multiperson vital sign monitoring using commodity millimeter-wave radio
  publication-title: IEEE Int. Things J.
  doi: 10.1109/JIOT.2020.3004046
– ident: ref_20
  doi: 10.1109/IMBioC52515.2022.9790275
– ident: ref_6
  doi: 10.3390/s18082414
– ident: ref_8
  doi: 10.3390/s20195665
– ident: ref_12
  doi: 10.3390/s20082171
– ident: ref_1
  doi: 10.3390/s20195699
– ident: ref_2
  doi: 10.3390/s22010395
– ident: ref_28
  doi: 10.3390/s20082351
– volume: 44
  start-page: 5149
  year: 2021
  ident: ref_29
  article-title: Meta-learning in neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_41
– volume: 7
  start-page: 54958
  year: 2019
  ident: ref_31
  article-title: Remote monitoring of human vital signs using mm-wave FMCW radar
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912956
– ident: ref_27
  doi: 10.3390/s22093106
– ident: ref_45
– ident: ref_19
– ident: ref_10
  doi: 10.1109/FG.2017.43
– ident: ref_38
  doi: 10.1007/s00521-020-05631-x
– ident: ref_24
  doi: 10.3390/s17020290
SSID ssj0023338
Score 2.4527905
Snippet Vital signs estimation provides valuable information about an individual’s overall health status. Gathering such information usually requires wearable devices...
Vital signs estimation provides valuable information about an individual's overall health status. Gathering such information usually requires wearable devices...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 804
SubjectTerms Algorithms
artificial neural networks
Corruption
FMCW
Heart Rate
Humans
meta-learning
Monitoring, Physiologic - methods
Privacy
Radar
Respiration
respiration signal
Respiratory Rate
Sensors
Signal Processing, Computer-Assisted
vital sign sensing
Vital Signs
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1K6KE9lPTbaVLc0kMvIpY_JPmYDV16CqXbQG5m9JVdKN6w67R_vzO21-yWQC-9WoORZyTmPVt-D-CTyr3yTkoiOc4IFuwS1ldaaKxs6VFqr21vNqGvrszNTf1tz-qLz4QN8sBD4s6zECTmNXfmvHSlq-vIzsjBxNqiHMS2CfXsyNRItQpiXoOOUEGk_nxLQJujyoPu04v0P4Qs_z4guddx5sfwbISK6cUwxefwKLQv4OmegOBLqOfht1gs1116TUtJXHi86_hfqPQ7etyIGbUon84YFy7TxeqWb7fgE-vt7Su4nn_5cflVjGYIwhGD7YTLYoGqrAriF4Tq0eWadltE7X00VZTeBoVBhwILbaOJBHxYKi9EmyFm3hav4ahdt-EtpJjbGisnc1fqkuCJRW1NpozL0EgXXQKfd0lq3KgUzoYVPxtiDJzPZspnAh-n0LtBHuOhoBlnegpgRev-AtW5Gevc_KvOCZzu6tSM22zb5FoROeBPlQl8mIZpg_BXD2zD-r6PIRCkjKkSeDOUdZpJoRR7rZsE9EHBD6Z6ONKulr0Id20UY-GT__Fs7-AJu9jzmx2ZncJRt7kPZ_DY_epW2837fmX_AXWr_Ms
  priority: 102
  providerName: Directory of Open Access Journals
Title Few-Shot User-Adaptable Radar-Based Breath Signal Sensing
URI https://www.ncbi.nlm.nih.gov/pubmed/36679598
https://www.proquest.com/docview/2767292954
https://www.proquest.com/docview/2768226885
https://pubmed.ncbi.nlm.nih.gov/PMC9865656
https://doaj.org/article/0ee1a29256024c4c99f1603e8f9ba106
Volume 23
WOSCitedRecordID wos000916180400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXQ5w4L0QWKqAOHCxNk_bOaEtagWHraotK5VT5GdbCSWl7cKN385MmoYtWnHh4oNtRZZnxv4-2_kG4B1PLLcmjpHkGMlIsItpmwsmVK4zq2JhhW6STYjxWM5mxaQ9cNu0zyr3a2KzUNva0Bn5WSI44kC6lfqw-s4oaxTdrrYpNI7gmJTKsh4cD4bjyWVHuVJkYDs9oRTJ_dkGAXeCGCk72IUasf7bEObfDyVv7Dyjh_875kfwoMWc4fnOSR7DHVc9gfs3lAifQjFyP9l0UW_DK_RJdm7Vaks_VYWXyqo1G-BeZ8MBAcxFOF3O6XNTevpezZ_B1Wj45eMn1mZVYAap8JaZyKeKZ3mKRAXpgTKJwLD1SljrZe5jqx1XTrhUpUJ76RFBkeae8zpSKrI6PYFeVVfuBYQq0YXKTZyYTGSIc7QSWkZcmkjJ2HgTwPv9LJemlRynzBffSqQeZJCyM0gAb7uuq53Oxm2dBmSqrgNJYzcV9XpetpFWRs7FCmcdoVySmcwUhadU2k76QiskwAGc7o1VtvG6Kf9YKoA3XTNGGl2fqMrV100fRFNcyjyA5zu_6EaSck5J22UA4sBjDoZ62FItF42adyE5geqX_x7WK7hHie7p8CeOTqG3XV-713DX_NguN-s-HImZaErZb0Og35wuYHnxa4h1k88Xk6-_AZ6REr4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwJsSKBAQSFyiJk5iOweEusCqq7arFdtK7Sn4ld2VULLsplT8KX4j47zooopbD1xjxxrF34y_ie35AN5QoqlWQYBJjuKeLdjlSR0zj4lYRloETDNZiU2w0YifnibjDfjV3oWxxyrbmFgFal0o-498lzCKPNDuSn1YfPesapTdXW0lNGpYHJifF5iyrd4PP-H8viVk8Pn4477XqAp4ClPB0lN-FgoaxSESdaTHQhGGsM0E0zrjcRZoaagwzIQiZDLjGTIIW3POZNIXwtcyxHFvwGaEYOc92BwPj8ZnXYoXYsZX1y8K8bXdFRJ8gpwsWlv1KnGAqxjt3wczL610g7v_2ze6B3caTu3u1U5wHzZM_gBuX6q0-BCSgbnwJrOidE_Q57w9LRalvTTmfhFaLL0-ruXa7VsCPXMn86kdbmKP9ufTR3ByLbY_hl5e5OYJuILIRMQqICpiEfI4KZjkPuXKFzxQmXLgXTurqWpKqltlj28pplYWAGkHAAded10XdR2Rqzr1LTS6Drb0d_WgWE7TJpKkvjGBwFlGqkoiFakkyaxUuOFZIgUm-A7stOBIm3i0Sv8gw4FXXTNGErs9JHJTnFd9kC1SzmMHtmscdpaElFpReu4AW0PomqnrLfl8VlUrTzi1ScPTf5v1Em7tHx8dpofD0cEz2CLoSvZHV-DvQK9cnpvncFP9KOer5YvG5Vz4et0I_g0-e2w1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiE48KYYChgEEpdV_NxdHxBqKBFRIYoIlcrJ7DOJVNkhcan4a_w6Zh3bNKji1gNX73o18nwz-413dgbgJY001SoMMchRnLiCXUTqlBEmUploETLNZN1sgo1G_Pg4G2_Br_YujEurbH1i7ah1qdw_8l7EKPJAdyrVs01axPhg8HbxnbgOUu6ktW2nsYbIofl5huHb6s3wAHX9KooG77-8-0CaDgNEYVhYERXYWNAkjZG0I1UWKmIIYSuY1panNtTSUGGYiUXMpOUW2YSrP2esDIQItIxx3Suwg5Q8QRvbGQ8_jb924V6M0d-6llGMr_VWSPYj5GfJxg5YNwq4iN3-naR5btcb3Pqfv9dtuNlwbX9_bRx3YMsUd-HGuQqM9yAbmDMymZWVf4S2SPa1WFTuMpn_WWixJH3c47Xfd8R65k_mU7fcxKX8F9P7cHQpsj-A7aIszEPwRSQzkaowUqh45HdSMMkDylUgeKis8uB1q-FcNaXWXcePkxxDLgeGvAODBy-6qYt1fZGLJvUdTLoJriR4_aBcTvPGw-SBMaFAjSOFjRKVqCyzroW44TaTAgN_D_ZaoOSNn1rlf1DiwfNuGD2MOzYShSlP6znIIinnqQe7a0x2ksSUumb13AO2gdYNUTdHivmsrmKeceqCiUf_FusZXEPY5h-Ho8PHcD1Cq3L_v8JgD7ar5al5AlfVj2q-Wj5trM-Hb5cN4N-k9HT1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Few-Shot+User-Adaptable+Radar-Based+Breath+Signal+Sensing&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mauro%2C+Gianfranco&rft.au=De+Carlos+Diez%2C+Maria&rft.au=Ott%2C+Julius&rft.au=Servadei%2C+Lorenzo&rft.date=2023-01-10&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft_id=info:doi/10.3390%2Fs23020804&rft_id=info%3Apmid%2F36679598&rft.externalDocID=PMC9865656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon