An Explainable Student Fatigue Monitoring Module with Joint Facial Representation

Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students’ fatigue to diminish its adverse effects on the health and academic performance of college studen...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 7; p. 3602
Main Authors: Li, Xiaomian, Lin, Jiaqin, Tian, Zhiqiang, Lin, Yuping
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 30.03.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students’ fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial–temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student’s face and generates spatial–temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student’s status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training–testing setting. The results were significant for real-time monitoring of students’ fatigue states during online classes and could also provide practical strategies for in-person education.
AbstractList Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students' fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial-temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student's face and generates spatial-temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student's status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training-testing setting. The results were significant for real-time monitoring of students' fatigue states during online classes and could also provide practical strategies for in-person education.Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students' fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial-temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student's face and generates spatial-temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student's status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training-testing setting. The results were significant for real-time monitoring of students' fatigue states during online classes and could also provide practical strategies for in-person education.
Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students’ fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial–temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student’s face and generates spatial–temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student’s status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training–testing setting. The results were significant for real-time monitoring of students’ fatigue states during online classes and could also provide practical strategies for in-person education.
Audience Academic
Author Tian, Zhiqiang
Lin, Yuping
Lin, Jiaqin
Li, Xiaomian
AuthorAffiliation 2 Institute of Artificial Intelligence and Robotics, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; ljq0306@stu.xjtu.edu.cn
3 School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China; zhiqiangtian@xjtu.edu.cn
1 School of Foreign Studies, Xi’an Jiaotong University, Xi’an 710049, China; mianmianli@126.com
AuthorAffiliation_xml – name: 1 School of Foreign Studies, Xi’an Jiaotong University, Xi’an 710049, China; mianmianli@126.com
– name: 2 Institute of Artificial Intelligence and Robotics, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; ljq0306@stu.xjtu.edu.cn
– name: 3 School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China; zhiqiangtian@xjtu.edu.cn
Author_xml – sequence: 1
  givenname: Xiaomian
  surname: Li
  fullname: Li, Xiaomian
– sequence: 2
  givenname: Jiaqin
  surname: Lin
  fullname: Lin, Jiaqin
– sequence: 3
  givenname: Zhiqiang
  orcidid: 0000-0002-3669-3748
  surname: Tian
  fullname: Tian, Zhiqiang
– sequence: 4
  givenname: Yuping
  surname: Lin
  fullname: Lin, Yuping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37050662$$D View this record in MEDLINE/PubMed
BookMark eNpdksluFDEQhi0URBY48AKoJS5wmOD27hMaRQkEBSG2s-WleuJRjz3Y3Sxvj5MJowT54FL5-3-7XHWMDlJOgNDzHp9SqvGbSiiWVGDyCB31jLCFIgQf3IsP0XGta4wJpVQ9QYdUYo6FIEfo8zJ157-3o43JuhG6r9McIE3dhZ3iaobuY05xyiWmVQvD3IhfcbruPuR4C_lox-4LbAvUpmqanJ6ix4MdKzy720_Q94vzb2fvF1ef3l2eLa8Wngk9LZyinnIQfLAtYQWTREogTmqOCSdcSiyUdFQMAaz2tA-EY3CsyRwPQdMTdLnzDdmuzbbEjS1_TLbR3CZyWRlbpuhHMKTnWAtKBHDNfOBOCS00B3BEea1c83q789rObgPBt1qKHR-YPjxJ8dqs8k_TY6x1r1lzeHXnUPKPGepkNrF6GEebIM_VEIWxIJzKvqEv_0PXeS6p_ZUhUmvJlCY31OmOWtlWQUxDbhf7tgJsom_9H2LLL2X7TKaYpE3w4n4N-8f_63UDXu8AX3KtBYY90mNzM0dmP0f0L4Sft4Y
Cites_doi 10.1088/1757-899X/912/6/062066
10.1109/ACCESS.2020.3011028
10.1037/0033-2909.127.1.87
10.14479/jkoos.2021.26.1.73
10.1111/ppc.12765
10.3390/app12042224
10.1097/OPX.0b013e31812f5f51
10.1109/CVPR.2016.90
10.4103/ijo.IJO_2981_20
10.1145/1102351.1102418
10.1109/VECIMS.2011.6053857
10.1080/08964280903231979
10.1109/IFOST.2010.5667915
10.1109/IVS.2011.5940406
10.21449/ijate.788078
10.1589/jpts.28.1813
10.1109/WoSSPA.2013.6602353
10.7899/JCE-15-27
10.1589/jpts.28.1233
10.1016/S0142-1123(03)00051-3
10.1007/s00521-020-05209-7
10.1111/bjhp.12485
10.1620/tjem.231.37
10.1007/978-3-319-65217-7
10.1080/23267224.1899.10649736
10.3200/JACH.57.2.150-158
10.3390/s151229822
10.1016/S0140-6736(02)30453-7
10.1109/ICCV.2017.74
10.3390/su13084468
10.1038/s41467-022-32507-6
10.1002/j.2161-1882.2009.tb00109.x
10.1109/CVPR.2009.5206848
10.1034/j.1600-0420.2000.078001026.x
10.1007/978-3-319-54526-4_9
10.1016/j.jneuroling.2020.100941
10.4324/9780203995549
10.32398/cjhp.v5i2.1240
10.1007/978-3-319-46484-8_2
10.1111/aos.13885
10.1016/j.nut.2008.05.003
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23073602
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Education
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_215096326e594cd5b869695eeb28c98b
PMC10099194
A746948473
37050662
10_3390_s23073602
Genre Journal Article
GeographicLocations United States
China
New Jersey
Germany
GeographicLocations_xml – name: China
– name: Germany
– name: United States
– name: New Jersey
GrantInformation_xml – fundername: Social Science Foundation of Shaanxi Province of China
  grantid: 2021K014, 2020K016, 2021K007
– fundername: Natural Science Basic Research Plan in Shaanxi Province of China
  grantid: 2022JM-324
– fundername: Natural Science Basic Research Plan of the Shaanxi Province of China
  grantid: 2022JM-324
– fundername: Shaanxi Province Key Research and Development Program
  grantid: 2022ZDLSF07-07
– fundername: Social Science Foundation of the Shaanxi Province of China
  grantid: 2021K014; 2020K016; 2021K007
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c469t-b83c35e65fac46a647277e2b79502525770687b36fdea9c31d250eb483cb5dd93
IEDL.DBID PIMPY
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970274500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 14:47:12 EDT 2025
Tue Nov 04 02:06:47 EST 2025
Sun Nov 09 13:35:28 EST 2025
Tue Oct 07 07:29:58 EDT 2025
Tue Nov 04 18:15:25 EST 2025
Wed Feb 19 02:24:20 EST 2025
Sat Nov 29 07:13:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords CNN
joint facial representation
online fatigue detection
video-based online fatigue detection
MPA
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-b83c35e65fac46a647277e2b79502525770687b36fdea9c31d250eb483cb5dd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-3669-3748
OpenAccessLink https://www.proquest.com/publiccontent/docview/2799748921?pq-origsite=%requestingapplication%
PMID 37050662
PQID 2799748921
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_215096326e594cd5b869695eeb28c98b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10099194
proquest_miscellaneous_2800625371
proquest_journals_2799748921
gale_infotracacademiconefile_A746948473
pubmed_primary_37050662
crossref_primary_10_3390_s23073602
PublicationCentury 2000
PublicationDate 20230330
PublicationDateYYYYMMDD 2023-03-30
PublicationDate_xml – month: 3
  year: 2023
  text: 20230330
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_22) 2018; 6
Compas (ref_9) 2001; 127
Habibi (ref_18) 2014; 5
ref_14
ref_58
(ref_47) 2010; 44
ref_56
ref_55
ref_54
Borsting (ref_27) 2007; 84
Dol (ref_19) 2016; 28
Choi (ref_21) 2018; 118
Kinge (ref_15) 2000; 78
ref_60
Tanaka (ref_48) 2009; 35
Kim (ref_25) 2021; 26
Kizhakkeveettil (ref_50) 2017; 31
Akshayaa (ref_28) 2019; 11
ref_29
Han (ref_17) 2013; 6
Tanaka (ref_49) 2008; 24
Naz (ref_53) 2019; 5
Lima (ref_51) 2022; 22
Li (ref_33) 2020; 8
Agarwal (ref_26) 2021; 69
Kratz (ref_62) 1899; 4
Kedor (ref_32) 2022; 13
ref_36
Dua (ref_45) 2021; 33
Fortea (ref_34) 2020; 56
ref_31
ref_30
Nitschke (ref_2) 2021; 26
ref_39
Huseyin (ref_24) 2020; 7
ref_38
ref_37
Narisawa (ref_12) 2013; 231
Poore (ref_61) 1875; 106
Labrague (ref_1) 2020; 57
Meiring (ref_52) 2015; 15
Jenkins (ref_13) 2009; 12
Kim (ref_20) 2016; 28
Vgontzas (ref_11) 2008; 57
Peper (ref_59) 2021; 257
Prestwich (ref_10) 2007; 5
ref_46
ref_44
ref_43
Schijve (ref_4) 2003; 25
Xu (ref_23) 2019; 97
ref_42
ref_41
ref_40
Rajeev (ref_16) 2006; 31
ref_3
Toney (ref_57) 2021; 48
ref_8
ref_5
ref_7
Priya (ref_35) 2020; 912
ref_6
References_xml – volume: 912
  start-page: 062066
  year: 2020
  ident: ref_35
  article-title: Visual Flow on Eye-Activity and Application of Learning Techniques for Visual Fatigue Analysis
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/912/6/062066
– ident: ref_5
– volume: 8
  start-page: 139110
  year: 2020
  ident: ref_33
  article-title: A review of face recognition technology
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011028
– ident: ref_55
– volume: 118
  start-page: 1
  year: 2018
  ident: ref_21
  article-title: Factors influencing on dry eye symptoms of university students using smartphone
  publication-title: Int. J. Pure Appl. Math.
– volume: 127
  start-page: 87
  year: 2001
  ident: ref_9
  article-title: Coping with stress during childhood and adolescence: Problems, progress, and potential in theory and research
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.127.1.87
– volume: 26
  start-page: 73
  year: 2021
  ident: ref_25
  article-title: Management of eye and vision symptoms caused by online learning among college students during COVID-19 Pandemic
  publication-title: J. Korean Ophthalmic Opt. Soc.
  doi: 10.14479/jkoos.2021.26.1.73
– ident: ref_39
– volume: 57
  start-page: 1905
  year: 2020
  ident: ref_1
  article-title: Lockdown fatigue among college students during the COVID-19 pandemic: Predictive role of personal resilience, coping behaviors, and health
  publication-title: Perspect. Psychiatr. Care
  doi: 10.1111/ppc.12765
– ident: ref_36
  doi: 10.3390/app12042224
– ident: ref_58
– ident: ref_8
– volume: 257
  start-page: 1
  year: 2021
  ident: ref_59
  article-title: Beyond Zoom fatigue: Re-energize yourself and improve learning
  publication-title: Acad. Lett.
– volume: 84
  start-page: 745
  year: 2007
  ident: ref_27
  article-title: Measuring visual discomfort in college students
  publication-title: Optom. Vis. Sci.
  doi: 10.1097/OPX.0b013e31812f5f51
– ident: ref_38
  doi: 10.1109/CVPR.2016.90
– volume: 69
  start-page: 777
  year: 2021
  ident: ref_26
  article-title: Increase in ocular problems during COVID-19 pandemic in school going children-a survey based study
  publication-title: Indian J. Ophthalmol.
  doi: 10.4103/ijo.IJO_2981_20
– ident: ref_40
  doi: 10.1145/1102351.1102418
– volume: 6
  start-page: 65
  year: 2018
  ident: ref_22
  article-title: Association of electronic devices usage and visual fatigue in Chinese college students
  publication-title: Recent Adv. Ophthalmol.
– ident: ref_44
  doi: 10.1109/VECIMS.2011.6053857
– volume: 35
  start-page: 87
  year: 2009
  ident: ref_48
  article-title: Stress and coping styles are associated with severe fatigue in medical students
  publication-title: Behav. Med.
  doi: 10.1080/08964280903231979
– ident: ref_60
  doi: 10.1109/IFOST.2010.5667915
– ident: ref_56
  doi: 10.1109/IVS.2011.5940406
– volume: 31
  start-page: 192
  year: 2006
  ident: ref_16
  article-title: Visual fatigue and computer use among college students
  publication-title: Indian J. Comm. Med.
– volume: 48
  start-page: 10
  year: 2021
  ident: ref_57
  article-title: Fighting Zoom fatigue: Keeping the zoombies at bay
  publication-title: Commun. Assoc. Inf. Syst.
– volume: 7
  start-page: 488
  year: 2020
  ident: ref_24
  article-title: Investigation of the effect of online education on eye health in Covid-19 pandemic
  publication-title: Int. J. Assess. Tools Educ.
  doi: 10.21449/ijate.788078
– volume: 5
  start-page: 841
  year: 2014
  ident: ref_18
  article-title: Designing and validation a visual fatigue questionnaire for video display terminals operators
  publication-title: Int. J. Prev. Med.
– volume: 28
  start-page: 1813
  year: 2016
  ident: ref_20
  article-title: Effects of yogic eye exercises on eye fatigue in undergraduate nursing students
  publication-title: J. Phys. Ther. Sci.
  doi: 10.1589/jpts.28.1813
– volume: 44
  start-page: 1052
  year: 2010
  ident: ref_47
  article-title: Fatigue among nursing undergraduate students
  publication-title: Rev. Esc. Enferm. USP
– ident: ref_7
– ident: ref_30
– ident: ref_54
  doi: 10.1109/WoSSPA.2013.6602353
– volume: 6
  start-page: 718
  year: 2013
  ident: ref_17
  article-title: Prevalence of asthenopia and its risk factors in Chinese college students
  publication-title: Int. J. Ophthalmol.
– volume: 31
  start-page: 8
  year: 2017
  ident: ref_50
  article-title: Perceived stress and fatigue among students in a doctor of chiropractic training program
  publication-title: J. Chiropr. Educ.
  doi: 10.7899/JCE-15-27
– volume: 28
  start-page: 1233
  year: 2016
  ident: ref_19
  article-title: Fatigue and pain related to internet usage among university students
  publication-title: J. Phys. Ther. Sci.
  doi: 10.1589/jpts.28.1233
– volume: 25
  start-page: 679
  year: 2003
  ident: ref_4
  article-title: Fatigue of structures and materials in the 20th century and the state of the art
  publication-title: Int. J. Fatigue
  doi: 10.1016/S0142-1123(03)00051-3
– volume: 33
  start-page: 3155
  year: 2021
  ident: ref_45
  article-title: Deep CNN models-based ensemble approach to driver drowsiness detection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05209-7
– ident: ref_37
– volume: 26
  start-page: 553
  year: 2021
  ident: ref_2
  article-title: Resilience during uncertainty? Greater social connectedness during COVID-19 lockdown is associated with reduced distress and fatigue
  publication-title: Br. J. Health Psychol.
  doi: 10.1111/bjhp.12485
– volume: 231
  start-page: 37
  year: 2013
  ident: ref_12
  article-title: Anxiety and its related factors at bedtime are associated with difficulty in falling asleep
  publication-title: Tohoku J. Exp. Med.
  doi: 10.1620/tjem.231.37
– ident: ref_31
  doi: 10.1007/978-3-319-65217-7
– volume: 4
  start-page: 350
  year: 1899
  ident: ref_62
  article-title: How May Fatigue in the Schoolroom Be Reduced to the Minimum?
  publication-title: Am. Phys. Educ. Rev.
  doi: 10.1080/23267224.1899.10649736
– volume: 57
  start-page: 150
  year: 2008
  ident: ref_11
  article-title: Sleep and behavioral correlates of napping among young adults: A survey of first-year university students in Madrid, Spain
  publication-title: J. Am. Coll. Health
  doi: 10.3200/JACH.57.2.150-158
– volume: 15
  start-page: 30653
  year: 2015
  ident: ref_52
  article-title: A review of intelligent driving style analysis systems and related artificial intelligence algorithms
  publication-title: Sensors
  doi: 10.3390/s151229822
– ident: ref_6
– volume: 106
  start-page: 163
  year: 1875
  ident: ref_61
  article-title: On Fatigue
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)30453-7
– ident: ref_46
  doi: 10.1109/ICCV.2017.74
– ident: ref_14
  doi: 10.3390/su13084468
– ident: ref_29
– volume: 13
  start-page: 5104
  year: 2022
  ident: ref_32
  article-title: A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32507-6
– volume: 22
  start-page: 1
  year: 2022
  ident: ref_51
  article-title: Active methodologies association with online learning fatigue among medical students
  publication-title: BMC Med. Educ.
– volume: 12
  start-page: 113
  year: 2009
  ident: ref_13
  article-title: Sleep habits and patterns of college students: An expanded study
  publication-title: J. Coll. Couns.
  doi: 10.1002/j.2161-1882.2009.tb00109.x
– ident: ref_42
  doi: 10.1109/CVPR.2009.5206848
– volume: 78
  start-page: 26
  year: 2000
  ident: ref_15
  article-title: The influence of near-work on development of myopia among university students. A three-year longitudinal study among engineering students in Norway
  publication-title: Acta Ophthalmol. Scand.
  doi: 10.1034/j.1600-0420.2000.078001026.x
– ident: ref_41
  doi: 10.1007/978-3-319-54526-4_9
– volume: 5
  start-page: 1
  year: 2019
  ident: ref_53
  article-title: Driver fatigue detection using mean intensity, SVM, and SIFT
  publication-title: Int. J. Interact. Multimed. Artif. Intell.
– volume: 11
  start-page: 1369
  year: 2019
  ident: ref_28
  article-title: Awareness of chronic fatigue syndrome among the college students–A survey
  publication-title: Drug Invent. Today
– volume: 56
  start-page: 100941
  year: 2020
  ident: ref_34
  article-title: Challenges and insights for the visual system: Are face and word recognition two sides of the same coin?
  publication-title: J. Neurolinguist.
  doi: 10.1016/j.jneuroling.2020.100941
– ident: ref_3
  doi: 10.4324/9780203995549
– volume: 5
  start-page: 148
  year: 2007
  ident: ref_10
  article-title: Tracking sleep times to reduce tiredness and improve sleep in college students
  publication-title: Californian J. Health Promot.
  doi: 10.32398/cjhp.v5i2.1240
– ident: ref_43
  doi: 10.1007/978-3-319-46484-8_2
– volume: 97
  start-page: e442
  year: 2019
  ident: ref_23
  article-title: Correlation between handheld digital device use and asthenopia in Chinese college students: A Shanghai study
  publication-title: Acta Ophthalmol.
  doi: 10.1111/aos.13885
– volume: 24
  start-page: 985
  year: 2008
  ident: ref_49
  article-title: Relationships between dietary habits and the prevalence of fatigue in medical students
  publication-title: Nutrition
  doi: 10.1016/j.nut.2008.05.003
SSID ssj0023338
Score 2.3906188
Snippet Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3602
SubjectTerms 20th century
Academic achievement
Academic Performance
Benchmarking
Chronic fatigue syndrome
Classification
CNN
College students
Coronaviruses
COVID-19
Deep learning
Education
Health aspects
Humans
joint facial representation
Machine learning
Medical research
Metal fatigue
Mouth
MPA
Myopia
Neural networks
Observational studies
online fatigue detection
Pandemics
Questionnaires
Research methodology
Students
Surveys and Questionnaires
video-based online fatigue detection
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hxAEOFbRAw6NKERKniCS2Y_u4IFYVQqjlIXGzYmeW7iWL2N3-fmYS72pXPfTSW5RMInsmk5nPmfkMcF76URkKrTM0MmSSQljmvSLUGvKiRqstYtcofKfv783Li_25stUX14T19MC94i4pJFGWTUkGKitDo7ypbGUVEiI0wRrPX99c2wWYilBLEPLqeYQEgfrLKZc7iyqunSyiT0fS__eneCUWrddJrgSe4S58ihljOuhHugcb2H6GnRUewS_wa9CmXEwXO6HSx56wMh2S2l_nmPaOy7J02MxJgpdf09vJuBPiVfP0oSuJjZ1I7T48D2-ern9kca-ELBDAnWXeiCAUVmpU04maSeG1xtJrqyirIb_UeWW0F9WowdoGUTSU-6CXdJtXTWPFAWy2kxa_QirRWEmRu6k8oS2lyJoyR53XXtETyzKBs4UO3VtPieEISrCi3VLRCVyxdpcCzGLdnSDbumhb9y_bJnDBtnHsa2SAUMeWARons1a5gaa5S4qvIoGThflcdMKpK7W1TK5TFgl8X14m9-F_InWLkznJGO4iVUKTzGFv7eWYhc4VE-QnYNbeg7VJrV9px787iu6CM-_CyqP_oYZj2OZN7rtOyPwENmfvczyFrfBnNp6-f-te_A-EuAcJ
  priority: 102
  providerName: Directory of Open Access Journals
Title An Explainable Student Fatigue Monitoring Module with Joint Facial Representation
URI https://www.ncbi.nlm.nih.gov/pubmed/37050662
https://www.proquest.com/docview/2799748921
https://www.proquest.com/docview/2800625371
https://pubmed.ncbi.nlm.nih.gov/PMC10099194
https://doaj.org/article/215096326e594cd5b869695eeb28c98b
Volume 23
WOSCitedRecordID wos000970274500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc4sLC8wi5VQEicoiZxHNsn1F21AsRWZQGpnKLYcZdekqUPjvx2Zhw32wqJE5coSiaRrfE8PfMZ4E2qF6lJhIiszEyUoQmLtOYYtZo4Ka0SylrXKPxJTKdyPlcz3x699mWVO53oFHWL9kx126iEh1VjKGM-TIVShJuSJu9ufkZ0hhTttfoDNY6gT8BbcQ_6sw-Xs-9dAMYwHmvRhRiG-sM1FUGz3GdUdjbJQff_raD3LNRh9eSeOZoc_9-JPIQH3i0NR-06egR3bH1CJzr76o8TuL8HXPgYPo_qkKr3fOtV-KVFyAwnSH29tWGrKYgWb6stUlC-N_zYLB0RpenDK1eD61uf6ifwbTL-evE-8oczRAYj6k2kJTOM25wvSnxQEgq9EDbVQnF0o1ARiDiXQrN8UdlSGZZU6GxZneFnmleVYk-hVze1fQ5hZqXK0FWoco3hHee4fLLYirjUHP-YpgG83rGnuGkxOAqMXYiHRcfDAM6JcR0BwWa7B83quvBSWKB_gyEbeqyWq8xUXMtc5Ypbq1NplNQBvCW2FyTcyFtT-h4FHCfBZBUjgXPP0KCzAM523C281K-LW2YG8Kp7jfJKmzBlbZst0khqW-VMIM2zdiF1Y2Yi5oTIH4A8WGIHkzp8Uy9_OEzwhFz9RGUv_j2uU7iXohy4psr4DHqb1da-hLvm12a5Xg3gSMyFu8oB9M_H09nVwCUp8Hr5ezzw8vQHPOgsTA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTogUd5NFAgIBCnqIkdx_EBoeWx6tLtaoFWKqcQO96yl6TsA8Sf4jcykzhhV0jceuAWJbORnf08D3vmG4BnTE-ZiaQMbBqbIEYTFmgtMGo1YZRbJZW1daHwSI7H6dmZmmzBr7YWhtIqW51YK-qiMrRHfsCkUsSUwqJXF98C6hpFp6ttC40GFkf25w8M2RYvh2_x_33O2ODdyZvDwHUVCAyGgstAp9xwYRMxzfFGTvTpUlqmpRJo_xHBMkxSqXkyLWyuDI8K9BKsjvFnWhQFkS-hyt-OEexhD7Ynw-PJ5y7E4xjxNfxFnKvwYEFp1jxxezat1aubA_xtAtZs4GZ-5prBG9z43z7VTbjuXGu_36yFW7Bly13qSu0yWHZhZ4188TZ86Jc-ZSC68jH_U8Py6Q9Q-nxl_UbbkSxeFiuUoD1r_301q4XoqMH_WOcRu_Kt8g6cXsr87kKvrEq7B35sUxWju1MkGkNUIXAJxKGVYa4FvpExD562AMguGh6RDOMvQknWocSD1wSNToCov-sb1fw8c5okQx8Nw070uq1QsSmEThOVKGGtZqlRqfbgBQErIwWF6DG5q7PAcRLVV9aXOPcYnRLuwX6Ln8xprkX2BzwePOkeo86hg6S8tNUKZVIqvRVcosy9BqrdmLkMBXUV8CDdAPHGpDaflLOvNa95ROFKpOL7_x7XY7h6eHI8ykbD8dEDuMZw1dVFouE-9JbzlX0IV8z35Wwxf-RWpw9fLhvlvwG7dncK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4TgwKM8GigQEIhTtIkdx_YBoS3titJqtRSQegux4233kpR9gPhr_DpmEmfZFRK3HrhFyWxkZz_PzGfPA-AlMxNmEykjp1IbpWjCImMEslYbJ4XTUjvXJAqfyNFInZ3p8Rb86nJhKKyy04mNoi5rS3vkfSa1pkopLOlPfFjE-GD49vJbRB2k6KS1a6fRQuTY_fyB9G3-5ugA_-tXjA0PP797H_kOA5FFWriIjOKWC5eJSYE3CiqlLqVjRmqBvgCiWcaZkoZnk9IV2vKkRI_BmRR_ZkRZUiEmVP_bkiPp6cH2_uFofLqiexzZX1vLiHMd9-cUcs0zv3_TWcCmUcDf5mDNHm7Gaq4Zv-Ht__mz3YFb3uUOB-0auQtbrtqhbtU-smUHbq4VZbwHHwdVSJGJPq0s_NRW_wyHKH2-dGGrBUkWL8slStBedvihnjZCdAQRnjbxxT6tq7oPX65kfg-gV9WV24UwdUqn6AaVmUHqKgQujTR2Mi6MwDcyFsCLDgz5ZVtfJEdeRojJV4gJYJ9gshKgkuDNjXp2nnsNk6PvhnQUvXEndGpLYVSmMy2cM0xZrUwArwlkOSkuRJItfP4FjpNKgOUDiXNP0VnhAex1WMq9Rpvnf4AUwPPVY9RFdMBUVK5eooyilFzBJco8bGG7GjOXsaBuAwGoDUBvTGrzSTW9aOqdJ0RjEp0--ve4nsF1hHZ-cjQ6fgw3GC7AJnc03oPeYrZ0T-Ca_b6YzmdP_UIN4etVg_w3Rvp_pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Explainable+Student+Fatigue+Monitoring+Module+with+Joint+Facial+Representation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xiaomian&rft.au=Lin%2C+Jiaqin&rft.au=Tian%2C+Zhiqiang&rft.au=Lin%2C+Yuping&rft.date=2023-03-30&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073602&rft.externalDocID=A746948473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon