Robustness Analysis of the Estimators for the Nonlinear System Identification

The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Entropy (Basel, Switzerland) Ročník 22; číslo 8; s. 834
Hlavní autoři: Jakowluk, Wiktor, Godlewski, Karol
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 30.07.2020
MDPI
Témata:
ISSN:1099-4300, 1099-4300
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions during the identification task is minimized. In this paper, the adaptive filtering (AF) scheme for plant model parameter estimation is proposed. The experimental results are obtained using the nonlinear interacting water tanks system. The adaptive filtering is expressed by minimizing the error between the system and the plant model outputs subject to the white noise signal affecting system output. This measurement error is quantified by the comparison of Minimum Error Entropy Renyi (MEER), Least Entropy Like (LEL), Least Squares (LS), and Least Absolute Deviation (LAD) estimators, respectively. The plant model parameters were obtained using sequential quadratic programming (SQP) algorithm. The robustness tests for the double-tank water system parameter estimators are performed using the ellipsoidal confidence regions. The effectiveness analysis for the above-mentioned estimators relies on the total number of iterations and the number of function evaluation comparisons. The main contribution of this paper is the evaluation of different estimation methods for the nonlinear system identification using various excitation signals. The proposed empirical study is illustrated by the numerical examples, and the simulation results are discussed.
AbstractList The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions during the identification task is minimized. In this paper, the adaptive filtering (AF) scheme for plant model parameter estimation is proposed. The experimental results are obtained using the nonlinear interacting water tanks system. The adaptive filtering is expressed by minimizing the error between the system and the plant model outputs subject to the white noise signal affecting system output. This measurement error is quantified by the comparison of Minimum Error Entropy Renyi (MEER), Least Entropy Like (LEL), Least Squares (LS), and Least Absolute Deviation (LAD) estimators, respectively. The plant model parameters were obtained using sequential quadratic programming (SQP) algorithm. The robustness tests for the double-tank water system parameter estimators are performed using the ellipsoidal confidence regions. The effectiveness analysis for the above-mentioned estimators relies on the total number of iterations and the number of function evaluation comparisons. The main contribution of this paper is the evaluation of different estimation methods for the nonlinear system identification using various excitation signals. The proposed empirical study is illustrated by the numerical examples, and the simulation results are discussed.
The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions during the identification task is minimized. In this paper, the adaptive filtering (AF) scheme for plant model parameter estimation is proposed. The experimental results are obtained using the nonlinear interacting water tanks system. The adaptive filtering is expressed by minimizing the error between the system and the plant model outputs subject to the white noise signal affecting system output. This measurement error is quantified by the comparison of Minimum Error Entropy Renyi (MEER), Least Entropy Like (LEL), Least Squares (LS), and Least Absolute Deviation (LAD) estimators, respectively. The plant model parameters were obtained using sequential quadratic programming (SQP) algorithm. The robustness tests for the double-tank water system parameter estimators are performed using the ellipsoidal confidence regions. The effectiveness analysis for the above-mentioned estimators relies on the total number of iterations and the number of function evaluation comparisons. The main contribution of this paper is the evaluation of different estimation methods for the nonlinear system identification using various excitation signals. The proposed empirical study is illustrated by the numerical examples, and the simulation results are discussed.The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions during the identification task is minimized. In this paper, the adaptive filtering (AF) scheme for plant model parameter estimation is proposed. The experimental results are obtained using the nonlinear interacting water tanks system. The adaptive filtering is expressed by minimizing the error between the system and the plant model outputs subject to the white noise signal affecting system output. This measurement error is quantified by the comparison of Minimum Error Entropy Renyi (MEER), Least Entropy Like (LEL), Least Squares (LS), and Least Absolute Deviation (LAD) estimators, respectively. The plant model parameters were obtained using sequential quadratic programming (SQP) algorithm. The robustness tests for the double-tank water system parameter estimators are performed using the ellipsoidal confidence regions. The effectiveness analysis for the above-mentioned estimators relies on the total number of iterations and the number of function evaluation comparisons. The main contribution of this paper is the evaluation of different estimation methods for the nonlinear system identification using various excitation signals. The proposed empirical study is illustrated by the numerical examples, and the simulation results are discussed.
Author Godlewski, Karol
Jakowluk, Wiktor
AuthorAffiliation Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland; godlewski215@gmail.com
AuthorAffiliation_xml – name: Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland; godlewski215@gmail.com
Author_xml – sequence: 1
  givenname: Wiktor
  orcidid: 0000-0003-0942-8903
  surname: Jakowluk
  fullname: Jakowluk, Wiktor
– sequence: 2
  givenname: Karol
  surname: Godlewski
  fullname: Godlewski, Karol
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33286605$$D View this record in MEDLINE/PubMed
BookMark eNplkstuFDEQRS0URB6w4AdQS2xgMaT8aLd7gxRFAUYKIPFYW267OvGoxw62G2n-Hs9MEiVh5avyraNrVx2TgxADEvKawgfOezhFxkCB4uIZOaLQ9wvBAQ4e6ENynPMKgHFG5QtyyDlTUkJ7RL7-iMOcS8Ccm7Ngpk32uYljU66xucjFr02JKTdjTLvStxgmH9Ck5ucmF1w3S4eh-NFbU3wML8nz0UwZX92eJ-T3p4tf518Wl98_L8_PLhdWyL4sBi4ss500I-3GjvWKSwZt34ODgQ_UwNABcocWOznYrQJkTikUPe0od_yELPdcF81K36QaM210NF7vCjFdaZOKtxPqVgA4S9tx4FWiVRKBOWfF4JwS3FTWxz3rZh7W6Gx9TzLTI-jjm-Cv9VX8q7uWdoKLCnh3C0jxz4y56LXPFqfJBIxz1kxIxbls-65a3z6xruKc6rdvXRyoUmoHfPMw0X2Uu6lVw-neYFPMOeGorS-7AdSAftIU9HYv9P1e1I73TzruoP97_wF8obct
CitedBy_id crossref_primary_10_1016_j_procs_2022_09_426
crossref_primary_10_1016_j_procs_2021_09_171
crossref_primary_10_1088_1742_6596_3085_1_012039
crossref_primary_10_3390_app12126084
Cites_doi 10.1002/0471723134
10.1016/j.jmva.2004.02.006
10.1016/j.jmva.2013.04.001
10.1109/9.90229
10.3390/e16042223
10.1016/S1474-6670(17)48238-3
10.1016/0005-1098(86)90064-6
10.1002/047134608X.W1046
10.23919/ECC.2013.6669533
10.1007/978-3-030-17344-9_10
10.3390/e20070528
10.1016/j.ifacol.2017.08.074
10.3166/ejc.11.335-352
10.1016/j.automatica.2008.03.023
10.1016/j.jprocont.2015.03.011
10.1109/TAC.2011.2132290
10.3390/e16115822
10.1093/oso/9780199296590.001.0001
10.3390/e11040560
10.3390/e17095995
10.1109/87.845876
10.1007/978-3-030-28957-7_38
10.1007/978-1-4419-1570-2
10.1109/MCS.2016.2643243
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e22080834
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Collection (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_5400dc15fb3540ec86e02ddc4bdd843a
PMC7517434
33286605
10_3390_e22080834
Genre Journal Article
GrantInformation_xml – fundername: Ministerstwo Nauki i Szkolnictwa Wyższego
  grantid: S/WI/3/18
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-b34c2c76af17f729836205990d0b3b1a0b70e3dece76bce3de0e2d88e491713d3
IEDL.DBID M7S
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564141700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:33:07 EDT 2025
Tue Nov 04 02:00:51 EST 2025
Sun Nov 09 10:04:46 EST 2025
Fri Jul 25 11:59:47 EDT 2025
Mon Jul 21 06:04:02 EDT 2025
Sat Nov 29 07:19:44 EST 2025
Tue Nov 18 20:54:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords optimal control
system identification
model fitting
robust estimation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-b34c2c76af17f729836205990d0b3b1a0b70e3dece76bce3de0e2d88e491713d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0942-8903
OpenAccessLink https://www.proquest.com/docview/2430188834?pq-origsite=%requestingapplication%
PMID 33286605
PQID 2430188834
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_5400dc15fb3540ec86e02ddc4bdd843a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517434
proquest_miscellaneous_2468336597
proquest_journals_2430188834
pubmed_primary_33286605
crossref_citationtrail_10_3390_e22080834
crossref_primary_10_3390_e22080834
PublicationCentury 2000
PublicationDate 20200730
PublicationDateYYYYMMDD 2020-07-30
PublicationDate_xml – month: 7
  year: 2020
  text: 20200730
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Helmicki (ref_7) 1991; 36
Wang (ref_16) 2004; 89
ref_14
ref_12
Larsson (ref_13) 2015; 31
ref_11
ref_33
ref_32
Chen (ref_23) 2014; 16
Rojas (ref_8) 2008; 44
ref_19
ref_18
Jakowluk (ref_30) 2014; 16
Smith (ref_28) 1993; Volume 26
Annergren (ref_27) 2017; 37
Gevers (ref_6) 1986; 22
Jakowluk (ref_15) 2019; Volume 11703
ref_22
Johansson (ref_26) 2000; 8
ref_21
ref_1
Gevers (ref_5) 2005; 11
ref_3
Wu (ref_24) 2015; 17
ref_2
ref_29
Jakowluk (ref_31) 2019; Volume 559
ref_9
Relan (ref_25) 2017; 50
ref_4
Wang (ref_17) 2013; 120
Narasimhan (ref_10) 2011; 56
Indiveri (ref_20) 2009; 11
References_xml – ident: ref_9
– ident: ref_2
  doi: 10.1002/0471723134
– ident: ref_32
– ident: ref_3
– volume: 89
  start-page: 243
  year: 2004
  ident: ref_16
  article-title: The limiting behavior of least absolute deviation estimators for threshold autoregressive models
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2004.02.006
– volume: 120
  start-page: 135
  year: 2013
  ident: ref_17
  article-title: TheL1 penalized LAD estimator for high dimensional linear regression
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2013.04.001
– volume: 36
  start-page: 1163
  year: 1991
  ident: ref_7
  article-title: Control oriented system identification: A worst-case/deterministic approach in h
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.90229
– ident: ref_11
– volume: 16
  start-page: 2223
  year: 2014
  ident: ref_23
  article-title: An Extended Result on the Optimal Estimation under the Minimum Error Entropy Criterion
  publication-title: Entropy
  doi: 10.3390/e16042223
– volume: Volume 26
  start-page: 129
  year: 1993
  ident: ref_28
  article-title: Closed Loop Relay Estimation of Uncertainty Bounds for Robust Control Models
  publication-title: Proceedings of the IFAC Proceedings Volumes
  doi: 10.1016/S1474-6670(17)48238-3
– volume: 22
  start-page: 543
  year: 1986
  ident: ref_6
  article-title: Optimal experiment designs with respect to the intended model application
  publication-title: Automatica
  doi: 10.1016/0005-1098(86)90064-6
– ident: ref_1
  doi: 10.1002/047134608X.W1046
– ident: ref_12
  doi: 10.23919/ECC.2013.6669533
– ident: ref_14
– volume: Volume 559
  start-page: 128
  year: 2019
  ident: ref_31
  article-title: Design of an Optimal Input Signal for Parameter Estimation of Linear Fractional-Order Systems
  publication-title: Lecture Notes in Electrical Engineering
  doi: 10.1007/978-3-030-17344-9_10
– ident: ref_18
– ident: ref_21
  doi: 10.3390/e20070528
– volume: 50
  start-page: 452
  year: 2017
  ident: ref_25
  article-title: An unstructured flexible nonlinear model for the cascaded water-tanks benchmark
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.074
– volume: 11
  start-page: 335
  year: 2005
  ident: ref_5
  article-title: Identification for control: From the early achievements to the revival of experiment design
  publication-title: Eur. J. Control
  doi: 10.3166/ejc.11.335-352
– volume: 44
  start-page: 2706
  year: 2008
  ident: ref_8
  article-title: On the equivalence of least costly and traditional experiment design for control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.03.023
– volume: 31
  start-page: 1
  year: 2015
  ident: ref_13
  article-title: Experimental evaluation of model predictive control with excitation (MPC-X) on an industrial depropanizer
  publication-title: J. Process. Control
  doi: 10.1016/j.jprocont.2015.03.011
– volume: 56
  start-page: 1467
  year: 2011
  ident: ref_10
  article-title: Plant friendly input design: Convex relaxation and quality
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2011.2132290
– ident: ref_29
– ident: ref_33
– volume: 16
  start-page: 5822
  year: 2014
  ident: ref_30
  article-title: Plant friendly input design for parameter estimation in an inertial system with respect to D-efficiency constraints
  publication-title: Entropy
  doi: 10.3390/e16115822
– ident: ref_4
  doi: 10.1093/oso/9780199296590.001.0001
– volume: 11
  start-page: 560
  year: 2009
  ident: ref_20
  article-title: An Entropy-Like Estimator for Robust Parameter Identification
  publication-title: Entropy
  doi: 10.3390/e11040560
– ident: ref_19
– volume: 17
  start-page: 5995
  year: 2015
  ident: ref_24
  article-title: Proportionate Minimum Error Entropy Algorithm for Sparse System Identification
  publication-title: Entropy
  doi: 10.3390/e17095995
– volume: 8
  start-page: 456
  year: 2000
  ident: ref_26
  article-title: The quadruple-tank process: A multivariable laboratory process with an adjustable zero
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/87.845876
– volume: Volume 11703
  start-page: 457
  year: 2019
  ident: ref_15
  article-title: Design of a State Estimation Considering Model Predictive Control Strategy for a Nonlinear Water Tanks Process
  publication-title: Computer Information Systems and Industrial Management
  doi: 10.1007/978-3-030-28957-7_38
– ident: ref_22
  doi: 10.1007/978-1-4419-1570-2
– volume: 37
  start-page: 31
  year: 2017
  ident: ref_27
  article-title: Application-Oriented Input Design in System Identification: Optimal Input Design for Control
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2016.2643243
SSID ssj0023216
Score 2.223323
Snippet The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 834
SubjectTerms Accuracy
Adaptive filters
Adaptive systems
Algorithms
Computer simulation
Empirical analysis
Entropy
Entropy (Information theory)
Error analysis
Estimators
Evaluation
Experiments
Identification methods
Mathematical models
Methods
model fitting
Noise
Nonlinear systems
optimal control
Parameter estimation
Parameter identification
Quadratic programming
robust estimation
Robustness (mathematics)
System dynamics
System identification
Water purification
Water tanks
White noise
Working conditions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryI4qu-iOLBSzFNskl6VFG8uIgoeCvNCwXtyj78_c403eKK4MVbSQY6nWmS70vTbwg5LWTE2ieDPHLgJpLJOrelH-R1YAEnRC2tbYtN6OHQPD-X999KfeGZsCQPnAJ3DoiCeVcMosUdiuCMCox776T13kjRQiOmyzmZ6qiW4IVKOkICSP15AEcMgA25sPq0Iv2_IcufByS_rTg362Stg4r0Irm4QZZCs0nuHkZ2NpniBEXngiJ0FCngOHoNw_UdSfSEAhRtm4ZJCaMe0yRNTtOPubHbqdsiTzfXj1e3eVcSIXfAY6e5FdJxp1UdCx0BFxtYf1BhhXlmhS1qZjULwgcXtLIOr1jg3pgggZYVwottstyMmrBLaIRkSIOxA0wlnCt9yaJS3Je85l4PMnI2D1XlOr1wLFvxVgFvwKhWfVQzctKbfiSRjN-MLjHevQHqWrcNkO2qy3b1V7YzcjDPVtUNtkkF7rMCmDze47jvhmGC3z7qJoxmaKOMEAroU0Z2UnJ7T4TgRgGty4heSPuCq4s9zetLK8WtUehbyL3_eLZ9ssqRzOPGMTsgy9PxLBySFfc5fZ2Mj9r3-ws90wFz
  priority: 102
  providerName: Directory of Open Access Journals
Title Robustness Analysis of the Estimators for the Nonlinear System Identification
URI https://www.ncbi.nlm.nih.gov/pubmed/33286605
https://www.proquest.com/docview/2430188834
https://www.proquest.com/docview/2468336597
https://pubmed.ncbi.nlm.nih.gov/PMC7517434
https://doaj.org/article/5400dc15fb3540ec86e02ddc4bdd843a
Volume 22
WOSCitedRecordID wos000564141700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgOXAuIVKCuDOHCJ6the2zkhiraCQ1erAtJyiuJHSiVI2s0uR347M0k2sKjiwiWK4jlMMjP2fGPnG4BXmaqo98k0rQRiE8VVmbo8TNMy8kgTolHOdc0mzHxul8t8MRTc2uFY5XZO7Cbq0HiqkR8Lha6IcE2qN1fXKXWNot3VoYXGHhwQS0LWHd37OAIuKTLdswlJhPbHEdWxmHKonTWoo-q_Kb_8-5jkH-vO6d3_1fgeHA4ZJ3vbu8h9uBXrB3B23rhNu6Z5jm15SVhTMUwH2Qyj_jth8ZZhRts9mveEGuWK9QznrP-_txoKfg_h8-ns07v36dBZIfUIh9epk8oLb3RZZabC9NriMkZELTxwJ11Wcmd4lCH6aLTzdMejCNZGheguk0E-gv26qeMTYBXaVGEagXGOL-x9HnJeaS1CLkoRzDSB19tvXfiBdpy6X3wrEH6QWYrRLAm8HEWveq6Nm4ROyGCjANFjdw-a1UUxRFuBaSgPPptWjspa0VsduQjBKxeCVbJM4GhrsmKI2bb4ba8EXozDGG20hVLWsdmQjLZSakRhCTzuvWPUREphNaLDBMyO3-youjtSX37tGL0N8YVL9fTfaj2DO4LQPlWW-RHsr1eb-Bxu-x_ry3Y1gT2ztBM4OJnNF-eTrrYw6cKBrj9nOLL4cLb48gv2UBUr
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1da9RAFL3UKuiLH_jRaKujKPgSOpmZTSYPIlVbWtouohX6FjNftaBJ3ewq_il_o_fmS1eKb33wbUmGZZKcnJxzMzkX4GmiAvU-mcRBoDdRXJWxyd0kLj33RIiZMqZtNpFNp_r4OH-7Aj-Hb2FoWeXAiS1Ru9pSjXxTKIQi2jWpXp59jalrFL1dHVpodLDY9z--o2VrXuy9wev7TIid7aPXu3HfVSC2aAXnsZHKCpulZUiygNJSI4VTSAl33EiTlNxk3Evnrc9SY-kX98Jp7RU6m0Q6if97CS6jjBB5u1Tw_WjwpEjSLr1Iypxvejx8jRJHLT3z2tYA5-nZv5dl_vGc27nxv52hm3C9V9Rsq7sFbsGKr27D4bvaLJo58TgbcldYHRjKXbaNrPaFag0NQ8Xebpp2gSHljHUJ7qz7fjn0Bc078OFCjuAurFZ15deABcSsQpmEPIYn2Nrc5TykqXC5KIXLJhE8H65tYftYderu8blAe0UwKEYYRPBkHHrWZYmcN-gVAWQcQPHf7YZ6dlL0bFKgzObOJpNgqGznrU49F85ZZZzTSpYRrA8QKXpOaorf-Ijg8bgb2YReEZWVrxc0JtVSpugyI7jXoXGciZRCp-h-I8iWcLo01eU91emnNrE8ozx0qe7_e1qP4Oru0eFBcbA33X8A1wRVNqiKztdhdT5b-A24Yr_NT5vZw_a2Y_DxolH8C46VbAQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU4S64SFegQIGgcQmGsf25LFACGhHjEpHIwRSWYX4RStBUiYzIH6Nr-PevGBQxa4LdlFiRY5zcnLutX0uwONIeap9Mgm9wNhEcVWEOrOTsHDcESEmSuum2EQyn6dHR9liC372e2FoWWXPiQ1R28pQjnwsFEIRwzWpxr5bFrHYmz4__RpSBSmaae3LabQQOXA_vmP4Vj-b7eG7fiLEdP_dq9dhV2EgNBgWrkItlREmiQsfJR5lZop0ToYl3HItdVRwnXAnrTMuibWhI-6ETVOnMMqJpJV43wuwjZJciRFsL2aHiw9DuCdFFLdeRlJmfOxwMFIUPGrjD9gUCjhL3f69SPOPv970yv88Xlfhcqe12Yv247gGW668DodvK72uV8TwrHdkYZVnKITZPvLdF8pC1Ay1fHNq3lqJFEvWeruzdmez71KdN-D9uTzBTRiVVeluA_OIZoUCChkOB9uYzGbcx7GwmSiETSYBPO3fc246w3Wq-_E5x8CLIJEPkAjg0dD0tHUZOavRSwLL0ICMwZsT1fJT3vFMjgKcWxNNvKaEnjNp7Liw1ihtbapkEcBuD5e8Y6s6_42VAB4Ol5FnaPKoKF21pjZxKmWM8WcAt1pkDj2RUqQxxsUBJBuY3ejq5pXy5LjxMk_IKV2qO__u1gO4hODN38zmB3dhR1DKg9LrfBdGq-Xa3YOL5tvqpF7e775BBh_PG8a_AGMddjo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+Analysis+of+the+Estimators+for+the+Nonlinear+System+Identification&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Jakowluk%2C+Wiktor&rft.au=Godlewski%2C+Karol&rft.date=2020-07-30&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=22&rft.issue=8&rft_id=info:doi/10.3390%2Fe22080834&rft_id=info%3Apmid%2F33286605&rft.externalDocID=PMC7517434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon