Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnosis
Previously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk loci. We aimed to more completely incorporate HLA alleles, their interactions, and recently discovered non-HLA loci into an improved T1D GRS...
Uloženo v:
| Vydáno v: | Diabetes care Ročník 42; číslo 2; s. 200 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.02.2019
|
| Témata: | |
| ISSN: | 1935-5548, 1935-5548 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Previously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk loci. We aimed to more completely incorporate HLA alleles, their interactions, and recently discovered non-HLA loci into an improved T1D GRS (termed the "T1D GRS2") to better discriminate diabetes subtypes and to predict T1D in newborn screening studies.
In 6,481 case and 9,247 control subjects from the Type 1 Diabetes Genetics Consortium, we analyzed variants associated with T1D both in the HLA region and across the genome. We modeled interactions between variants marking strongly associated HLA haplotypes and generated odds ratios to create the improved GRS, the T1D GRS2. We validated our findings in UK Biobank. We assessed the impact of the T1D GRS2 in newborn screening and diabetes classification and sought to provide a framework for comparison with previous scores.
The T1D GRS2 used 67 single nucleotide polymorphisms (SNPs) and accounted for interactions between 18 HLA DR-DQ haplotype combinations. The T1D GRS2 was highly discriminative for all T1D (area under the curve [AUC] 0.92;
< 0.0001 vs. older scores) and even more discriminative for early-onset T1D (AUC 0.96). In simulated newborn screening, the T1D GRS2 was nearly twice as efficient as HLA genotyping alone and 50% better than current genetic scores in general population T1D prediction.
An improved T1D GRS, the T1D GRS2, is highly useful for classifying adult incident diabetes type and improving newborn screening. Given the cost-effectiveness of SNP genotyping, this approach has great clinical and research potential in T1D. |
|---|---|
| AbstractList | Previously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk loci. We aimed to more completely incorporate HLA alleles, their interactions, and recently discovered non-HLA loci into an improved T1D GRS (termed the "T1D GRS2") to better discriminate diabetes subtypes and to predict T1D in newborn screening studies.OBJECTIVEPreviously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk loci. We aimed to more completely incorporate HLA alleles, their interactions, and recently discovered non-HLA loci into an improved T1D GRS (termed the "T1D GRS2") to better discriminate diabetes subtypes and to predict T1D in newborn screening studies.In 6,481 case and 9,247 control subjects from the Type 1 Diabetes Genetics Consortium, we analyzed variants associated with T1D both in the HLA region and across the genome. We modeled interactions between variants marking strongly associated HLA haplotypes and generated odds ratios to create the improved GRS, the T1D GRS2. We validated our findings in UK Biobank. We assessed the impact of the T1D GRS2 in newborn screening and diabetes classification and sought to provide a framework for comparison with previous scores.RESEARCH DESIGN AND METHODSIn 6,481 case and 9,247 control subjects from the Type 1 Diabetes Genetics Consortium, we analyzed variants associated with T1D both in the HLA region and across the genome. We modeled interactions between variants marking strongly associated HLA haplotypes and generated odds ratios to create the improved GRS, the T1D GRS2. We validated our findings in UK Biobank. We assessed the impact of the T1D GRS2 in newborn screening and diabetes classification and sought to provide a framework for comparison with previous scores.The T1D GRS2 used 67 single nucleotide polymorphisms (SNPs) and accounted for interactions between 18 HLA DR-DQ haplotype combinations. The T1D GRS2 was highly discriminative for all T1D (area under the curve [AUC] 0.92; P < 0.0001 vs. older scores) and even more discriminative for early-onset T1D (AUC 0.96). In simulated newborn screening, the T1D GRS2 was nearly twice as efficient as HLA genotyping alone and 50% better than current genetic scores in general population T1D prediction.RESULTSThe T1D GRS2 used 67 single nucleotide polymorphisms (SNPs) and accounted for interactions between 18 HLA DR-DQ haplotype combinations. The T1D GRS2 was highly discriminative for all T1D (area under the curve [AUC] 0.92; P < 0.0001 vs. older scores) and even more discriminative for early-onset T1D (AUC 0.96). In simulated newborn screening, the T1D GRS2 was nearly twice as efficient as HLA genotyping alone and 50% better than current genetic scores in general population T1D prediction.An improved T1D GRS, the T1D GRS2, is highly useful for classifying adult incident diabetes type and improving newborn screening. Given the cost-effectiveness of SNP genotyping, this approach has great clinical and research potential in T1D.CONCLUSIONSAn improved T1D GRS, the T1D GRS2, is highly useful for classifying adult incident diabetes type and improving newborn screening. Given the cost-effectiveness of SNP genotyping, this approach has great clinical and research potential in T1D. Previously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk loci. We aimed to more completely incorporate HLA alleles, their interactions, and recently discovered non-HLA loci into an improved T1D GRS (termed the "T1D GRS2") to better discriminate diabetes subtypes and to predict T1D in newborn screening studies. In 6,481 case and 9,247 control subjects from the Type 1 Diabetes Genetics Consortium, we analyzed variants associated with T1D both in the HLA region and across the genome. We modeled interactions between variants marking strongly associated HLA haplotypes and generated odds ratios to create the improved GRS, the T1D GRS2. We validated our findings in UK Biobank. We assessed the impact of the T1D GRS2 in newborn screening and diabetes classification and sought to provide a framework for comparison with previous scores. The T1D GRS2 used 67 single nucleotide polymorphisms (SNPs) and accounted for interactions between 18 HLA DR-DQ haplotype combinations. The T1D GRS2 was highly discriminative for all T1D (area under the curve [AUC] 0.92; < 0.0001 vs. older scores) and even more discriminative for early-onset T1D (AUC 0.96). In simulated newborn screening, the T1D GRS2 was nearly twice as efficient as HLA genotyping alone and 50% better than current genetic scores in general population T1D prediction. An improved T1D GRS, the T1D GRS2, is highly useful for classifying adult incident diabetes type and improving newborn screening. Given the cost-effectiveness of SNP genotyping, this approach has great clinical and research potential in T1D. |
| Author | Sharp, Seth A Rich, Stephen S Weedon, Michael N Schneider, Darius A Tyrrell, Jess Harrison, James W Oram, Richard A Beaumont, Robin N Locke, Jonathan M Wood, Andrew R Jones, Samuel E Hagopian, William A |
| Author_xml | – sequence: 1 givenname: Seth A surname: Sharp fullname: Sharp, Seth A organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K – sequence: 2 givenname: Stephen S orcidid: 0000-0003-3872-7793 surname: Rich fullname: Rich, Stephen S organization: Center for Public Health Genomics, University of Virginia, Charlottesville, VA – sequence: 3 givenname: Andrew R surname: Wood fullname: Wood, Andrew R organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K – sequence: 4 givenname: Samuel E surname: Jones fullname: Jones, Samuel E organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K – sequence: 5 givenname: Robin N surname: Beaumont fullname: Beaumont, Robin N organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K – sequence: 6 givenname: James W surname: Harrison fullname: Harrison, James W organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K – sequence: 7 givenname: Darius A surname: Schneider fullname: Schneider, Darius A organization: Department of Medicine, University of Washington, Seattle, WA – sequence: 8 givenname: Jonathan M orcidid: 0000-0001-9516-5251 surname: Locke fullname: Locke, Jonathan M organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K – sequence: 9 givenname: Jess surname: Tyrrell fullname: Tyrrell, Jess organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K – sequence: 10 givenname: Michael N surname: Weedon fullname: Weedon, Michael N organization: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K – sequence: 11 givenname: William A surname: Hagopian fullname: Hagopian, William A email: r.oram@exeter.ac.uk, wah@uw.edu organization: Pacific Northwest Diabetes Research Institute, Seattle, WA r.oram@exeter.ac.uk wah@uw.edu – sequence: 12 givenname: Richard A orcidid: 0000-0003-3581-8980 surname: Oram fullname: Oram, Richard A email: r.oram@exeter.ac.uk, wah@uw.edu organization: Academic Renal Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30655379$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUMtOwzAQtFARfcCBH0A-cgnETpzYR9RCqVSBRNtz5NibypDYxU6Lyp3_JoUicdlZzYxmtDtEPessIHRJ4huaJPmtVoRHJOfsBA2ISFjEWMp7__Y-GobwGsdxmnJ-hvpJnDGW5GKAviawg9ptGrAtllbjRdtN6bX5lK1xFruqo_Gs2Xi3A42X-w1ggidGltBCwFOw0BqFX0x4wwvlPODKebwKgI3FT_BROm87wQNYY9c_FTOrjD70dSlr64IJ5-i0knWAiyOO0Orhfjl-jObP09n4bh6pNBNtVFagspiJVEqapKQUGfCScaIpURmlFWfABVBRaih1rLiCBHTFZJoqWQmV0xG6_s3trnnfQmiLxgQFdS0tuG0oKMlFIjKRHaxXR-u2bEAXG28a6ffF3-voN0Igcx8 |
| CitedBy_id | crossref_primary_10_1038_s41562_021_01110_y crossref_primary_10_1016_j_phrs_2023_106792 crossref_primary_10_1016_S1773_035X_19_30198_4 crossref_primary_10_1136_bmj_2023_075681 crossref_primary_10_1007_s00125_022_05703_8 crossref_primary_10_1146_annurev_genom_121120_125204 crossref_primary_10_1080_1744666X_2023_2281990 crossref_primary_10_1210_clinem_dgad456 crossref_primary_10_1002_ctd2_228 crossref_primary_10_1038_s41574_024_01045_0 crossref_primary_10_1007_s00125_024_06246_w crossref_primary_10_1136_bmjdrc_2024_004655 crossref_primary_10_1007_s00125_020_05152_1 crossref_primary_10_1007_s11892_020_01330_y crossref_primary_10_1007_s00125_022_05823_1 crossref_primary_10_1007_s11892_019_1169_7 crossref_primary_10_3389_fimmu_2020_574447 crossref_primary_10_1016_j_cmet_2019_11_017 crossref_primary_10_2337_dc20_2872 crossref_primary_10_1186_s12916_022_02723_4 crossref_primary_10_2337_db20_0995 crossref_primary_10_1111_dom_16501 crossref_primary_10_3389_fimmu_2022_886736 crossref_primary_10_1210_clinem_dgaf181 crossref_primary_10_1007_s11357_024_01107_1 crossref_primary_10_1093_jamiaopen_ooad006 crossref_primary_10_1093_nar_gkad373 crossref_primary_10_3390_endocrines4020033 crossref_primary_10_1371_journal_pone_0278759 crossref_primary_10_3390_jpm12040542 crossref_primary_10_3390_jcm14020383 crossref_primary_10_1016_j_ebiom_2025_105807 crossref_primary_10_1038_s41591_021_01549_6 crossref_primary_10_1111_dom_14419 crossref_primary_10_1093_clinchem_hvad080 crossref_primary_10_3390_cancers17142334 crossref_primary_10_1210_clinem_dgab056 crossref_primary_10_2139_ssrn_3796867 crossref_primary_10_1136_archdischild_2021_321864 crossref_primary_10_3389_fendo_2022_933965 crossref_primary_10_1016_j_xgen_2025_100854 crossref_primary_10_1038_s43587_024_00590_7 crossref_primary_10_2337_dbi20_0054 crossref_primary_10_2337_dc24_1251 crossref_primary_10_1007_s12687_023_00645_z crossref_primary_10_3389_fendo_2019_00845 crossref_primary_10_1016_j_gassur_2024_05_029 crossref_primary_10_1038_s41574_020_0355_7 crossref_primary_10_1097_RHU_0000000000002152 crossref_primary_10_7554_eLife_64716 crossref_primary_10_1007_s00125_024_06089_5 crossref_primary_10_2337_dci20_0022 crossref_primary_10_1111_pedi_13070 crossref_primary_10_1038_s41598_024_74730_9 crossref_primary_10_1016_S0140_6736_23_00223_4 crossref_primary_10_1093_rheumatology_keab394 crossref_primary_10_1007_s00125_025_06422_6 crossref_primary_10_1038_s42003_021_02594_0 crossref_primary_10_1016_j_diabres_2020_108582 crossref_primary_10_1016_S2213_8587_25_00120_2 crossref_primary_10_1007_s00125_020_05248_8 crossref_primary_10_1007_s00125_025_06408_4 crossref_primary_10_1016_j_gim_2023_100906 crossref_primary_10_1038_s41588_019_0379_x crossref_primary_10_1111_dme_70041 crossref_primary_10_2147_ITT_S417917 crossref_primary_10_1136_bmjdrc_2024_004174 crossref_primary_10_3390_ijms21051703 crossref_primary_10_1016_j_molmet_2024_101973 crossref_primary_10_2337_dc23_1815 crossref_primary_10_1080_15265161_2021_2013983 crossref_primary_10_1007_s00125_025_06434_2 crossref_primary_10_1038_s41598_021_94994_9 crossref_primary_10_1093_ije_dyz254 crossref_primary_10_1210_clinem_dgaf392 crossref_primary_10_2337_dc24_2886 crossref_primary_10_3389_fgene_2021_670844 crossref_primary_10_1038_s41467_024_44917_9 crossref_primary_10_1007_s00125_020_05181_w crossref_primary_10_3390_endocrines5040041 crossref_primary_10_1210_jendso_bvad123 crossref_primary_10_1016_j_gim_2024_101290 crossref_primary_10_1111_pedi_13410 crossref_primary_10_1210_clinem_dgaf267 crossref_primary_10_1093_bioadv_vbaf158 crossref_primary_10_3389_fimmu_2024_1457213 crossref_primary_10_1111_dme_15394 crossref_primary_10_1007_s00125_021_05575_4 crossref_primary_10_3389_fmed_2024_1479717 crossref_primary_10_1093_rheumatology_keac100 crossref_primary_10_1038_s43856_025_00922_7 crossref_primary_10_1210_clinem_dgab816 crossref_primary_10_1038_s41598_024_55313_0 crossref_primary_10_1186_s12916_025_04225_5 crossref_primary_10_3390_ijms21228685 crossref_primary_10_1007_s00125_023_05955_y crossref_primary_10_1210_er_2019_00088 crossref_primary_10_3390_genes13060972 crossref_primary_10_1016_j_cell_2025_02_018 crossref_primary_10_2196_70575 crossref_primary_10_1038_s41591_020_0930_4 crossref_primary_10_1111_dom_70124 crossref_primary_10_1038_s41574_022_00688_1 crossref_primary_10_2337_dci18_0039 crossref_primary_10_1038_s41574_019_0254_y crossref_primary_10_1159_000543035 crossref_primary_10_1126_science_abi4742 crossref_primary_10_1111_pedi_13310 crossref_primary_10_1016_j_heliyon_2025_e42156 crossref_primary_10_1210_endrev_bnab021 crossref_primary_10_1007_s00125_021_05513_4 crossref_primary_10_1136_bmjopen_2025_099537 crossref_primary_10_1111_dom_16402 crossref_primary_10_2337_dc22_0623 crossref_primary_10_2337_dc22_1833 crossref_primary_10_1038_s42003_023_05496_5 crossref_primary_10_1111_dme_15490 crossref_primary_10_1038_s41574_025_01128_6 crossref_primary_10_1038_s41588_021_00948_2 crossref_primary_10_1038_s41598_019_51258_x crossref_primary_10_1093_hmg_ddac245 crossref_primary_10_2337_dc25_0142 crossref_primary_10_1002_jso_28024 crossref_primary_10_1016_j_ajhg_2022_03_007 crossref_primary_10_1111_joim_13187 crossref_primary_10_1038_s41562_025_02200_x crossref_primary_10_1210_clinem_dgaf234 crossref_primary_10_1097_MED_0000000000000489 crossref_primary_10_2337_db24_0380 crossref_primary_10_2337_dci23_0036 crossref_primary_10_1038_s41597_023_02244_6 crossref_primary_10_1038_s41574_025_01132_w crossref_primary_10_3389_fnins_2023_1143496 crossref_primary_10_1038_s41588_024_01704_y crossref_primary_10_1093_jimmun_vkaf008 crossref_primary_10_1186_s13098_025_01776_8 crossref_primary_10_1210_clinem_dgab545 crossref_primary_10_3389_fimmu_2020_577677 crossref_primary_10_1016_j_molmet_2025_102218 crossref_primary_10_1111_pedi_13454 crossref_primary_10_1136_rmdopen_2025_005737 crossref_primary_10_1371_journal_pcbi_1009382 crossref_primary_10_1038_s41591_025_03730_7 crossref_primary_10_4103_ijem_ijem_78_23 crossref_primary_10_1038_s41588_021_00880_5 crossref_primary_10_1111_dom_16460 crossref_primary_10_3389_fendo_2022_914136 crossref_primary_10_1007_s41745_023_00356_x crossref_primary_10_7554_eLife_56029 crossref_primary_10_1038_s41591_025_03945_8 crossref_primary_10_1111_joim_13649 crossref_primary_10_1007_s11227_022_04380_z crossref_primary_10_1038_s41598_021_93346_x crossref_primary_10_1038_s42003_021_02368_8 crossref_primary_10_1007_s00125_025_06382_x crossref_primary_10_1007_s00125_022_05778_3 crossref_primary_10_3390_jpm12121945 crossref_primary_10_1007_s00439_024_02710_0 crossref_primary_10_1016_S2213_8587_22_00141_3 crossref_primary_10_1210_clinem_dgz198 crossref_primary_10_1111_jdi_14297 crossref_primary_10_1017_S0033291723001186 crossref_primary_10_2337_dc22_2159 crossref_primary_10_1016_j_semcdb_2021_08_008 crossref_primary_10_1093_bmb_ldab027 crossref_primary_10_1038_s42255_025_01372_0 crossref_primary_10_1016_S2213_8587_24_00239_0 crossref_primary_10_1016_S2352_4642_22_00350_9 crossref_primary_10_1007_s11892_020_01370_4 crossref_primary_10_1093_hmg_ddz187 crossref_primary_10_1007_s00251_022_01290_5 crossref_primary_10_3389_fnut_2021_600756 crossref_primary_10_1186_s12967_021_02778_6 crossref_primary_10_1016_j_molmet_2022_101565 crossref_primary_10_4239_wjd_v14_i6_656 crossref_primary_10_1038_s41467_023_38930_7 crossref_primary_10_1126_scitranslmed_abd5666 crossref_primary_10_3390_jcm14020418 crossref_primary_10_3389_fgene_2022_1000667 crossref_primary_10_1111_pedi_13122 crossref_primary_10_1210_clinem_dgae349 crossref_primary_10_1007_s00125_019_4942_x crossref_primary_10_1007_s00125_024_06338_7 crossref_primary_10_1007_s00125_025_06513_4 crossref_primary_10_1016_j_intimp_2025_114185 crossref_primary_10_1016_j_eprac_2024_09_116 crossref_primary_10_1038_s41467_025_59626_0 crossref_primary_10_1088_2057_1976_adbb71 crossref_primary_10_1136_medethics_2020_106588 crossref_primary_10_15252_emmm_201910316 crossref_primary_10_1007_s00125_024_06205_5 crossref_primary_10_2337_db24_0340 crossref_primary_10_1111_dme_14696 crossref_primary_10_3390_ijms26073249 crossref_primary_10_1016_S2213_8587_24_00103_7 crossref_primary_10_1007_s00125_022_05769_4 crossref_primary_10_2337_dc25_S002 crossref_primary_10_3389_fpsyt_2020_00539 crossref_primary_10_1210_clinem_dgad006 crossref_primary_10_1111_tan_14280 crossref_primary_10_2337_db19_0974 crossref_primary_10_1186_s13073_024_01305_8 crossref_primary_10_3390_biology11091308 crossref_primary_10_3389_fimmu_2025_1551552 crossref_primary_10_3389_fimmu_2022_972121 crossref_primary_10_1186_s12902_023_01478_0 crossref_primary_10_1111_dme_15419 crossref_primary_10_1111_dom_16354 crossref_primary_10_1111_jpc_70016 crossref_primary_10_2337_db24_0485 crossref_primary_10_1038_s41431_025_01850_9 crossref_primary_10_1007_s00125_025_06455_x crossref_primary_10_2337_ds24_0081 crossref_primary_10_1007_s00125_024_06204_6 crossref_primary_10_1089_dia_2024_0496 crossref_primary_10_1017_pcm_2023_12 crossref_primary_10_1136_annrheumdis_2020_217421 crossref_primary_10_1038_s41598_024_82278_x crossref_primary_10_1093_brain_awac092 crossref_primary_10_1146_annurev_med_050219_034524 crossref_primary_10_1038_s41588_020_00740_8 crossref_primary_10_1093_hmg_ddaa136 crossref_primary_10_2337_dc25_0192 crossref_primary_10_1038_s41588_021_00783_5 crossref_primary_10_1016_S2213_8587_22_00159_0 crossref_primary_10_1136_bmjsem_2024_002144 crossref_primary_10_3390_genes14050991 crossref_primary_10_36290_med_2024_036 crossref_primary_10_3390_microorganisms9071519 |
| ContentType | Journal Article |
| Copyright | 2019 by the American Diabetes Association. |
| Copyright_xml | – notice: 2019 by the American Diabetes Association. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.2337/dc18-1785 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1935-5548 |
| ExternalDocumentID | 30655379 |
| Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: P30 DK017047 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: WT097835MF – fundername: Medical Research Council grantid: MC_PC_15047 – fundername: NIDDK NIH HHS grantid: T32 DK007247 – fundername: NIDDK NIH HHS grantid: U01 DK063829 – fundername: NIDDK NIH HHS grantid: R01 DK096926 |
| GroupedDBID | --- -ET ..I .55 .GJ .XZ 08P 0R~ 18M 29F 2WC 3O- 4.4 41~ 53G 5GY 5RE 5RS 5VS 6PF 7RV 7X2 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKC AAKAS AAMNW AAQOH AAQQT AAWTL AAYEP AAYJJ ABOCM ABPPZ ABUWG ACGFO ACGOD ADBBV ADZCM AEGXH AENEX AERZD AFFNX AFKRA AFOSN AFRAH AHMBA AI. AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 AQUVI ATCPS AZQEC BAWUL BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BLC BNQBC BPHCQ BTFSW BVXVI C1A CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EBS ECM EDB EIF EJD EMOBN EX3 F5P FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HZ~ IAG IAO IEA IHR INH INR IOF IPO ITC J5H K9- KQ8 L7B M0K M0R M0T M1P M2O M2P M2Q M5~ N4W NAPCQ NPM O5R O5S O9- OK1 OVD P2P PCD PEA PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO Q2X RHI S0X SJFOW SV3 TDI TEORI TR2 TWZ UKHRP VH1 VVN W8F WH7 WHG WOQ WOW X7M YHG YOC ZCG ZGI ZXP ~KM 7X8 |
| ID | FETCH-LOGICAL-c469t-bfec60594aa2341b96e8b581d21c622f85e89e29bdebd0c8ce3edf5a44caf9c72 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 249 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457193000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1935-5548 |
| IngestDate | Thu Sep 04 19:30:36 EDT 2025 Mon Jul 21 05:35:58 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | 2019 by the American Diabetes Association. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-bfec60594aa2341b96e8b581d21c622f85e89e29bdebd0c8ce3edf5a44caf9c72 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0003-3581-8980 0000-0001-9516-5251 0000-0003-3872-7793 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6341291 |
| PMID | 30655379 |
| PQID | 2179396967 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2179396967 pubmed_primary_30655379 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Diabetes care |
| PublicationTitleAlternate | Diabetes Care |
| PublicationYear | 2019 |
| SSID | ssj0004488 |
| Score | 2.6661415 |
| Snippet | Previously generated genetic risk scores (GRSs) for type 1 diabetes (T1D) have not captured all known information at non-HLA loci or, particularly, at HLA risk... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 200 |
| SubjectTerms | Alleles Case-Control Studies Diabetes Mellitus, Type 1 - diagnosis Diabetes Mellitus, Type 1 - epidemiology Diabetes Mellitus, Type 1 - genetics Female Genetic Predisposition to Disease Genetic Testing - methods Genetic Testing - standards Haplotypes HLA Antigens - genetics Humans Incidence Infant, Newborn Male Neonatal Screening - methods Neonatal Screening - standards Polymorphism, Single Nucleotide Quality Improvement Reference Standards Research Design - standards Risk Factors United Kingdom |
| Title | Development and Standardization of an Improved Type 1 Diabetes Genetic Risk Score for Use in Newborn Screening and Incident Diagnosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30655379 https://www.proquest.com/docview/2179396967 |
| Volume | 42 |
| WOSCitedRecordID | wos000457193000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qinjx_VhfRPAabNOmSU4i4uJll8V1YW8lzQOK0K529R_4v520WdyLIHjpoaVpSScz30y-foPQjRQuUjJWhKWFJKmSlgglChIpiD-xEJmlpm02wUcjMZvJcSi4NYFWufSJraM2tfY18lvqLclLufC7-RvxXaP87mpoobGOeglAGU_p4rMVtfC07TsJGIURCJuiUxaiScJvjY4he-KC_Y4s2wgz2P3vu-2hnYAt8X1nDPtozVYHaGsYds8P0dcKQwiryuBJqCOEfzFx7eA07uoM1mCfo-IYB9JMg71ENQyNn8vmFU-8_iUGyIunjcVlhcFdgj1VcMFTeSAito8A_-Pbli78KJ7TVzZHaDp4fHl4IqENA9GQOy9I4azOvKyLUhRiXiEzKwoGOJfGOqPUCWaFtFQWxhYm0kLbxBrHVJpq5aTm9BhtVHVlTxGOdapgnRc84jp1ykjFdCQTjwOpgyf00fVygnMwc793oSpbfzT5zxT30Un3lfJ5p8eRQ9bDWMLl2R_uPkfbAHlkx7u-QD0Hi9xeok39uSib96vWfuA4Gg-_Aery0fY |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Standardization+of+an+Improved+Type+1+Diabetes+Genetic+Risk+Score+for+Use+in+Newborn+Screening+and+Incident+Diagnosis&rft.jtitle=Diabetes+care&rft.au=Sharp%2C+Seth+A&rft.au=Rich%2C+Stephen+S&rft.au=Wood%2C+Andrew+R&rft.au=Jones%2C+Samuel+E&rft.date=2019-02-01&rft.issn=1935-5548&rft.eissn=1935-5548&rft.volume=42&rft.issue=2&rft.spage=200&rft_id=info:doi/10.2337%2Fdc18-1785&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-5548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-5548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-5548&client=summon |