An Explainable Student Fatigue Monitoring Module with Joint Facial Representation
Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students’ fatigue to diminish its adverse effects on the health and academic performance of college studen...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 7; p. 3602 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
30.03.2023
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students’ fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial–temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student’s face and generates spatial–temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student’s status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training–testing setting. The results were significant for real-time monitoring of students’ fatigue states during online classes and could also provide practical strategies for in-person education. |
|---|---|
| AbstractList | Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students' fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial-temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student's face and generates spatial-temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student's status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training-testing setting. The results were significant for real-time monitoring of students' fatigue states during online classes and could also provide practical strategies for in-person education.Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students' fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial-temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student's face and generates spatial-temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student's status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training-testing setting. The results were significant for real-time monitoring of students' fatigue states during online classes and could also provide practical strategies for in-person education. Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students’ fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial–temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student’s face and generates spatial–temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student’s status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training–testing setting. The results were significant for real-time monitoring of students’ fatigue states during online classes and could also provide practical strategies for in-person education. |
| Audience | Academic |
| Author | Tian, Zhiqiang Lin, Yuping Lin, Jiaqin Li, Xiaomian |
| AuthorAffiliation | 2 Institute of Artificial Intelligence and Robotics, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; ljq0306@stu.xjtu.edu.cn 3 School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China; zhiqiangtian@xjtu.edu.cn 1 School of Foreign Studies, Xi’an Jiaotong University, Xi’an 710049, China; mianmianli@126.com |
| AuthorAffiliation_xml | – name: 1 School of Foreign Studies, Xi’an Jiaotong University, Xi’an 710049, China; mianmianli@126.com – name: 2 Institute of Artificial Intelligence and Robotics, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; ljq0306@stu.xjtu.edu.cn – name: 3 School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China; zhiqiangtian@xjtu.edu.cn |
| Author_xml | – sequence: 1 givenname: Xiaomian surname: Li fullname: Li, Xiaomian – sequence: 2 givenname: Jiaqin surname: Lin fullname: Lin, Jiaqin – sequence: 3 givenname: Zhiqiang orcidid: 0000-0002-3669-3748 surname: Tian fullname: Tian, Zhiqiang – sequence: 4 givenname: Yuping surname: Lin fullname: Lin, Yuping |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37050662$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdksluFDEQhi0URBY48AKoJS5wmOD27hMaRQkEBSG2s-WleuJRjz3Y3Sxvj5MJowT54FL5-3-7XHWMDlJOgNDzHp9SqvGbSiiWVGDyCB31jLCFIgQf3IsP0XGta4wJpVQ9QYdUYo6FIEfo8zJ157-3o43JuhG6r9McIE3dhZ3iaobuY05xyiWmVQvD3IhfcbruPuR4C_lox-4LbAvUpmqanJ6ix4MdKzy720_Q94vzb2fvF1ef3l2eLa8Wngk9LZyinnIQfLAtYQWTREogTmqOCSdcSiyUdFQMAaz2tA-EY3CsyRwPQdMTdLnzDdmuzbbEjS1_TLbR3CZyWRlbpuhHMKTnWAtKBHDNfOBOCS00B3BEea1c83q789rObgPBt1qKHR-YPjxJ8dqs8k_TY6x1r1lzeHXnUPKPGepkNrF6GEebIM_VEIWxIJzKvqEv_0PXeS6p_ZUhUmvJlCY31OmOWtlWQUxDbhf7tgJsom_9H2LLL2X7TKaYpE3w4n4N-8f_63UDXu8AX3KtBYY90mNzM0dmP0f0L4Sft4Y |
| Cites_doi | 10.1088/1757-899X/912/6/062066 10.1109/ACCESS.2020.3011028 10.1037/0033-2909.127.1.87 10.14479/jkoos.2021.26.1.73 10.1111/ppc.12765 10.3390/app12042224 10.1097/OPX.0b013e31812f5f51 10.1109/CVPR.2016.90 10.4103/ijo.IJO_2981_20 10.1145/1102351.1102418 10.1109/VECIMS.2011.6053857 10.1080/08964280903231979 10.1109/IFOST.2010.5667915 10.1109/IVS.2011.5940406 10.21449/ijate.788078 10.1589/jpts.28.1813 10.1109/WoSSPA.2013.6602353 10.7899/JCE-15-27 10.1589/jpts.28.1233 10.1016/S0142-1123(03)00051-3 10.1007/s00521-020-05209-7 10.1111/bjhp.12485 10.1620/tjem.231.37 10.1007/978-3-319-65217-7 10.1080/23267224.1899.10649736 10.3200/JACH.57.2.150-158 10.3390/s151229822 10.1016/S0140-6736(02)30453-7 10.1109/ICCV.2017.74 10.3390/su13084468 10.1038/s41467-022-32507-6 10.1002/j.2161-1882.2009.tb00109.x 10.1109/CVPR.2009.5206848 10.1034/j.1600-0420.2000.078001026.x 10.1007/978-3-319-54526-4_9 10.1016/j.jneuroling.2020.100941 10.4324/9780203995549 10.32398/cjhp.v5i2.1240 10.1007/978-3-319-46484-8_2 10.1111/aos.13885 10.1016/j.nut.2008.05.003 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s23073602 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Education |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_215096326e594cd5b869695eeb28c98b PMC10099194 A746948473 37050662 10_3390_s23073602 |
| Genre | Journal Article |
| GeographicLocations | United States China New Jersey Germany |
| GeographicLocations_xml | – name: China – name: Germany – name: United States – name: New Jersey |
| GrantInformation_xml | – fundername: Social Science Foundation of Shaanxi Province of China grantid: 2021K014, 2020K016, 2021K007 – fundername: Natural Science Basic Research Plan in Shaanxi Province of China grantid: 2022JM-324 – fundername: Natural Science Basic Research Plan of the Shaanxi Province of China grantid: 2022JM-324 – fundername: Shaanxi Province Key Research and Development Program grantid: 2022ZDLSF07-07 – fundername: Social Science Foundation of the Shaanxi Province of China grantid: 2021K014; 2020K016; 2021K007 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c469t-b83c35e65fac46a647277e2b79502525770687b36fdea9c31d250eb483cb5dd93 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970274500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 14:47:12 EDT 2025 Tue Nov 04 02:06:47 EST 2025 Sun Nov 09 13:35:28 EST 2025 Tue Oct 07 07:29:58 EDT 2025 Tue Nov 04 18:15:25 EST 2025 Wed Feb 19 02:24:20 EST 2025 Sat Nov 29 07:13:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | CNN joint facial representation online fatigue detection video-based online fatigue detection MPA |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-b83c35e65fac46a647277e2b79502525770687b36fdea9c31d250eb483cb5dd93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-3669-3748 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2799748921?pq-origsite=%requestingapplication% |
| PMID | 37050662 |
| PQID | 2799748921 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_215096326e594cd5b869695eeb28c98b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10099194 proquest_miscellaneous_2800625371 proquest_journals_2799748921 gale_infotracacademiconefile_A746948473 pubmed_primary_37050662 crossref_primary_10_3390_s23073602 |
| PublicationCentury | 2000 |
| PublicationDate | 20230330 |
| PublicationDateYYYYMMDD | 2023-03-30 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230330 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Wang (ref_22) 2018; 6 Compas (ref_9) 2001; 127 Habibi (ref_18) 2014; 5 ref_14 ref_58 (ref_47) 2010; 44 ref_56 ref_55 ref_54 Borsting (ref_27) 2007; 84 Dol (ref_19) 2016; 28 Choi (ref_21) 2018; 118 Kinge (ref_15) 2000; 78 ref_60 Tanaka (ref_48) 2009; 35 Kim (ref_25) 2021; 26 Kizhakkeveettil (ref_50) 2017; 31 Akshayaa (ref_28) 2019; 11 ref_29 Han (ref_17) 2013; 6 Tanaka (ref_49) 2008; 24 Naz (ref_53) 2019; 5 Lima (ref_51) 2022; 22 Li (ref_33) 2020; 8 Agarwal (ref_26) 2021; 69 Kratz (ref_62) 1899; 4 Kedor (ref_32) 2022; 13 ref_36 Dua (ref_45) 2021; 33 Fortea (ref_34) 2020; 56 ref_31 ref_30 Nitschke (ref_2) 2021; 26 ref_39 Huseyin (ref_24) 2020; 7 ref_38 ref_37 Narisawa (ref_12) 2013; 231 Poore (ref_61) 1875; 106 Labrague (ref_1) 2020; 57 Meiring (ref_52) 2015; 15 Jenkins (ref_13) 2009; 12 Kim (ref_20) 2016; 28 Vgontzas (ref_11) 2008; 57 Peper (ref_59) 2021; 257 Prestwich (ref_10) 2007; 5 ref_46 ref_44 ref_43 Schijve (ref_4) 2003; 25 Xu (ref_23) 2019; 97 ref_42 ref_41 ref_40 Rajeev (ref_16) 2006; 31 ref_3 Toney (ref_57) 2021; 48 ref_8 ref_5 ref_7 Priya (ref_35) 2020; 912 ref_6 |
| References_xml | – volume: 912 start-page: 062066 year: 2020 ident: ref_35 article-title: Visual Flow on Eye-Activity and Application of Learning Techniques for Visual Fatigue Analysis publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/912/6/062066 – ident: ref_5 – volume: 8 start-page: 139110 year: 2020 ident: ref_33 article-title: A review of face recognition technology publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011028 – ident: ref_55 – volume: 118 start-page: 1 year: 2018 ident: ref_21 article-title: Factors influencing on dry eye symptoms of university students using smartphone publication-title: Int. J. Pure Appl. Math. – volume: 127 start-page: 87 year: 2001 ident: ref_9 article-title: Coping with stress during childhood and adolescence: Problems, progress, and potential in theory and research publication-title: Psychol. Bull. doi: 10.1037/0033-2909.127.1.87 – volume: 26 start-page: 73 year: 2021 ident: ref_25 article-title: Management of eye and vision symptoms caused by online learning among college students during COVID-19 Pandemic publication-title: J. Korean Ophthalmic Opt. Soc. doi: 10.14479/jkoos.2021.26.1.73 – ident: ref_39 – volume: 57 start-page: 1905 year: 2020 ident: ref_1 article-title: Lockdown fatigue among college students during the COVID-19 pandemic: Predictive role of personal resilience, coping behaviors, and health publication-title: Perspect. Psychiatr. Care doi: 10.1111/ppc.12765 – ident: ref_36 doi: 10.3390/app12042224 – ident: ref_58 – ident: ref_8 – volume: 257 start-page: 1 year: 2021 ident: ref_59 article-title: Beyond Zoom fatigue: Re-energize yourself and improve learning publication-title: Acad. Lett. – volume: 84 start-page: 745 year: 2007 ident: ref_27 article-title: Measuring visual discomfort in college students publication-title: Optom. Vis. Sci. doi: 10.1097/OPX.0b013e31812f5f51 – ident: ref_38 doi: 10.1109/CVPR.2016.90 – volume: 69 start-page: 777 year: 2021 ident: ref_26 article-title: Increase in ocular problems during COVID-19 pandemic in school going children-a survey based study publication-title: Indian J. Ophthalmol. doi: 10.4103/ijo.IJO_2981_20 – ident: ref_40 doi: 10.1145/1102351.1102418 – volume: 6 start-page: 65 year: 2018 ident: ref_22 article-title: Association of electronic devices usage and visual fatigue in Chinese college students publication-title: Recent Adv. Ophthalmol. – ident: ref_44 doi: 10.1109/VECIMS.2011.6053857 – volume: 35 start-page: 87 year: 2009 ident: ref_48 article-title: Stress and coping styles are associated with severe fatigue in medical students publication-title: Behav. Med. doi: 10.1080/08964280903231979 – ident: ref_60 doi: 10.1109/IFOST.2010.5667915 – ident: ref_56 doi: 10.1109/IVS.2011.5940406 – volume: 31 start-page: 192 year: 2006 ident: ref_16 article-title: Visual fatigue and computer use among college students publication-title: Indian J. Comm. Med. – volume: 48 start-page: 10 year: 2021 ident: ref_57 article-title: Fighting Zoom fatigue: Keeping the zoombies at bay publication-title: Commun. Assoc. Inf. Syst. – volume: 7 start-page: 488 year: 2020 ident: ref_24 article-title: Investigation of the effect of online education on eye health in Covid-19 pandemic publication-title: Int. J. Assess. Tools Educ. doi: 10.21449/ijate.788078 – volume: 5 start-page: 841 year: 2014 ident: ref_18 article-title: Designing and validation a visual fatigue questionnaire for video display terminals operators publication-title: Int. J. Prev. Med. – volume: 28 start-page: 1813 year: 2016 ident: ref_20 article-title: Effects of yogic eye exercises on eye fatigue in undergraduate nursing students publication-title: J. Phys. Ther. Sci. doi: 10.1589/jpts.28.1813 – volume: 44 start-page: 1052 year: 2010 ident: ref_47 article-title: Fatigue among nursing undergraduate students publication-title: Rev. Esc. Enferm. USP – ident: ref_7 – ident: ref_30 – ident: ref_54 doi: 10.1109/WoSSPA.2013.6602353 – volume: 6 start-page: 718 year: 2013 ident: ref_17 article-title: Prevalence of asthenopia and its risk factors in Chinese college students publication-title: Int. J. Ophthalmol. – volume: 31 start-page: 8 year: 2017 ident: ref_50 article-title: Perceived stress and fatigue among students in a doctor of chiropractic training program publication-title: J. Chiropr. Educ. doi: 10.7899/JCE-15-27 – volume: 28 start-page: 1233 year: 2016 ident: ref_19 article-title: Fatigue and pain related to internet usage among university students publication-title: J. Phys. Ther. Sci. doi: 10.1589/jpts.28.1233 – volume: 25 start-page: 679 year: 2003 ident: ref_4 article-title: Fatigue of structures and materials in the 20th century and the state of the art publication-title: Int. J. Fatigue doi: 10.1016/S0142-1123(03)00051-3 – volume: 33 start-page: 3155 year: 2021 ident: ref_45 article-title: Deep CNN models-based ensemble approach to driver drowsiness detection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05209-7 – ident: ref_37 – volume: 26 start-page: 553 year: 2021 ident: ref_2 article-title: Resilience during uncertainty? Greater social connectedness during COVID-19 lockdown is associated with reduced distress and fatigue publication-title: Br. J. Health Psychol. doi: 10.1111/bjhp.12485 – volume: 231 start-page: 37 year: 2013 ident: ref_12 article-title: Anxiety and its related factors at bedtime are associated with difficulty in falling asleep publication-title: Tohoku J. Exp. Med. doi: 10.1620/tjem.231.37 – ident: ref_31 doi: 10.1007/978-3-319-65217-7 – volume: 4 start-page: 350 year: 1899 ident: ref_62 article-title: How May Fatigue in the Schoolroom Be Reduced to the Minimum? publication-title: Am. Phys. Educ. Rev. doi: 10.1080/23267224.1899.10649736 – volume: 57 start-page: 150 year: 2008 ident: ref_11 article-title: Sleep and behavioral correlates of napping among young adults: A survey of first-year university students in Madrid, Spain publication-title: J. Am. Coll. Health doi: 10.3200/JACH.57.2.150-158 – volume: 15 start-page: 30653 year: 2015 ident: ref_52 article-title: A review of intelligent driving style analysis systems and related artificial intelligence algorithms publication-title: Sensors doi: 10.3390/s151229822 – ident: ref_6 – volume: 106 start-page: 163 year: 1875 ident: ref_61 article-title: On Fatigue publication-title: Lancet doi: 10.1016/S0140-6736(02)30453-7 – ident: ref_46 doi: 10.1109/ICCV.2017.74 – ident: ref_14 doi: 10.3390/su13084468 – ident: ref_29 – volume: 13 start-page: 5104 year: 2022 ident: ref_32 article-title: A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity publication-title: Nat. Commun. doi: 10.1038/s41467-022-32507-6 – volume: 22 start-page: 1 year: 2022 ident: ref_51 article-title: Active methodologies association with online learning fatigue among medical students publication-title: BMC Med. Educ. – volume: 12 start-page: 113 year: 2009 ident: ref_13 article-title: Sleep habits and patterns of college students: An expanded study publication-title: J. Coll. Couns. doi: 10.1002/j.2161-1882.2009.tb00109.x – ident: ref_42 doi: 10.1109/CVPR.2009.5206848 – volume: 78 start-page: 26 year: 2000 ident: ref_15 article-title: The influence of near-work on development of myopia among university students. A three-year longitudinal study among engineering students in Norway publication-title: Acta Ophthalmol. Scand. doi: 10.1034/j.1600-0420.2000.078001026.x – ident: ref_41 doi: 10.1007/978-3-319-54526-4_9 – volume: 5 start-page: 1 year: 2019 ident: ref_53 article-title: Driver fatigue detection using mean intensity, SVM, and SIFT publication-title: Int. J. Interact. Multimed. Artif. Intell. – volume: 11 start-page: 1369 year: 2019 ident: ref_28 article-title: Awareness of chronic fatigue syndrome among the college students–A survey publication-title: Drug Invent. Today – volume: 56 start-page: 100941 year: 2020 ident: ref_34 article-title: Challenges and insights for the visual system: Are face and word recognition two sides of the same coin? publication-title: J. Neurolinguist. doi: 10.1016/j.jneuroling.2020.100941 – ident: ref_3 doi: 10.4324/9780203995549 – volume: 5 start-page: 148 year: 2007 ident: ref_10 article-title: Tracking sleep times to reduce tiredness and improve sleep in college students publication-title: Californian J. Health Promot. doi: 10.32398/cjhp.v5i2.1240 – ident: ref_43 doi: 10.1007/978-3-319-46484-8_2 – volume: 97 start-page: e442 year: 2019 ident: ref_23 article-title: Correlation between handheld digital device use and asthenopia in Chinese college students: A Shanghai study publication-title: Acta Ophthalmol. doi: 10.1111/aos.13885 – volume: 24 start-page: 985 year: 2008 ident: ref_49 article-title: Relationships between dietary habits and the prevalence of fatigue in medical students publication-title: Nutrition doi: 10.1016/j.nut.2008.05.003 |
| SSID | ssj0023338 |
| Score | 2.3906188 |
| Snippet | Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 3602 |
| SubjectTerms | 20th century Academic achievement Academic Performance Benchmarking Chronic fatigue syndrome Classification CNN College students Coronaviruses COVID-19 Deep learning Education Health aspects Humans joint facial representation Machine learning Medical research Metal fatigue Mouth MPA Myopia Neural networks Observational studies online fatigue detection Pandemics Questionnaires Research methodology Students Surveys and Questionnaires video-based online fatigue detection |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hxAEOFbRAw6NKERKniCS2Y_u4IFYVQqjlIXGzYmeW7iWL2N3-fmYS72pXPfTSW5RMInsmk5nPmfkMcF76URkKrTM0MmSSQljmvSLUGvKiRqstYtcofKfv783Li_25stUX14T19MC94i4pJFGWTUkGKitDo7ypbGUVEiI0wRrPX99c2wWYilBLEPLqeYQEgfrLKZc7iyqunSyiT0fS__eneCUWrddJrgSe4S58ihljOuhHugcb2H6GnRUewS_wa9CmXEwXO6HSx56wMh2S2l_nmPaOy7J02MxJgpdf09vJuBPiVfP0oSuJjZ1I7T48D2-ern9kca-ELBDAnWXeiCAUVmpU04maSeG1xtJrqyirIb_UeWW0F9WowdoGUTSU-6CXdJtXTWPFAWy2kxa_QirRWEmRu6k8oS2lyJoyR53XXtETyzKBs4UO3VtPieEISrCi3VLRCVyxdpcCzGLdnSDbumhb9y_bJnDBtnHsa2SAUMeWARons1a5gaa5S4qvIoGThflcdMKpK7W1TK5TFgl8X14m9-F_InWLkznJGO4iVUKTzGFv7eWYhc4VE-QnYNbeg7VJrV9px787iu6CM-_CyqP_oYZj2OZN7rtOyPwENmfvczyFrfBnNp6-f-te_A-EuAcJ priority: 102 providerName: Directory of Open Access Journals |
| Title | An Explainable Student Fatigue Monitoring Module with Joint Facial Representation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37050662 https://www.proquest.com/docview/2799748921 https://www.proquest.com/docview/2800625371 https://pubmed.ncbi.nlm.nih.gov/PMC10099194 https://doaj.org/article/215096326e594cd5b869695eeb28c98b |
| Volume | 23 |
| WOSCitedRecordID | wos000970274500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc4sLC8wi5VQEicoiZxHNsn1F21AsRWZQGpnKLYcZdekqUPjvx2Zhw32wqJE5coSiaRrfE8PfMZ4E2qF6lJhIiszEyUoQmLtOYYtZo4Ka0SylrXKPxJTKdyPlcz3x699mWVO53oFHWL9kx126iEh1VjKGM-TIVShJuSJu9ufkZ0hhTttfoDNY6gT8BbcQ_6sw-Xs-9dAMYwHmvRhRiG-sM1FUGz3GdUdjbJQff_raD3LNRh9eSeOZoc_9-JPIQH3i0NR-06egR3bH1CJzr76o8TuL8HXPgYPo_qkKr3fOtV-KVFyAwnSH29tWGrKYgWb6stUlC-N_zYLB0RpenDK1eD61uf6ifwbTL-evE-8oczRAYj6k2kJTOM25wvSnxQEgq9EDbVQnF0o1ARiDiXQrN8UdlSGZZU6GxZneFnmleVYk-hVze1fQ5hZqXK0FWoco3hHee4fLLYirjUHP-YpgG83rGnuGkxOAqMXYiHRcfDAM6JcR0BwWa7B83quvBSWKB_gyEbeqyWq8xUXMtc5Ypbq1NplNQBvCW2FyTcyFtT-h4FHCfBZBUjgXPP0KCzAM523C281K-LW2YG8Kp7jfJKmzBlbZst0khqW-VMIM2zdiF1Y2Yi5oTIH4A8WGIHkzp8Uy9_OEzwhFz9RGUv_j2uU7iXohy4psr4DHqb1da-hLvm12a5Xg3gSMyFu8oB9M_H09nVwCUp8Hr5ezzw8vQHPOgsTA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTogUd5NFAgIBCnqIkdx_EBoeWx6tLtaoFWKqcQO96yl6TsA8Sf4jcykzhhV0jceuAWJbORnf08D3vmG4BnTE-ZiaQMbBqbIEYTFmgtMGo1YZRbJZW1daHwSI7H6dmZmmzBr7YWhtIqW51YK-qiMrRHfsCkUsSUwqJXF98C6hpFp6ttC40GFkf25w8M2RYvh2_x_33O2ODdyZvDwHUVCAyGgstAp9xwYRMxzfFGTvTpUlqmpRJo_xHBMkxSqXkyLWyuDI8K9BKsjvFnWhQFkS-hyt-OEexhD7Ynw-PJ5y7E4xjxNfxFnKvwYEFp1jxxezat1aubA_xtAtZs4GZ-5prBG9z43z7VTbjuXGu_36yFW7Bly13qSu0yWHZhZ4188TZ86Jc-ZSC68jH_U8Py6Q9Q-nxl_UbbkSxeFiuUoD1r_301q4XoqMH_WOcRu_Kt8g6cXsr87kKvrEq7B35sUxWju1MkGkNUIXAJxKGVYa4FvpExD562AMguGh6RDOMvQknWocSD1wSNToCov-sb1fw8c5okQx8Nw070uq1QsSmEThOVKGGtZqlRqfbgBQErIwWF6DG5q7PAcRLVV9aXOPcYnRLuwX6Ln8xprkX2BzwePOkeo86hg6S8tNUKZVIqvRVcosy9BqrdmLkMBXUV8CDdAPHGpDaflLOvNa95ROFKpOL7_x7XY7h6eHI8ykbD8dEDuMZw1dVFouE-9JbzlX0IV8z35Wwxf-RWpw9fLhvlvwG7dncK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4TgwKM8GigQEIhTtIkdx_YBoS3titJqtRSQegux4233kpR9gPhr_DpmEmfZFRK3HrhFyWxkZz_PzGfPA-AlMxNmEykjp1IbpWjCImMEslYbJ4XTUjvXJAqfyNFInZ3p8Rb86nJhKKyy04mNoi5rS3vkfSa1pkopLOlPfFjE-GD49vJbRB2k6KS1a6fRQuTY_fyB9G3-5ugA_-tXjA0PP797H_kOA5FFWriIjOKWC5eJSYE3CiqlLqVjRmqBvgCiWcaZkoZnk9IV2vKkRI_BmRR_ZkRZUiEmVP_bkiPp6cH2_uFofLqiexzZX1vLiHMd9-cUcs0zv3_TWcCmUcDf5mDNHm7Gaq4Zv-Ht__mz3YFb3uUOB-0auQtbrtqhbtU-smUHbq4VZbwHHwdVSJGJPq0s_NRW_wyHKH2-dGGrBUkWL8slStBedvihnjZCdAQRnjbxxT6tq7oPX65kfg-gV9WV24UwdUqn6AaVmUHqKgQujTR2Mi6MwDcyFsCLDgz5ZVtfJEdeRojJV4gJYJ9gshKgkuDNjXp2nnsNk6PvhnQUvXEndGpLYVSmMy2cM0xZrUwArwlkOSkuRJItfP4FjpNKgOUDiXNP0VnhAex1WMq9Rpvnf4AUwPPVY9RFdMBUVK5eooyilFzBJco8bGG7GjOXsaBuAwGoDUBvTGrzSTW9aOqdJ0RjEp0--ve4nsF1hHZ-cjQ6fgw3GC7AJnc03oPeYrZ0T-Ca_b6YzmdP_UIN4etVg_w3Rvp_pA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Explainable+Student+Fatigue+Monitoring+Module+with+Joint+Facial+Representation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xiaomian&rft.au=Lin%2C+Jiaqin&rft.au=Tian%2C+Zhiqiang&rft.au=Lin%2C+Yuping&rft.date=2023-03-30&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073602&rft.externalDocID=A746948473 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |