Coherent spin-exchange via a quantum mediator
Two electron spins occupying the outer dots in a linear array of three quantum dots experience a coherent superexchange interaction through the empty middle dot that acts as a quantum mediator. Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The mo...
Saved in:
| Published in: | Nature nanotechnology Vol. 12; no. 1; pp. 26 - 30 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.01.2017
Nature Publishing Group |
| Subjects: | |
| ISSN: | 1748-3387, 1748-3395, 1748-3395 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Two electron spins occupying the outer dots in a linear array of three quantum dots experience a coherent superexchange interaction through the empty middle dot that acts as a quantum mediator.
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling ‘on-chip’ is to use a quantum mediator, as has been demonstrated for superconducting qubits
1
,
2
and trapped ions
3
. For quantum dot arrays, which combine a high degree of tunability
4
with extremely long coherence times
5
, the experimental demonstration of the time evolution of coherent spin–spin coupling via an intermediary system remains an important outstanding goal
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout
26
, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref.
27
), high-temperature superconductors
28
and DNA
29
. The same superexchange concept can also be applied in cold atom experiments
30
. |
|---|---|
| AbstractList | Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments. Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments. Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments. Two electron spins occupying the outer dots in a linear array of three quantum dots experience a coherent superexchange interaction through the empty middle dot that acts as a quantum mediator. Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling ‘on-chip’ is to use a quantum mediator, as has been demonstrated for superconducting qubits 1 , 2 and trapped ions 3 . For quantum dot arrays, which combine a high degree of tunability 4 with extremely long coherence times 5 , the experimental demonstration of the time evolution of coherent spin–spin coupling via an intermediary system remains an important outstanding goal 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 . Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout 26 , we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27 ), high-temperature superconductors 28 and DNA 29 . The same superexchange concept can also be applied in cold atom experiments 30 . |
| Author | Vandersypen, Lieven Mark Koenraad Fujita, Takafumi Wegscheider, Werner Baart, Timothy Alexander Reichl, Christian |
| Author_xml | – sequence: 1 givenname: Timothy Alexander surname: Baart fullname: Baart, Timothy Alexander organization: QuTech and Kavli Institute of Nanoscience, TU Delft – sequence: 2 givenname: Takafumi surname: Fujita fullname: Fujita, Takafumi organization: QuTech and Kavli Institute of Nanoscience, TU Delft – sequence: 3 givenname: Christian surname: Reichl fullname: Reichl, Christian organization: Solid State Physics Laboratory, ETH Zürich – sequence: 4 givenname: Werner surname: Wegscheider fullname: Wegscheider, Werner organization: Solid State Physics Laboratory, ETH Zürich – sequence: 5 givenname: Lieven Mark Koenraad surname: Vandersypen fullname: Vandersypen, Lieven Mark Koenraad email: l.m.k.vandersypen@tudelft.nl organization: QuTech and Kavli Institute of Nanoscience, TU Delft |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27723732$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtLAzEUhYNU7EO3LmXAjZtp85wkSym-oOBG10Mmk7FT2qRNZkT_vRlbixSF3k3u4juHm3OGoGedNQBcIjhGkIiJtcq6MYYoGyMhTsAAcSpSQiTr7XfB-2AYwgJChiWmZ6CPOceEEzwA6dTNjTe2ScK6tqn50HNl30zyXqtEJZtW2aZdJStT1qpx_hycVmoZzMXuHYHX-7uX6WM6e354mt7OUk0z2aQakrIscMYZZxoZDXHBmSi40BpLwzCUVUUyyDkxvMoUKmRBWEGZ1IaWJZJkBG62vmvvNq0JTb6qgzbLpbLGtSFHgstuGD0CZZJyyDJyBEqolASS7oDrA3ThWm_jnzvDTMTsMhipqx3VFjGifO3rlfKf-U-8ERhvAe1dCN5UewTBvOsv_-4v7_qLxiIK6IFA141qamcbr-rl_7LJVhaif6zP_zr3b8UXR1OsTg |
| CitedBy_id | crossref_primary_10_1038_s41467_017_00534_3 crossref_primary_10_1103_PhysRevX_10_031006 crossref_primary_10_1103_PhysRevApplied_10_044058 crossref_primary_10_1038_s41534_017_0038_y crossref_primary_10_1038_s41467_022_33453_z crossref_primary_10_1088_1361_648X_aa8202 crossref_primary_10_1038_nature25769 crossref_primary_10_1038_s41586_019_1566_8 crossref_primary_10_1140_epjd_e2018_90297_1 crossref_primary_10_1103_PhysRevB_105_195305 crossref_primary_10_1002_qute_202100104 crossref_primary_10_1103_PhysRevX_8_011045 crossref_primary_10_1103_tfnf_b78h crossref_primary_10_1088_1361_648X_aa7f86 crossref_primary_10_1016_j_chempr_2023_09_013 crossref_primary_10_1002_qute_202000005 crossref_primary_10_1103_PhysRevX_8_021058 crossref_primary_10_1103_r9pv_2prs crossref_primary_10_1038_s41467_019_09194_x crossref_primary_10_1093_nsr_nwy153 crossref_primary_10_1038_s41534_017_0024_4 crossref_primary_10_1002_qute_202100018 crossref_primary_10_1007_s11128_021_03133_w crossref_primary_10_1103_PhysRevX_7_041019 crossref_primary_10_1103_PhysRevLett_126_017701 crossref_primary_10_1103_PhysRevX_8_041018 crossref_primary_10_1063_5_0055908 crossref_primary_10_1063_1_5052581 crossref_primary_10_1038_s41467_021_22416_5 crossref_primary_10_1038_s41557_025_01887_9 crossref_primary_10_1103_PhysRevApplied_21_014038 crossref_primary_10_1016_j_apsusc_2023_156518 crossref_primary_10_1038_s41534_018_0112_0 crossref_primary_10_1038_s41565_021_00846_y crossref_primary_10_1021_jacs_7b11397 crossref_primary_10_1039_C7CP03872K crossref_primary_10_1038_s41567_024_02694_8 crossref_primary_10_1109_MNANO_2019_2927782 |
| Cites_doi | 10.1038/nature06184 10.1103/PhysRevLett.114.226803 10.1038/nature11559 10.1016/S0031-8914(34)90023-9 10.1103/PhysRevLett.98.230503 10.1103/PhysRevLett.108.046807 10.1103/PhysRevB.81.161308 10.1038/35085542 10.1038/nphys544 10.1103/PhysRevB.92.235401 10.1038/nature15263 10.1103/PhysRevB.92.075302 10.1126/science.aaa3786 10.1103/RevModPhys.79.1217 10.1103/PhysRevB.74.041307 10.1038/nature01494 10.1126/science.1248402 10.1038/nnano.2007.110 10.1002/andp.201300124 10.1038/nature02693 10.1103/PhysRevLett.80.4245 10.1038/nnano.2013.67 10.1103/PhysRevA.57.120 10.1103/PhysRevB.90.045404 10.1103/PhysRevLett.110.146804 10.1038/nature06124 10.1103/PhysRevLett.112.176803 10.1103/PhysRevB.89.161402 10.1038/nnano.2013.7 10.1103/PhysRevLett.110.107601 10.1103/PhysRevB.86.035314 10.1103/PhysRevLett.111.060501 10.1038/nnano.2015.291 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2016 Copyright Nature Publishing Group Jan 2017 |
| Copyright_xml | – notice: Springer Nature Limited 2016 – notice: Copyright Nature Publishing Group Jan 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
| DOI | 10.1038/nnano.2016.188 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic Solid State and Superconductivity Abstracts Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1748-3395 |
| EndPage | 30 |
| ExternalDocumentID | 4297382881 27723732 10_1038_nnano_2016_188 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ABFSG AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
| ID | FETCH-LOGICAL-c469t-c03ddb267575c1ec02b758b78cc29e5209ff360773e7f6a1b9b35b459ce4dd193 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392042400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1748-3387 1748-3395 |
| IngestDate | Thu Sep 04 18:28:43 EDT 2025 Tue Oct 07 09:18:03 EDT 2025 Wed Oct 01 13:20:47 EDT 2025 Sat Nov 29 14:59:59 EST 2025 Mon Jul 21 05:54:37 EDT 2025 Tue Nov 18 22:36:31 EST 2025 Sat Nov 29 03:11:27 EST 2025 Fri Feb 21 02:40:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-c03ddb267575c1ec02b758b78cc29e5209ff360773e7f6a1b9b35b459ce4dd193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://resolver.tudelft.nl/uuid:95712fc6-9fc1-4b3b-bed3-f665f72e5150 |
| PMID | 27723732 |
| PQID | 1856873260 |
| PQPubID | 546299 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1879999954 proquest_miscellaneous_1859470563 proquest_miscellaneous_1834993039 proquest_journals_1856873260 pubmed_primary_27723732 crossref_primary_10_1038_nnano_2016_188 crossref_citationtrail_10_1038_nnano_2016_188 springer_journals_10_1038_nnano_2016_188 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-01 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature nanotechnology |
| PublicationTitleAbbrev | Nature Nanotech |
| PublicationTitleAlternate | Nat Nanotechnol |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Meinert (CR30) 2014; 344 Elzerman (CR26) 2004; 430 Busl (CR24) 2013; 8 Loss, DiVincenzo (CR31) 1998; 57 Shafiei, Nowack, Reichl, Wegscheider, Vandersypen (CR37) 2013; 110 Trifunovic, Pedrocchi, Loss (CR11) 2013; 3 Kramers (CR27) 1934; 1 Trauzettel, Bulaev, Loss, Burkard (CR15) 2007; 3 Leijnse, Flensberg (CR13) 2013; 111 Frey (CR16) 2012; 108 Viennot, Dartiailh, Cottet, Kontos (CR22) 2015; 349 Barthelemy, Vandersypen (CR32) 2013; 525 Dial (CR36) 2013; 110 Majer (CR1) 2007; 449 Veldhorst (CR5) 2015; 526 Mehl, Bluhm, DiVincenzo (CR17) 2014; 90 Sánchez, Gallego-Marcos, Platero (CR19) 2014; 89 Stano, Klinovaja, Braakman, Vandersypen, Loss (CR20) 2015; 92 Hanson, Kouwenhoven, Petta, Tarucha, Vandersypen (CR4) 2007; 79 Braakman, Barthelemy, Reichl, Wegscheider, Vandersypen (CR34) 2013; 8 Giese, Amaudrut, Köhler, Spormann, Wessely (CR29) 2001; 412 Srinivasa, Xu, Taylor (CR21) 2015; 114 Sillanpää, Park, Simmonds (CR2) 2007; 449 Trifunovic (CR10) 2012; 2 CR6 Hassler, Catelani, Bluhm (CR14) 2015; 92 Kim (CR28) 1998; 80 Barthel (CR33) 2010; 81 Schuetz (CR9) 2015; 5 Sánchez (CR25) 2014; 112 Baart (CR35) 2016; 11 Burkard, Imamoglu (CR7) 2006; 74 Friesen, Biswas, Hu, Lidar (CR12) 2007; 98 Schmidt-Kaler (CR3) 2003; 422 Lehmann, Gaita-Arino, Coronado, Loss (CR18) 2007; 2 Petersson (CR23) 2012; 490 Hu, Liu, Nori (CR8) 2012; 86 FR Braakman (BFnnano2016188_CR34) 2013; 8 S Mehl (BFnnano2016188_CR17) 2014; 90 F Schmidt-Kaler (BFnnano2016188_CR3) 2003; 422 X Hu (BFnnano2016188_CR8) 2012; 86 JJ Viennot (BFnnano2016188_CR22) 2015; 349 M Leijnse (BFnnano2016188_CR13) 2013; 111 M Busl (BFnnano2016188_CR24) 2013; 8 J Lehmann (BFnnano2016188_CR18) 2007; 2 P Barthelemy (BFnnano2016188_CR32) 2013; 525 J Majer (BFnnano2016188_CR1) 2007; 449 F Meinert (BFnnano2016188_CR30) 2014; 344 L Trifunovic (BFnnano2016188_CR10) 2012; 2 R Sánchez (BFnnano2016188_CR25) 2014; 112 B Trauzettel (BFnnano2016188_CR15) 2007; 3 KD Petersson (BFnnano2016188_CR23) 2012; 490 TA Baart (BFnnano2016188_CR35) 2016; 11 T Frey (BFnnano2016188_CR16) 2012; 108 M Veldhorst (BFnnano2016188_CR5) 2015; 526 M Shafiei (BFnnano2016188_CR37) 2013; 110 F Hassler (BFnnano2016188_CR14) 2015; 92 M Friesen (BFnnano2016188_CR12) 2007; 98 MA Sillanpää (BFnnano2016188_CR2) 2007; 449 B Giese (BFnnano2016188_CR29) 2001; 412 L Trifunovic (BFnnano2016188_CR11) 2013; 3 V Srinivasa (BFnnano2016188_CR21) 2015; 114 R Sánchez (BFnnano2016188_CR19) 2014; 89 BFnnano2016188_CR6 MJA Schuetz (BFnnano2016188_CR9) 2015; 5 R Hanson (BFnnano2016188_CR4) 2007; 79 P Stano (BFnnano2016188_CR20) 2015; 92 OE Dial (BFnnano2016188_CR36) 2013; 110 C Kim (BFnnano2016188_CR28) 1998; 80 G Burkard (BFnnano2016188_CR7) 2006; 74 JM Elzerman (BFnnano2016188_CR26) 2004; 430 D Loss (BFnnano2016188_CR31) 1998; 57 H Kramers (BFnnano2016188_CR27) 1934; 1 C Barthel (BFnnano2016188_CR33) 2010; 81 17677890 - Phys Rev Lett. 2007 Jun 8;98(23):230503 23624695 - Nat Nanotechnol. 2013 Jun;8(6):432-7 11460159 - Nature. 2001 Jul 19;412(6844):318-20 22400878 - Phys Rev Lett. 2012 Jan 27;108(4):046807 25167023 - Phys Rev Lett. 2013 Apr 5;110(14):146804 17898763 - Nature. 2007 Sep 27;449(7161):443-7 26206930 - Science. 2015 Jul 24;349(6246):408-11 15269762 - Nature. 2004 Jul 22;430(6998):431-5 23521296 - Phys Rev Lett. 2013 Mar 8;110(10):107601 18654290 - Nat Nanotechnol. 2007 May;2(5):312-7 23416792 - Nat Nanotechnol. 2013 Apr;8(4):261-5 26196638 - Phys Rev Lett. 2015 Jun 5;114(22):226803 23075988 - Nature. 2012 Oct 18;490(7420):380-3 26436453 - Nature. 2015 Oct 15;526(7573):410-4 24836266 - Phys Rev Lett. 2014 May 2;112(17):176803 26727201 - Nat Nanotechnol. 2016 Apr;11(4):330-4 23971543 - Phys Rev Lett. 2013 Aug 9;111(6):060501 12660777 - Nature. 2003 Mar 27;422(6930):408-11 24926015 - Science. 2014 Jun 13;344(6189):1259-62 17898762 - Nature. 2007 Sep 27;449(7161):438-42 |
| References_xml | – volume: 449 start-page: 443 year: 2007 end-page: 447 ident: CR1 article-title: Coupling superconducting qubits via a cavity bus publication-title: Nature doi: 10.1038/nature06184 – volume: 114 start-page: 226803 year: 2015 ident: CR21 article-title: Tunable spin-qubit coupling mediated by a multielectron quantum dot publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.114.226803 – volume: 490 start-page: 380 year: 2012 end-page: 383 ident: CR23 article-title: Circuit quantum electrodynamics with a spin qubit publication-title: Nature doi: 10.1038/nature11559 – volume: 1 start-page: 182 year: 1934 end-page: 192 ident: CR27 article-title: L'interaction entre les atomes magnétogènes dans un cristal paramagnétique publication-title: Physica doi: 10.1016/S0031-8914(34)90023-9 – volume: 98 start-page: 230503 year: 2007 ident: CR12 article-title: Efficient multiqubit entanglement via a spin bus publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.98.230503 – volume: 3 start-page: 041023 year: 2013 ident: CR11 article-title: Long-distance entanglement of spin qubits via ferromagnet publication-title: Phys. Rev. X – volume: 5 start-page: 031031 year: 2015 ident: CR9 article-title: Universal quantum transducers based on surface acoustic waves publication-title: Phys. Rev. X – volume: 108 start-page: 046807 year: 2012 ident: CR16 article-title: Dipole coupling of a double quantum dot to a microwave resonator publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.108.046807 – volume: 81 start-page: 161308 year: 2010 ident: CR33 article-title: Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.161308 – ident: CR6 – volume: 412 start-page: 318 year: 2001 end-page: 320 ident: CR29 article-title: Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling publication-title: Nature doi: 10.1038/35085542 – volume: 3 start-page: 192 year: 2007 end-page: 196 ident: CR15 article-title: Spin qubits in graphene quantum dots publication-title: Nat. Phys. doi: 10.1038/nphys544 – volume: 92 start-page: 235401 year: 2015 ident: CR14 article-title: Exchange-interaction of two spin qubits mediated by a superconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.235401 – volume: 526 start-page: 410 year: 2015 end-page: 414 ident: CR5 article-title: A two-qubit logic gate in silicon publication-title: Nature doi: 10.1038/nature15263 – volume: 92 start-page: 075302 year: 2015 ident: CR20 article-title: Fast long-distance control of spin qubits by photon-assisted cotunneling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.075302 – volume: 349 start-page: 408 year: 2015 end-page: 411 ident: CR22 article-title: Coherent coupling of a single spin to microwave cavity photons publication-title: Science doi: 10.1126/science.aaa3786 – volume: 79 start-page: 1217 year: 2007 end-page: 1265 ident: CR4 article-title: Spins in few-electron quantum dots publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.79.1217 – volume: 74 start-page: 041307 year: 2006 ident: CR7 article-title: Ultra-long-distance interaction between spin qubits publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.041307 – volume: 422 start-page: 408 year: 2003 end-page: 411 ident: CR3 article-title: Realization of the Cirac–Zoller controlled-NOT quantum gate publication-title: Nature doi: 10.1038/nature01494 – volume: 344 start-page: 1259 year: 2014 end-page: 1262 ident: CR30 article-title: Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench publication-title: Science doi: 10.1126/science.1248402 – volume: 2 start-page: 312 year: 2007 end-page: 317 ident: CR18 article-title: Spin qubits with electrically gated polyoxometalate molecules publication-title: Nat. Nanotech. doi: 10.1038/nnano.2007.110 – volume: 525 start-page: 808 year: 2013 end-page: 826 ident: CR32 article-title: Quantum dot systems: a versatile platform for quantum simulations publication-title: Ann. Phys. doi: 10.1002/andp.201300124 – volume: 430 start-page: 431 year: 2004 end-page: 435 ident: CR26 article-title: Single-shot read-out of an individual electron spin in a quantum dot publication-title: Nature doi: 10.1038/nature02693 – volume: 80 start-page: 4245 year: 1998 ident: CR28 article-title: Systematics of the photoemission spectral function of cuprates: insulators and hole- and electron-doped superconductors publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.80.4245 – volume: 8 start-page: 432 year: 2013 end-page: 437 ident: CR34 article-title: Long-distance coherent coupling in a quantum dot array publication-title: Nat. Nanotech. doi: 10.1038/nnano.2013.67 – volume: 57 start-page: 120 year: 1998 ident: CR31 article-title: Quantum computation with quantum dots publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.57.120 – volume: 90 start-page: 045404 year: 2014 ident: CR17 article-title: Two-qubit couplings of singlet–triplet qubits mediated by one quantum state publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.045404 – volume: 110 start-page: 146804 year: 2013 ident: CR36 article-title: Charge noise spectroscopy using coherent exchange oscillations in a singlet–triplet qubit publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.110.146804 – volume: 449 start-page: 438 year: 2007 end-page: 442 ident: CR2 article-title: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity publication-title: Nature doi: 10.1038/nature06124 – volume: 112 start-page: 176803 year: 2014 ident: CR25 article-title: Long-range spin transfer in triple quantum dots publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.112.176803 – volume: 89 start-page: 161402 year: 2014 ident: CR19 article-title: Superexchange blockade in triple quantum dots publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.161402 – volume: 8 start-page: 261 year: 2013 end-page: 265 ident: CR24 article-title: Bipolar spin blockade and coherent state superpositions in a triple quantum dot publication-title: Nat. Nanotech. doi: 10.1038/nnano.2013.7 – volume: 110 start-page: 107601 year: 2013 ident: CR37 article-title: Resolving spin–orbit- and hyperfine-mediated electric dipole spin resonance in a quantum dot publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.110.107601 – volume: 86 start-page: 035314 year: 2012 ident: CR8 article-title: Strong coupling of a spin qubit to a superconducting stripline cavity publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.035314 – volume: 2 start-page: 011006 year: 2012 ident: CR10 article-title: Long-distance spin–spin coupling via floating gates publication-title: Phys. Rev. X – volume: 111 start-page: 060501 year: 2013 ident: CR13 article-title: Coupling spin qubits via superconductors publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.111.060501 – volume: 11 start-page: 330 year: 2016 end-page: 334 ident: CR35 article-title: Single-spin CCD publication-title: Nat. Nanotech. doi: 10.1038/nnano.2015.291 – volume: 8 start-page: 432 year: 2013 ident: BFnnano2016188_CR34 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2013.67 – volume: 98 start-page: 230503 year: 2007 ident: BFnnano2016188_CR12 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.98.230503 – volume: 11 start-page: 330 year: 2016 ident: BFnnano2016188_CR35 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2015.291 – volume: 112 start-page: 176803 year: 2014 ident: BFnnano2016188_CR25 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.112.176803 – volume: 5 start-page: 031031 year: 2015 ident: BFnnano2016188_CR9 publication-title: Phys. Rev. X – volume: 89 start-page: 161402 year: 2014 ident: BFnnano2016188_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.161402 – volume: 92 start-page: 075302 year: 2015 ident: BFnnano2016188_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.075302 – volume: 430 start-page: 431 year: 2004 ident: BFnnano2016188_CR26 publication-title: Nature doi: 10.1038/nature02693 – volume: 526 start-page: 410 year: 2015 ident: BFnnano2016188_CR5 publication-title: Nature doi: 10.1038/nature15263 – volume: 449 start-page: 443 year: 2007 ident: BFnnano2016188_CR1 publication-title: Nature doi: 10.1038/nature06184 – volume: 90 start-page: 045404 year: 2014 ident: BFnnano2016188_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.045404 – volume: 412 start-page: 318 year: 2001 ident: BFnnano2016188_CR29 publication-title: Nature doi: 10.1038/35085542 – volume: 344 start-page: 1259 year: 2014 ident: BFnnano2016188_CR30 publication-title: Science doi: 10.1126/science.1248402 – volume: 3 start-page: 192 year: 2007 ident: BFnnano2016188_CR15 publication-title: Nat. Phys. doi: 10.1038/nphys544 – volume: 449 start-page: 438 year: 2007 ident: BFnnano2016188_CR2 publication-title: Nature doi: 10.1038/nature06124 – volume: 111 start-page: 060501 year: 2013 ident: BFnnano2016188_CR13 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.111.060501 – volume: 1 start-page: 182 year: 1934 ident: BFnnano2016188_CR27 publication-title: Physica doi: 10.1016/S0031-8914(34)90023-9 – volume: 110 start-page: 107601 year: 2013 ident: BFnnano2016188_CR37 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.110.107601 – volume: 74 start-page: 041307 year: 2006 ident: BFnnano2016188_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.041307 – volume: 86 start-page: 035314 year: 2012 ident: BFnnano2016188_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.035314 – volume: 2 start-page: 312 year: 2007 ident: BFnnano2016188_CR18 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2007.110 – volume: 114 start-page: 226803 year: 2015 ident: BFnnano2016188_CR21 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.114.226803 – volume: 422 start-page: 408 year: 2003 ident: BFnnano2016188_CR3 publication-title: Nature doi: 10.1038/nature01494 – volume: 8 start-page: 261 year: 2013 ident: BFnnano2016188_CR24 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2013.7 – volume: 110 start-page: 146804 year: 2013 ident: BFnnano2016188_CR36 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.110.146804 – volume: 349 start-page: 408 year: 2015 ident: BFnnano2016188_CR22 publication-title: Science doi: 10.1126/science.aaa3786 – volume: 57 start-page: 120 year: 1998 ident: BFnnano2016188_CR31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.57.120 – volume: 2 start-page: 011006 year: 2012 ident: BFnnano2016188_CR10 publication-title: Phys. Rev. X – volume: 92 start-page: 235401 year: 2015 ident: BFnnano2016188_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.235401 – volume: 525 start-page: 808 year: 2013 ident: BFnnano2016188_CR32 publication-title: Ann. Phys. doi: 10.1002/andp.201300124 – volume: 490 start-page: 380 year: 2012 ident: BFnnano2016188_CR23 publication-title: Nature doi: 10.1038/nature11559 – volume: 81 start-page: 161308 year: 2010 ident: BFnnano2016188_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.161308 – volume: 108 start-page: 046807 year: 2012 ident: BFnnano2016188_CR16 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.108.046807 – volume: 79 start-page: 1217 year: 2007 ident: BFnnano2016188_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.79.1217 – volume: 3 start-page: 041023 year: 2013 ident: BFnnano2016188_CR11 publication-title: Phys. Rev. X – volume: 80 start-page: 4245 year: 1998 ident: BFnnano2016188_CR28 publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.80.4245 – ident: BFnnano2016188_CR6 – reference: 18654290 - Nat Nanotechnol. 2007 May;2(5):312-7 – reference: 15269762 - Nature. 2004 Jul 22;430(6998):431-5 – reference: 17898762 - Nature. 2007 Sep 27;449(7161):438-42 – reference: 23624695 - Nat Nanotechnol. 2013 Jun;8(6):432-7 – reference: 26436453 - Nature. 2015 Oct 15;526(7573):410-4 – reference: 24926015 - Science. 2014 Jun 13;344(6189):1259-62 – reference: 23521296 - Phys Rev Lett. 2013 Mar 8;110(10):107601 – reference: 17898763 - Nature. 2007 Sep 27;449(7161):443-7 – reference: 23416792 - Nat Nanotechnol. 2013 Apr;8(4):261-5 – reference: 25167023 - Phys Rev Lett. 2013 Apr 5;110(14):146804 – reference: 26196638 - Phys Rev Lett. 2015 Jun 5;114(22):226803 – reference: 12660777 - Nature. 2003 Mar 27;422(6930):408-11 – reference: 26727201 - Nat Nanotechnol. 2016 Apr;11(4):330-4 – reference: 11460159 - Nature. 2001 Jul 19;412(6844):318-20 – reference: 17677890 - Phys Rev Lett. 2007 Jun 8;98(23):230503 – reference: 24836266 - Phys Rev Lett. 2014 May 2;112(17):176803 – reference: 22400878 - Phys Rev Lett. 2012 Jan 27;108(4):046807 – reference: 26206930 - Science. 2015 Jul 24;349(6246):408-11 – reference: 23971543 - Phys Rev Lett. 2013 Aug 9;111(6):060501 – reference: 23075988 - Nature. 2012 Oct 18;490(7420):380-3 |
| SSID | ssj0052924 |
| Score | 2.5247862 |
| Snippet | Two electron spins occupying the outer dots in a linear array of three quantum dots experience a coherent superexchange interaction through the empty middle... Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 26 |
| SubjectTerms | 142/126 639/766/483/2802 639/766/483/3926 639/766/483/481 639/925/927/481 Arrays Coherence Cold atoms Computer simulation Electron spin Electrons Evolution High temperature letter Materials Science Microarray Analysis - instrumentation Microarray Analysis - methods Nanotechnology Nanotechnology and Microengineering Quantum dots Quantum Dots - chemistry Qubits (quantum computing) Simulation Single electrons |
| Title | Coherent spin-exchange via a quantum mediator |
| URI | https://link.springer.com/article/10.1038/nnano.2016.188 https://www.ncbi.nlm.nih.gov/pubmed/27723732 https://www.proquest.com/docview/1856873260 https://www.proquest.com/docview/1834993039 https://www.proquest.com/docview/1859470563 https://www.proquest.com/docview/1879999954 |
| Volume | 12 |
| WOSCitedRecordID | wos000392042400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: P5Z dateStart: 20061001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: BENPR dateStart: 20061001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: M7P dateStart: 20061001 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: M7S dateStart: 20061001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: 7X7 dateStart: 20061001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: KB. dateStart: 20061001 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQd4YHwNwkYVJCR48ZbYTs9-QmzahASqKr5U8RLZjiNVgrRb24k_n7OTlEqDviwPlqLcw_ni8935fPcDeG11bovMSma4F0wqWZHOGWScnPtKq8rVEbTv-yccjdRkosfdgduiu1bZ74lxo65mLpyRn5BdGSokZyN7N79kATUqZFc7CI0d2AtdEni8ujfud-KC6xbUFqViFIph37RRqJOmMU2o_cuHx3lEXdkwSjc8zRtZ0mh8LvZvy_ZDeNC5nen7dp08gju-eQz3N5oRPgEWKjVCr6Z0MZ82zP9ua4LT66lJTXq5ol-w-pXGShOK05_Ct4vzr2cfWAemwBxFwEvmMlFVllN8gIXLvcu4pVDBonKOax8uw9S1GGaIwmM9NLnVVhRWFtp5WVXk5h3AbjNr_HNIw90UY9BIacgGSqEk9xhxfOpMWrQJsF6apes6jQfAi59lzHgLVUbpl0H6JUk_gTdr-nnbY-O_lEe9lMtO1xblXxEn8Gr9mbQkpD5M42erQCMotCNzrbfRFFoiOYRiGw3q8BQygWft4lizzClQEcRHAm_71bLB5D_n82L7fA7hHg9eRDzxOYLd5dXKv4S77no5XVwNYAcnGEc1gL3T89H4M719PD0eRC2I4xcax8WPP2cxCys |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLRL0UN5tSoEggeDiNrGddXxAiFfVqsuKQ0G9BdtxpJXa7HYfbflT_EZmnM2yUmFvPZBr5jDOjMffZDzzAby0OrVZYiUz3Asmc1ninjOKcQT3pc5LVwXSvu9d1evlJyf66wr8anth6FplGxNDoC4Hjv6R7-G50skVgo3k3fCcEWsUVVdbCo3GLY78z0tM2cZvDz-hfV9xvv_5-OMBm7EKMIep4IS5RJSl5QiUVeZS7xJuETNblTvHtadbIVUlOolSwquqY1KrrciszLTzsixTGr6EIX9NCsSmVAT-sNtG_ozrhkRXyZxh6qfaIZEi36trU1OvYdrZTQPLy8IheA3ZXqvKhsNu_-7_9pnuwcYMVsfvm31wH1Z8_QDWF4YtPgRGnSg0iyoeD_s181dNz3N80Texic-n6GLTszh00kwGo0fw7Ub0fQyr9aD2WxDT3RtjlJHS4BmPhpbcq8BTVCXSKhsBa61XuNkkdSL0OC1CRV_kRbB2QdYu0NoRvJ7LD5sZIv-U3GmtWsxiybj4Y9IIXsxfYxSg0o6p_WBKMgJTV4QjeplMpqVCwCuWyShNTyYj2Gycca4yx0RMoB4RvGm9c0HJv65ne_l6nsPtg-Mv3aJ72Dt6Anc4Iabwd2sHViejqX8Kt9zFpD8ePQv7LIYfN-2xvwHSDGGf |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VpUJwoOXREtpCkEBwMZvYzto-IIRaVlStVnsAVHEJtuNIK0F2u4_S_rX-uo6dZFmpsLceyDWjyM6MZ77xvABeGZWaLDGcaOoY4ZIXeOa0IBTBfaFkYcswtO_biej35empGqzBVVsL49MqW50YFHUxsv6OvIN2pSsFgo2kUzZpEYPD3ofxGfETpHyktR2nUYvIsbv8je7b9P3RIfL6NaW9T18OPpNmwgCx6BbOiE1YURiKoFlkNnU2oQbxsxHSWqqczxApS9ZNhGBOlF2dGmVYZnimrONFkfpGTKj-7wj8mE8nHGTfWyuQUVUP1BVcEnQDRdswkslOVenK1x2m3XdpmPiyZBBvoNwbEdpg-Hqb__Mv24IHDdyOP9bn4yGsueoR3F9qwvgYiK9Q8T2q4ul4WBF3UddCx-dDHev4bI6iN_8Vhwqb2WjyBL7eynq3Yb0aVe4pxD4nR2uhOddo-zmTnDoR5heVCTfCREBaTua26bDuB338zEOkn8k8cD73nM-R8xG8WdCP694i_6TcazmcNzpmmv9hbwQvF69RO_iQj67caO5pGLq0CFPUKppMcYFAmK2iEco_GY9gpxbMxZIpOmgM1xHB21ZSlxb51_08W72fF3AXBTU_Oeof78I96oFUuPTag_XZZO72YcOez4bTyfNw5GL4cdsCew1QhGqr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherent+spin-exchange+via+a+quantum+mediator&rft.jtitle=Nature+nanotechnology&rft.au=Baart%2C+Timothy+Alexander&rft.au=Fujita%2C+Takafumi&rft.au=Reichl%2C+Christian&rft.au=Wegscheider%2C+Werner&rft.date=2017-01-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=12&rft.issue=1&rft.spage=26&rft.epage=30&rft_id=info:doi/10.1038%2Fnnano.2016.188&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nnano_2016_188 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |