Coherent spin-exchange via a quantum mediator

Two electron spins occupying the outer dots in a linear array of three quantum dots experience a coherent superexchange interaction through the empty middle dot that acts as a quantum mediator. Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The mo...

Full description

Saved in:
Bibliographic Details
Published in:Nature nanotechnology Vol. 12; no. 1; pp. 26 - 30
Main Authors: Baart, Timothy Alexander, Fujita, Takafumi, Reichl, Christian, Wegscheider, Werner, Vandersypen, Lieven Mark Koenraad
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.01.2017
Nature Publishing Group
Subjects:
ISSN:1748-3387, 1748-3395, 1748-3395
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Two electron spins occupying the outer dots in a linear array of three quantum dots experience a coherent superexchange interaction through the empty middle dot that acts as a quantum mediator. Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling ‘on-chip’ is to use a quantum mediator, as has been demonstrated for superconducting qubits 1 , 2 and trapped ions 3 . For quantum dot arrays, which combine a high degree of tunability 4 with extremely long coherence times 5 , the experimental demonstration of the time evolution of coherent spin–spin coupling via an intermediary system remains an important outstanding goal 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 . Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout 26 , we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref.  27 ), high-temperature superconductors 28 and DNA 29 . The same superexchange concept can also be applied in cold atom experiments 30 .
AbstractList Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
Two electron spins occupying the outer dots in a linear array of three quantum dots experience a coherent superexchange interaction through the empty middle dot that acts as a quantum mediator. Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling ‘on-chip’ is to use a quantum mediator, as has been demonstrated for superconducting qubits 1 , 2 and trapped ions 3 . For quantum dot arrays, which combine a high degree of tunability 4 with extremely long coherence times 5 , the experimental demonstration of the time evolution of coherent spin–spin coupling via an intermediary system remains an important outstanding goal 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 . Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout 26 , we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref.  27 ), high-temperature superconductors 28 and DNA 29 . The same superexchange concept can also be applied in cold atom experiments 30 .
Author Vandersypen, Lieven Mark Koenraad
Fujita, Takafumi
Wegscheider, Werner
Baart, Timothy Alexander
Reichl, Christian
Author_xml – sequence: 1
  givenname: Timothy Alexander
  surname: Baart
  fullname: Baart, Timothy Alexander
  organization: QuTech and Kavli Institute of Nanoscience, TU Delft
– sequence: 2
  givenname: Takafumi
  surname: Fujita
  fullname: Fujita, Takafumi
  organization: QuTech and Kavli Institute of Nanoscience, TU Delft
– sequence: 3
  givenname: Christian
  surname: Reichl
  fullname: Reichl, Christian
  organization: Solid State Physics Laboratory, ETH Zürich
– sequence: 4
  givenname: Werner
  surname: Wegscheider
  fullname: Wegscheider, Werner
  organization: Solid State Physics Laboratory, ETH Zürich
– sequence: 5
  givenname: Lieven Mark Koenraad
  surname: Vandersypen
  fullname: Vandersypen, Lieven Mark Koenraad
  email: l.m.k.vandersypen@tudelft.nl
  organization: QuTech and Kavli Institute of Nanoscience, TU Delft
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27723732$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLAzEUhYNU7EO3LmXAjZtp85wkSym-oOBG10Mmk7FT2qRNZkT_vRlbixSF3k3u4juHm3OGoGedNQBcIjhGkIiJtcq6MYYoGyMhTsAAcSpSQiTr7XfB-2AYwgJChiWmZ6CPOceEEzwA6dTNjTe2ScK6tqn50HNl30zyXqtEJZtW2aZdJStT1qpx_hycVmoZzMXuHYHX-7uX6WM6e354mt7OUk0z2aQakrIscMYZZxoZDXHBmSi40BpLwzCUVUUyyDkxvMoUKmRBWEGZ1IaWJZJkBG62vmvvNq0JTb6qgzbLpbLGtSFHgstuGD0CZZJyyDJyBEqolASS7oDrA3ThWm_jnzvDTMTsMhipqx3VFjGifO3rlfKf-U-8ERhvAe1dCN5UewTBvOsv_-4v7_qLxiIK6IFA141qamcbr-rl_7LJVhaif6zP_zr3b8UXR1OsTg
CitedBy_id crossref_primary_10_1038_s41467_017_00534_3
crossref_primary_10_1103_PhysRevX_10_031006
crossref_primary_10_1103_PhysRevApplied_10_044058
crossref_primary_10_1038_s41534_017_0038_y
crossref_primary_10_1038_s41467_022_33453_z
crossref_primary_10_1088_1361_648X_aa8202
crossref_primary_10_1038_nature25769
crossref_primary_10_1038_s41586_019_1566_8
crossref_primary_10_1140_epjd_e2018_90297_1
crossref_primary_10_1103_PhysRevB_105_195305
crossref_primary_10_1002_qute_202100104
crossref_primary_10_1103_PhysRevX_8_011045
crossref_primary_10_1103_tfnf_b78h
crossref_primary_10_1088_1361_648X_aa7f86
crossref_primary_10_1016_j_chempr_2023_09_013
crossref_primary_10_1002_qute_202000005
crossref_primary_10_1103_PhysRevX_8_021058
crossref_primary_10_1103_r9pv_2prs
crossref_primary_10_1038_s41467_019_09194_x
crossref_primary_10_1093_nsr_nwy153
crossref_primary_10_1038_s41534_017_0024_4
crossref_primary_10_1002_qute_202100018
crossref_primary_10_1007_s11128_021_03133_w
crossref_primary_10_1103_PhysRevX_7_041019
crossref_primary_10_1103_PhysRevLett_126_017701
crossref_primary_10_1103_PhysRevX_8_041018
crossref_primary_10_1063_5_0055908
crossref_primary_10_1063_1_5052581
crossref_primary_10_1038_s41467_021_22416_5
crossref_primary_10_1038_s41557_025_01887_9
crossref_primary_10_1103_PhysRevApplied_21_014038
crossref_primary_10_1016_j_apsusc_2023_156518
crossref_primary_10_1038_s41534_018_0112_0
crossref_primary_10_1038_s41565_021_00846_y
crossref_primary_10_1021_jacs_7b11397
crossref_primary_10_1039_C7CP03872K
crossref_primary_10_1038_s41567_024_02694_8
crossref_primary_10_1109_MNANO_2019_2927782
Cites_doi 10.1038/nature06184
10.1103/PhysRevLett.114.226803
10.1038/nature11559
10.1016/S0031-8914(34)90023-9
10.1103/PhysRevLett.98.230503
10.1103/PhysRevLett.108.046807
10.1103/PhysRevB.81.161308
10.1038/35085542
10.1038/nphys544
10.1103/PhysRevB.92.235401
10.1038/nature15263
10.1103/PhysRevB.92.075302
10.1126/science.aaa3786
10.1103/RevModPhys.79.1217
10.1103/PhysRevB.74.041307
10.1038/nature01494
10.1126/science.1248402
10.1038/nnano.2007.110
10.1002/andp.201300124
10.1038/nature02693
10.1103/PhysRevLett.80.4245
10.1038/nnano.2013.67
10.1103/PhysRevA.57.120
10.1103/PhysRevB.90.045404
10.1103/PhysRevLett.110.146804
10.1038/nature06124
10.1103/PhysRevLett.112.176803
10.1103/PhysRevB.89.161402
10.1038/nnano.2013.7
10.1103/PhysRevLett.110.107601
10.1103/PhysRevB.86.035314
10.1103/PhysRevLett.111.060501
10.1038/nnano.2015.291
ContentType Journal Article
Copyright Springer Nature Limited 2016
Copyright Nature Publishing Group Jan 2017
Copyright_xml – notice: Springer Nature Limited 2016
– notice: Copyright Nature Publishing Group Jan 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/nnano.2016.188
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 30
ExternalDocumentID 4297382881
27723732
10_1038_nnano_2016_188
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c469t-c03ddb267575c1ec02b758b78cc29e5209ff360773e7f6a1b9b35b459ce4dd193
IEDL.DBID M7P
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392042400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-3387
1748-3395
IngestDate Thu Sep 04 18:28:43 EDT 2025
Tue Oct 07 09:18:03 EDT 2025
Wed Oct 01 13:20:47 EDT 2025
Sat Nov 29 14:59:59 EST 2025
Mon Jul 21 05:54:37 EDT 2025
Tue Nov 18 22:36:31 EST 2025
Sat Nov 29 03:11:27 EST 2025
Fri Feb 21 02:40:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-c03ddb267575c1ec02b758b78cc29e5209ff360773e7f6a1b9b35b459ce4dd193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://resolver.tudelft.nl/uuid:95712fc6-9fc1-4b3b-bed3-f665f72e5150
PMID 27723732
PQID 1856873260
PQPubID 546299
PageCount 5
ParticipantIDs proquest_miscellaneous_1879999954
proquest_miscellaneous_1859470563
proquest_miscellaneous_1834993039
proquest_journals_1856873260
pubmed_primary_27723732
crossref_primary_10_1038_nnano_2016_188
crossref_citationtrail_10_1038_nnano_2016_188
springer_journals_10_1038_nnano_2016_188
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Meinert (CR30) 2014; 344
Elzerman (CR26) 2004; 430
Busl (CR24) 2013; 8
Loss, DiVincenzo (CR31) 1998; 57
Shafiei, Nowack, Reichl, Wegscheider, Vandersypen (CR37) 2013; 110
Trifunovic, Pedrocchi, Loss (CR11) 2013; 3
Kramers (CR27) 1934; 1
Trauzettel, Bulaev, Loss, Burkard (CR15) 2007; 3
Leijnse, Flensberg (CR13) 2013; 111
Frey (CR16) 2012; 108
Viennot, Dartiailh, Cottet, Kontos (CR22) 2015; 349
Barthelemy, Vandersypen (CR32) 2013; 525
Dial (CR36) 2013; 110
Majer (CR1) 2007; 449
Veldhorst (CR5) 2015; 526
Mehl, Bluhm, DiVincenzo (CR17) 2014; 90
Sánchez, Gallego-Marcos, Platero (CR19) 2014; 89
Stano, Klinovaja, Braakman, Vandersypen, Loss (CR20) 2015; 92
Hanson, Kouwenhoven, Petta, Tarucha, Vandersypen (CR4) 2007; 79
Braakman, Barthelemy, Reichl, Wegscheider, Vandersypen (CR34) 2013; 8
Giese, Amaudrut, Köhler, Spormann, Wessely (CR29) 2001; 412
Srinivasa, Xu, Taylor (CR21) 2015; 114
Sillanpää, Park, Simmonds (CR2) 2007; 449
Trifunovic (CR10) 2012; 2
CR6
Hassler, Catelani, Bluhm (CR14) 2015; 92
Kim (CR28) 1998; 80
Barthel (CR33) 2010; 81
Schuetz (CR9) 2015; 5
Sánchez (CR25) 2014; 112
Baart (CR35) 2016; 11
Burkard, Imamoglu (CR7) 2006; 74
Friesen, Biswas, Hu, Lidar (CR12) 2007; 98
Schmidt-Kaler (CR3) 2003; 422
Lehmann, Gaita-Arino, Coronado, Loss (CR18) 2007; 2
Petersson (CR23) 2012; 490
Hu, Liu, Nori (CR8) 2012; 86
FR Braakman (BFnnano2016188_CR34) 2013; 8
S Mehl (BFnnano2016188_CR17) 2014; 90
F Schmidt-Kaler (BFnnano2016188_CR3) 2003; 422
X Hu (BFnnano2016188_CR8) 2012; 86
JJ Viennot (BFnnano2016188_CR22) 2015; 349
M Leijnse (BFnnano2016188_CR13) 2013; 111
M Busl (BFnnano2016188_CR24) 2013; 8
J Lehmann (BFnnano2016188_CR18) 2007; 2
P Barthelemy (BFnnano2016188_CR32) 2013; 525
J Majer (BFnnano2016188_CR1) 2007; 449
F Meinert (BFnnano2016188_CR30) 2014; 344
L Trifunovic (BFnnano2016188_CR10) 2012; 2
R Sánchez (BFnnano2016188_CR25) 2014; 112
B Trauzettel (BFnnano2016188_CR15) 2007; 3
KD Petersson (BFnnano2016188_CR23) 2012; 490
TA Baart (BFnnano2016188_CR35) 2016; 11
T Frey (BFnnano2016188_CR16) 2012; 108
M Veldhorst (BFnnano2016188_CR5) 2015; 526
M Shafiei (BFnnano2016188_CR37) 2013; 110
F Hassler (BFnnano2016188_CR14) 2015; 92
M Friesen (BFnnano2016188_CR12) 2007; 98
MA Sillanpää (BFnnano2016188_CR2) 2007; 449
B Giese (BFnnano2016188_CR29) 2001; 412
L Trifunovic (BFnnano2016188_CR11) 2013; 3
V Srinivasa (BFnnano2016188_CR21) 2015; 114
R Sánchez (BFnnano2016188_CR19) 2014; 89
BFnnano2016188_CR6
MJA Schuetz (BFnnano2016188_CR9) 2015; 5
R Hanson (BFnnano2016188_CR4) 2007; 79
P Stano (BFnnano2016188_CR20) 2015; 92
OE Dial (BFnnano2016188_CR36) 2013; 110
C Kim (BFnnano2016188_CR28) 1998; 80
G Burkard (BFnnano2016188_CR7) 2006; 74
JM Elzerman (BFnnano2016188_CR26) 2004; 430
D Loss (BFnnano2016188_CR31) 1998; 57
H Kramers (BFnnano2016188_CR27) 1934; 1
C Barthel (BFnnano2016188_CR33) 2010; 81
17677890 - Phys Rev Lett. 2007 Jun 8;98(23):230503
23624695 - Nat Nanotechnol. 2013 Jun;8(6):432-7
11460159 - Nature. 2001 Jul 19;412(6844):318-20
22400878 - Phys Rev Lett. 2012 Jan 27;108(4):046807
25167023 - Phys Rev Lett. 2013 Apr 5;110(14):146804
17898763 - Nature. 2007 Sep 27;449(7161):443-7
26206930 - Science. 2015 Jul 24;349(6246):408-11
15269762 - Nature. 2004 Jul 22;430(6998):431-5
23521296 - Phys Rev Lett. 2013 Mar 8;110(10):107601
18654290 - Nat Nanotechnol. 2007 May;2(5):312-7
23416792 - Nat Nanotechnol. 2013 Apr;8(4):261-5
26196638 - Phys Rev Lett. 2015 Jun 5;114(22):226803
23075988 - Nature. 2012 Oct 18;490(7420):380-3
26436453 - Nature. 2015 Oct 15;526(7573):410-4
24836266 - Phys Rev Lett. 2014 May 2;112(17):176803
26727201 - Nat Nanotechnol. 2016 Apr;11(4):330-4
23971543 - Phys Rev Lett. 2013 Aug 9;111(6):060501
12660777 - Nature. 2003 Mar 27;422(6930):408-11
24926015 - Science. 2014 Jun 13;344(6189):1259-62
17898762 - Nature. 2007 Sep 27;449(7161):438-42
References_xml – volume: 449
  start-page: 443
  year: 2007
  end-page: 447
  ident: CR1
  article-title: Coupling superconducting qubits via a cavity bus
  publication-title: Nature
  doi: 10.1038/nature06184
– volume: 114
  start-page: 226803
  year: 2015
  ident: CR21
  article-title: Tunable spin-qubit coupling mediated by a multielectron quantum dot
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.114.226803
– volume: 490
  start-page: 380
  year: 2012
  end-page: 383
  ident: CR23
  article-title: Circuit quantum electrodynamics with a spin qubit
  publication-title: Nature
  doi: 10.1038/nature11559
– volume: 1
  start-page: 182
  year: 1934
  end-page: 192
  ident: CR27
  article-title: L'interaction entre les atomes magnétogènes dans un cristal paramagnétique
  publication-title: Physica
  doi: 10.1016/S0031-8914(34)90023-9
– volume: 98
  start-page: 230503
  year: 2007
  ident: CR12
  article-title: Efficient multiqubit entanglement via a spin bus
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.98.230503
– volume: 3
  start-page: 041023
  year: 2013
  ident: CR11
  article-title: Long-distance entanglement of spin qubits via ferromagnet
  publication-title: Phys. Rev. X
– volume: 5
  start-page: 031031
  year: 2015
  ident: CR9
  article-title: Universal quantum transducers based on surface acoustic waves
  publication-title: Phys. Rev. X
– volume: 108
  start-page: 046807
  year: 2012
  ident: CR16
  article-title: Dipole coupling of a double quantum dot to a microwave resonator
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.108.046807
– volume: 81
  start-page: 161308
  year: 2010
  ident: CR33
  article-title: Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.161308
– ident: CR6
– volume: 412
  start-page: 318
  year: 2001
  end-page: 320
  ident: CR29
  article-title: Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling
  publication-title: Nature
  doi: 10.1038/35085542
– volume: 3
  start-page: 192
  year: 2007
  end-page: 196
  ident: CR15
  article-title: Spin qubits in graphene quantum dots
  publication-title: Nat. Phys.
  doi: 10.1038/nphys544
– volume: 92
  start-page: 235401
  year: 2015
  ident: CR14
  article-title: Exchange-interaction of two spin qubits mediated by a superconductor
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.235401
– volume: 526
  start-page: 410
  year: 2015
  end-page: 414
  ident: CR5
  article-title: A two-qubit logic gate in silicon
  publication-title: Nature
  doi: 10.1038/nature15263
– volume: 92
  start-page: 075302
  year: 2015
  ident: CR20
  article-title: Fast long-distance control of spin qubits by photon-assisted cotunneling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.075302
– volume: 349
  start-page: 408
  year: 2015
  end-page: 411
  ident: CR22
  article-title: Coherent coupling of a single spin to microwave cavity photons
  publication-title: Science
  doi: 10.1126/science.aaa3786
– volume: 79
  start-page: 1217
  year: 2007
  end-page: 1265
  ident: CR4
  article-title: Spins in few-electron quantum dots
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.1217
– volume: 74
  start-page: 041307
  year: 2006
  ident: CR7
  article-title: Ultra-long-distance interaction between spin qubits
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.041307
– volume: 422
  start-page: 408
  year: 2003
  end-page: 411
  ident: CR3
  article-title: Realization of the Cirac–Zoller controlled-NOT quantum gate
  publication-title: Nature
  doi: 10.1038/nature01494
– volume: 344
  start-page: 1259
  year: 2014
  end-page: 1262
  ident: CR30
  article-title: Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench
  publication-title: Science
  doi: 10.1126/science.1248402
– volume: 2
  start-page: 312
  year: 2007
  end-page: 317
  ident: CR18
  article-title: Spin qubits with electrically gated polyoxometalate molecules
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2007.110
– volume: 525
  start-page: 808
  year: 2013
  end-page: 826
  ident: CR32
  article-title: Quantum dot systems: a versatile platform for quantum simulations
  publication-title: Ann. Phys.
  doi: 10.1002/andp.201300124
– volume: 430
  start-page: 431
  year: 2004
  end-page: 435
  ident: CR26
  article-title: Single-shot read-out of an individual electron spin in a quantum dot
  publication-title: Nature
  doi: 10.1038/nature02693
– volume: 80
  start-page: 4245
  year: 1998
  ident: CR28
  article-title: Systematics of the photoemission spectral function of cuprates: insulators and hole- and electron-doped superconductors
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.80.4245
– volume: 8
  start-page: 432
  year: 2013
  end-page: 437
  ident: CR34
  article-title: Long-distance coherent coupling in a quantum dot array
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.67
– volume: 57
  start-page: 120
  year: 1998
  ident: CR31
  article-title: Quantum computation with quantum dots
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.120
– volume: 90
  start-page: 045404
  year: 2014
  ident: CR17
  article-title: Two-qubit couplings of singlet–triplet qubits mediated by one quantum state
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.045404
– volume: 110
  start-page: 146804
  year: 2013
  ident: CR36
  article-title: Charge noise spectroscopy using coherent exchange oscillations in a singlet–triplet qubit
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.110.146804
– volume: 449
  start-page: 438
  year: 2007
  end-page: 442
  ident: CR2
  article-title: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity
  publication-title: Nature
  doi: 10.1038/nature06124
– volume: 112
  start-page: 176803
  year: 2014
  ident: CR25
  article-title: Long-range spin transfer in triple quantum dots
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.112.176803
– volume: 89
  start-page: 161402
  year: 2014
  ident: CR19
  article-title: Superexchange blockade in triple quantum dots
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.161402
– volume: 8
  start-page: 261
  year: 2013
  end-page: 265
  ident: CR24
  article-title: Bipolar spin blockade and coherent state superpositions in a triple quantum dot
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.7
– volume: 110
  start-page: 107601
  year: 2013
  ident: CR37
  article-title: Resolving spin–orbit- and hyperfine-mediated electric dipole spin resonance in a quantum dot
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.110.107601
– volume: 86
  start-page: 035314
  year: 2012
  ident: CR8
  article-title: Strong coupling of a spin qubit to a superconducting stripline cavity
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.035314
– volume: 2
  start-page: 011006
  year: 2012
  ident: CR10
  article-title: Long-distance spin–spin coupling via floating gates
  publication-title: Phys. Rev. X
– volume: 111
  start-page: 060501
  year: 2013
  ident: CR13
  article-title: Coupling spin qubits via superconductors
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.111.060501
– volume: 11
  start-page: 330
  year: 2016
  end-page: 334
  ident: CR35
  article-title: Single-spin CCD
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2015.291
– volume: 8
  start-page: 432
  year: 2013
  ident: BFnnano2016188_CR34
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.67
– volume: 98
  start-page: 230503
  year: 2007
  ident: BFnnano2016188_CR12
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.98.230503
– volume: 11
  start-page: 330
  year: 2016
  ident: BFnnano2016188_CR35
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2015.291
– volume: 112
  start-page: 176803
  year: 2014
  ident: BFnnano2016188_CR25
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.112.176803
– volume: 5
  start-page: 031031
  year: 2015
  ident: BFnnano2016188_CR9
  publication-title: Phys. Rev. X
– volume: 89
  start-page: 161402
  year: 2014
  ident: BFnnano2016188_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.161402
– volume: 92
  start-page: 075302
  year: 2015
  ident: BFnnano2016188_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.075302
– volume: 430
  start-page: 431
  year: 2004
  ident: BFnnano2016188_CR26
  publication-title: Nature
  doi: 10.1038/nature02693
– volume: 526
  start-page: 410
  year: 2015
  ident: BFnnano2016188_CR5
  publication-title: Nature
  doi: 10.1038/nature15263
– volume: 449
  start-page: 443
  year: 2007
  ident: BFnnano2016188_CR1
  publication-title: Nature
  doi: 10.1038/nature06184
– volume: 90
  start-page: 045404
  year: 2014
  ident: BFnnano2016188_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.045404
– volume: 412
  start-page: 318
  year: 2001
  ident: BFnnano2016188_CR29
  publication-title: Nature
  doi: 10.1038/35085542
– volume: 344
  start-page: 1259
  year: 2014
  ident: BFnnano2016188_CR30
  publication-title: Science
  doi: 10.1126/science.1248402
– volume: 3
  start-page: 192
  year: 2007
  ident: BFnnano2016188_CR15
  publication-title: Nat. Phys.
  doi: 10.1038/nphys544
– volume: 449
  start-page: 438
  year: 2007
  ident: BFnnano2016188_CR2
  publication-title: Nature
  doi: 10.1038/nature06124
– volume: 111
  start-page: 060501
  year: 2013
  ident: BFnnano2016188_CR13
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.111.060501
– volume: 1
  start-page: 182
  year: 1934
  ident: BFnnano2016188_CR27
  publication-title: Physica
  doi: 10.1016/S0031-8914(34)90023-9
– volume: 110
  start-page: 107601
  year: 2013
  ident: BFnnano2016188_CR37
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.110.107601
– volume: 74
  start-page: 041307
  year: 2006
  ident: BFnnano2016188_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.041307
– volume: 86
  start-page: 035314
  year: 2012
  ident: BFnnano2016188_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.035314
– volume: 2
  start-page: 312
  year: 2007
  ident: BFnnano2016188_CR18
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2007.110
– volume: 114
  start-page: 226803
  year: 2015
  ident: BFnnano2016188_CR21
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.114.226803
– volume: 422
  start-page: 408
  year: 2003
  ident: BFnnano2016188_CR3
  publication-title: Nature
  doi: 10.1038/nature01494
– volume: 8
  start-page: 261
  year: 2013
  ident: BFnnano2016188_CR24
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.7
– volume: 110
  start-page: 146804
  year: 2013
  ident: BFnnano2016188_CR36
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.110.146804
– volume: 349
  start-page: 408
  year: 2015
  ident: BFnnano2016188_CR22
  publication-title: Science
  doi: 10.1126/science.aaa3786
– volume: 57
  start-page: 120
  year: 1998
  ident: BFnnano2016188_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.120
– volume: 2
  start-page: 011006
  year: 2012
  ident: BFnnano2016188_CR10
  publication-title: Phys. Rev. X
– volume: 92
  start-page: 235401
  year: 2015
  ident: BFnnano2016188_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.235401
– volume: 525
  start-page: 808
  year: 2013
  ident: BFnnano2016188_CR32
  publication-title: Ann. Phys.
  doi: 10.1002/andp.201300124
– volume: 490
  start-page: 380
  year: 2012
  ident: BFnnano2016188_CR23
  publication-title: Nature
  doi: 10.1038/nature11559
– volume: 81
  start-page: 161308
  year: 2010
  ident: BFnnano2016188_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.161308
– volume: 108
  start-page: 046807
  year: 2012
  ident: BFnnano2016188_CR16
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.108.046807
– volume: 79
  start-page: 1217
  year: 2007
  ident: BFnnano2016188_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.1217
– volume: 3
  start-page: 041023
  year: 2013
  ident: BFnnano2016188_CR11
  publication-title: Phys. Rev. X
– volume: 80
  start-page: 4245
  year: 1998
  ident: BFnnano2016188_CR28
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.80.4245
– ident: BFnnano2016188_CR6
– reference: 18654290 - Nat Nanotechnol. 2007 May;2(5):312-7
– reference: 15269762 - Nature. 2004 Jul 22;430(6998):431-5
– reference: 17898762 - Nature. 2007 Sep 27;449(7161):438-42
– reference: 23624695 - Nat Nanotechnol. 2013 Jun;8(6):432-7
– reference: 26436453 - Nature. 2015 Oct 15;526(7573):410-4
– reference: 24926015 - Science. 2014 Jun 13;344(6189):1259-62
– reference: 23521296 - Phys Rev Lett. 2013 Mar 8;110(10):107601
– reference: 17898763 - Nature. 2007 Sep 27;449(7161):443-7
– reference: 23416792 - Nat Nanotechnol. 2013 Apr;8(4):261-5
– reference: 25167023 - Phys Rev Lett. 2013 Apr 5;110(14):146804
– reference: 26196638 - Phys Rev Lett. 2015 Jun 5;114(22):226803
– reference: 12660777 - Nature. 2003 Mar 27;422(6930):408-11
– reference: 26727201 - Nat Nanotechnol. 2016 Apr;11(4):330-4
– reference: 11460159 - Nature. 2001 Jul 19;412(6844):318-20
– reference: 17677890 - Phys Rev Lett. 2007 Jun 8;98(23):230503
– reference: 24836266 - Phys Rev Lett. 2014 May 2;112(17):176803
– reference: 22400878 - Phys Rev Lett. 2012 Jan 27;108(4):046807
– reference: 26206930 - Science. 2015 Jul 24;349(6246):408-11
– reference: 23971543 - Phys Rev Lett. 2013 Aug 9;111(6):060501
– reference: 23075988 - Nature. 2012 Oct 18;490(7420):380-3
SSID ssj0052924
Score 2.5247862
Snippet Two electron spins occupying the outer dots in a linear array of three quantum dots experience a coherent superexchange interaction through the empty middle...
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26
SubjectTerms 142/126
639/766/483/2802
639/766/483/3926
639/766/483/481
639/925/927/481
Arrays
Coherence
Cold atoms
Computer simulation
Electron spin
Electrons
Evolution
High temperature
letter
Materials Science
Microarray Analysis - instrumentation
Microarray Analysis - methods
Nanotechnology
Nanotechnology and Microengineering
Quantum dots
Quantum Dots - chemistry
Qubits (quantum computing)
Simulation
Single electrons
Title Coherent spin-exchange via a quantum mediator
URI https://link.springer.com/article/10.1038/nnano.2016.188
https://www.ncbi.nlm.nih.gov/pubmed/27723732
https://www.proquest.com/docview/1856873260
https://www.proquest.com/docview/1834993039
https://www.proquest.com/docview/1859470563
https://www.proquest.com/docview/1879999954
Volume 12
WOSCitedRecordID wos000392042400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: P5Z
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: BENPR
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: M7P
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: M7S
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: 7X7
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: KB.
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQd4YHwNwkYVJCR48ZbYTs9-QmzahASqKr5U8RLZjiNVgrRb24k_n7OTlEqDviwPlqLcw_ni8935fPcDeG11bovMSma4F0wqWZHOGWScnPtKq8rVEbTv-yccjdRkosfdgduiu1bZ74lxo65mLpyRn5BdGSokZyN7N79kATUqZFc7CI0d2AtdEni8ujfud-KC6xbUFqViFIph37RRqJOmMU2o_cuHx3lEXdkwSjc8zRtZ0mh8LvZvy_ZDeNC5nen7dp08gju-eQz3N5oRPgEWKjVCr6Z0MZ82zP9ua4LT66lJTXq5ol-w-pXGShOK05_Ct4vzr2cfWAemwBxFwEvmMlFVllN8gIXLvcu4pVDBonKOax8uw9S1GGaIwmM9NLnVVhRWFtp5WVXk5h3AbjNr_HNIw90UY9BIacgGSqEk9xhxfOpMWrQJsF6apes6jQfAi59lzHgLVUbpl0H6JUk_gTdr-nnbY-O_lEe9lMtO1xblXxEn8Gr9mbQkpD5M42erQCMotCNzrbfRFFoiOYRiGw3q8BQygWft4lizzClQEcRHAm_71bLB5D_n82L7fA7hHg9eRDzxOYLd5dXKv4S77no5XVwNYAcnGEc1gL3T89H4M719PD0eRC2I4xcax8WPP2cxCys
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLRL0UN5tSoEggeDiNrGddXxAiFfVqsuKQ0G9BdtxpJXa7HYfbflT_EZmnM2yUmFvPZBr5jDOjMffZDzzAby0OrVZYiUz3Asmc1ninjOKcQT3pc5LVwXSvu9d1evlJyf66wr8anth6FplGxNDoC4Hjv6R7-G50skVgo3k3fCcEWsUVVdbCo3GLY78z0tM2cZvDz-hfV9xvv_5-OMBm7EKMIep4IS5RJSl5QiUVeZS7xJuETNblTvHtadbIVUlOolSwquqY1KrrciszLTzsixTGr6EIX9NCsSmVAT-sNtG_ozrhkRXyZxh6qfaIZEi36trU1OvYdrZTQPLy8IheA3ZXqvKhsNu_-7_9pnuwcYMVsfvm31wH1Z8_QDWF4YtPgRGnSg0iyoeD_s181dNz3N80Texic-n6GLTszh00kwGo0fw7Ub0fQyr9aD2WxDT3RtjlJHS4BmPhpbcq8BTVCXSKhsBa61XuNkkdSL0OC1CRV_kRbB2QdYu0NoRvJ7LD5sZIv-U3GmtWsxiybj4Y9IIXsxfYxSg0o6p_WBKMgJTV4QjeplMpqVCwCuWyShNTyYj2Gycca4yx0RMoB4RvGm9c0HJv65ne_l6nsPtg-Mv3aJ72Dt6Anc4Iabwd2sHViejqX8Kt9zFpD8ePQv7LIYfN-2xvwHSDGGf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VpUJwoOXREtpCkEBwMZvYzto-IIRaVlStVnsAVHEJtuNIK0F2u4_S_rX-uo6dZFmpsLceyDWjyM6MZ77xvABeGZWaLDGcaOoY4ZIXeOa0IBTBfaFkYcswtO_biej35empGqzBVVsL49MqW50YFHUxsv6OvIN2pSsFgo2kUzZpEYPD3ofxGfETpHyktR2nUYvIsbv8je7b9P3RIfL6NaW9T18OPpNmwgCx6BbOiE1YURiKoFlkNnU2oQbxsxHSWqqczxApS9ZNhGBOlF2dGmVYZnimrONFkfpGTKj-7wj8mE8nHGTfWyuQUVUP1BVcEnQDRdswkslOVenK1x2m3XdpmPiyZBBvoNwbEdpg-Hqb__Mv24IHDdyOP9bn4yGsueoR3F9qwvgYiK9Q8T2q4ul4WBF3UddCx-dDHev4bI6iN_8Vhwqb2WjyBL7eynq3Yb0aVe4pxD4nR2uhOddo-zmTnDoR5heVCTfCREBaTua26bDuB338zEOkn8k8cD73nM-R8xG8WdCP694i_6TcazmcNzpmmv9hbwQvF69RO_iQj67caO5pGLq0CFPUKppMcYFAmK2iEco_GY9gpxbMxZIpOmgM1xHB21ZSlxb51_08W72fF3AXBTU_Oeof78I96oFUuPTag_XZZO72YcOez4bTyfNw5GL4cdsCew1QhGqr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+spin-exchange+via+a+quantum+mediator&rft.jtitle=Nature+nanotechnology&rft.au=Baart%2C+Timothy+Alexander&rft.au=Fujita%2C+Takafumi&rft.au=Reichl%2C+Christian&rft.au=Wegscheider%2C+Werner&rft.date=2017-01-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=12&rft.issue=1&rft.spage=26&rft.epage=30&rft_id=info:doi/10.1038%2Fnnano.2016.188&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nnano_2016_188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon