Robustness Analysis of the Estimators for the Nonlinear System Identification
The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions...
Saved in:
| Published in: | Entropy (Basel, Switzerland) Vol. 22; no. 8; p. 834 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
30.07.2020
MDPI |
| Subjects: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions during the identification task is minimized. In this paper, the adaptive filtering (AF) scheme for plant model parameter estimation is proposed. The experimental results are obtained using the nonlinear interacting water tanks system. The adaptive filtering is expressed by minimizing the error between the system and the plant model outputs subject to the white noise signal affecting system output. This measurement error is quantified by the comparison of Minimum Error Entropy Renyi (MEER), Least Entropy Like (LEL), Least Squares (LS), and Least Absolute Deviation (LAD) estimators, respectively. The plant model parameters were obtained using sequential quadratic programming (SQP) algorithm. The robustness tests for the double-tank water system parameter estimators are performed using the ellipsoidal confidence regions. The effectiveness analysis for the above-mentioned estimators relies on the total number of iterations and the number of function evaluation comparisons. The main contribution of this paper is the evaluation of different estimation methods for the nonlinear system identification using various excitation signals. The proposed empirical study is illustrated by the numerical examples, and the simulation results are discussed. |
|---|---|
| AbstractList | The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions during the identification task is minimized. In this paper, the adaptive filtering (AF) scheme for plant model parameter estimation is proposed. The experimental results are obtained using the nonlinear interacting water tanks system. The adaptive filtering is expressed by minimizing the error between the system and the plant model outputs subject to the white noise signal affecting system output. This measurement error is quantified by the comparison of Minimum Error Entropy Renyi (MEER), Least Entropy Like (LEL), Least Squares (LS), and Least Absolute Deviation (LAD) estimators, respectively. The plant model parameters were obtained using sequential quadratic programming (SQP) algorithm. The robustness tests for the double-tank water system parameter estimators are performed using the ellipsoidal confidence regions. The effectiveness analysis for the above-mentioned estimators relies on the total number of iterations and the number of function evaluation comparisons. The main contribution of this paper is the evaluation of different estimation methods for the nonlinear system identification using various excitation signals. The proposed empirical study is illustrated by the numerical examples, and the simulation results are discussed. The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions during the identification task is minimized. In this paper, the adaptive filtering (AF) scheme for plant model parameter estimation is proposed. The experimental results are obtained using the nonlinear interacting water tanks system. The adaptive filtering is expressed by minimizing the error between the system and the plant model outputs subject to the white noise signal affecting system output. This measurement error is quantified by the comparison of Minimum Error Entropy Renyi (MEER), Least Entropy Like (LEL), Least Squares (LS), and Least Absolute Deviation (LAD) estimators, respectively. The plant model parameters were obtained using sequential quadratic programming (SQP) algorithm. The robustness tests for the double-tank water system parameter estimators are performed using the ellipsoidal confidence regions. The effectiveness analysis for the above-mentioned estimators relies on the total number of iterations and the number of function evaluation comparisons. The main contribution of this paper is the evaluation of different estimation methods for the nonlinear system identification using various excitation signals. The proposed empirical study is illustrated by the numerical examples, and the simulation results are discussed.The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the identification experiment. The focus of such an idea is to design an appropriate experiment so that the departure from normal working conditions during the identification task is minimized. In this paper, the adaptive filtering (AF) scheme for plant model parameter estimation is proposed. The experimental results are obtained using the nonlinear interacting water tanks system. The adaptive filtering is expressed by minimizing the error between the system and the plant model outputs subject to the white noise signal affecting system output. This measurement error is quantified by the comparison of Minimum Error Entropy Renyi (MEER), Least Entropy Like (LEL), Least Squares (LS), and Least Absolute Deviation (LAD) estimators, respectively. The plant model parameters were obtained using sequential quadratic programming (SQP) algorithm. The robustness tests for the double-tank water system parameter estimators are performed using the ellipsoidal confidence regions. The effectiveness analysis for the above-mentioned estimators relies on the total number of iterations and the number of function evaluation comparisons. The main contribution of this paper is the evaluation of different estimation methods for the nonlinear system identification using various excitation signals. The proposed empirical study is illustrated by the numerical examples, and the simulation results are discussed. |
| Author | Godlewski, Karol Jakowluk, Wiktor |
| AuthorAffiliation | Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland; godlewski215@gmail.com |
| AuthorAffiliation_xml | – name: Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland; godlewski215@gmail.com |
| Author_xml | – sequence: 1 givenname: Wiktor orcidid: 0000-0003-0942-8903 surname: Jakowluk fullname: Jakowluk, Wiktor – sequence: 2 givenname: Karol surname: Godlewski fullname: Godlewski, Karol |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33286605$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkstuFDEQRS0URB6w4AdQS2xgMaT8aLd7gxRFAUYKIPFYW267OvGoxw62G2n-Hs9MEiVh5avyraNrVx2TgxADEvKawgfOezhFxkCB4uIZOaLQ9wvBAQ4e6ENynPMKgHFG5QtyyDlTUkJ7RL7-iMOcS8Ccm7Ngpk32uYljU66xucjFr02JKTdjTLvStxgmH9Ck5ucmF1w3S4eh-NFbU3wML8nz0UwZX92eJ-T3p4tf518Wl98_L8_PLhdWyL4sBi4ss500I-3GjvWKSwZt34ODgQ_UwNABcocWOznYrQJkTikUPe0od_yELPdcF81K36QaM210NF7vCjFdaZOKtxPqVgA4S9tx4FWiVRKBOWfF4JwS3FTWxz3rZh7W6Gx9TzLTI-jjm-Cv9VX8q7uWdoKLCnh3C0jxz4y56LXPFqfJBIxz1kxIxbls-65a3z6xruKc6rdvXRyoUmoHfPMw0X2Uu6lVw-neYFPMOeGorS-7AdSAftIU9HYv9P1e1I73TzruoP97_wF8obct |
| CitedBy_id | crossref_primary_10_1016_j_procs_2022_09_426 crossref_primary_10_1016_j_procs_2021_09_171 crossref_primary_10_1088_1742_6596_3085_1_012039 crossref_primary_10_3390_app12126084 |
| Cites_doi | 10.1002/0471723134 10.1016/j.jmva.2004.02.006 10.1016/j.jmva.2013.04.001 10.1109/9.90229 10.3390/e16042223 10.1016/S1474-6670(17)48238-3 10.1016/0005-1098(86)90064-6 10.1002/047134608X.W1046 10.23919/ECC.2013.6669533 10.1007/978-3-030-17344-9_10 10.3390/e20070528 10.1016/j.ifacol.2017.08.074 10.3166/ejc.11.335-352 10.1016/j.automatica.2008.03.023 10.1016/j.jprocont.2015.03.011 10.1109/TAC.2011.2132290 10.3390/e16115822 10.1093/oso/9780199296590.001.0001 10.3390/e11040560 10.3390/e17095995 10.1109/87.845876 10.1007/978-3-030-28957-7_38 10.1007/978-1-4419-1570-2 10.1109/MCS.2016.2643243 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/e22080834 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_5400dc15fb3540ec86e02ddc4bdd843a PMC7517434 33286605 10_3390_e22080834 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Ministerstwo Nauki i Szkolnictwa Wyższego grantid: S/WI/3/18 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c469t-b34c2c76af17f729836205990d0b3b1a0b70e3dece76bce3de0e2d88e491713d3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564141700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:33:07 EDT 2025 Tue Nov 04 02:00:51 EST 2025 Sun Nov 09 10:04:46 EST 2025 Fri Jul 25 11:59:47 EDT 2025 Mon Jul 21 06:04:02 EDT 2025 Sat Nov 29 07:19:44 EST 2025 Tue Nov 18 20:54:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | optimal control system identification model fitting robust estimation |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-b34c2c76af17f729836205990d0b3b1a0b70e3dece76bce3de0e2d88e491713d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0942-8903 |
| OpenAccessLink | https://www.proquest.com/docview/2430188834?pq-origsite=%requestingapplication% |
| PMID | 33286605 |
| PQID | 2430188834 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5400dc15fb3540ec86e02ddc4bdd843a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517434 proquest_miscellaneous_2468336597 proquest_journals_2430188834 pubmed_primary_33286605 crossref_citationtrail_10_3390_e22080834 crossref_primary_10_3390_e22080834 |
| PublicationCentury | 2000 |
| PublicationDate | 20200730 |
| PublicationDateYYYYMMDD | 2020-07-30 |
| PublicationDate_xml | – month: 7 year: 2020 text: 20200730 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Helmicki (ref_7) 1991; 36 Wang (ref_16) 2004; 89 ref_14 ref_12 Larsson (ref_13) 2015; 31 ref_11 ref_33 ref_32 Chen (ref_23) 2014; 16 Rojas (ref_8) 2008; 44 ref_19 ref_18 Jakowluk (ref_30) 2014; 16 Smith (ref_28) 1993; Volume 26 Annergren (ref_27) 2017; 37 Gevers (ref_6) 1986; 22 Jakowluk (ref_15) 2019; Volume 11703 ref_22 Johansson (ref_26) 2000; 8 ref_21 ref_1 Gevers (ref_5) 2005; 11 ref_3 Wu (ref_24) 2015; 17 ref_2 ref_29 Jakowluk (ref_31) 2019; Volume 559 ref_9 Relan (ref_25) 2017; 50 ref_4 Wang (ref_17) 2013; 120 Narasimhan (ref_10) 2011; 56 Indiveri (ref_20) 2009; 11 |
| References_xml | – ident: ref_9 – ident: ref_2 doi: 10.1002/0471723134 – ident: ref_32 – ident: ref_3 – volume: 89 start-page: 243 year: 2004 ident: ref_16 article-title: The limiting behavior of least absolute deviation estimators for threshold autoregressive models publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2004.02.006 – volume: 120 start-page: 135 year: 2013 ident: ref_17 article-title: TheL1 penalized LAD estimator for high dimensional linear regression publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2013.04.001 – volume: 36 start-page: 1163 year: 1991 ident: ref_7 article-title: Control oriented system identification: A worst-case/deterministic approach in h publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.90229 – ident: ref_11 – volume: 16 start-page: 2223 year: 2014 ident: ref_23 article-title: An Extended Result on the Optimal Estimation under the Minimum Error Entropy Criterion publication-title: Entropy doi: 10.3390/e16042223 – volume: Volume 26 start-page: 129 year: 1993 ident: ref_28 article-title: Closed Loop Relay Estimation of Uncertainty Bounds for Robust Control Models publication-title: Proceedings of the IFAC Proceedings Volumes doi: 10.1016/S1474-6670(17)48238-3 – volume: 22 start-page: 543 year: 1986 ident: ref_6 article-title: Optimal experiment designs with respect to the intended model application publication-title: Automatica doi: 10.1016/0005-1098(86)90064-6 – ident: ref_1 doi: 10.1002/047134608X.W1046 – ident: ref_12 doi: 10.23919/ECC.2013.6669533 – ident: ref_14 – volume: Volume 559 start-page: 128 year: 2019 ident: ref_31 article-title: Design of an Optimal Input Signal for Parameter Estimation of Linear Fractional-Order Systems publication-title: Lecture Notes in Electrical Engineering doi: 10.1007/978-3-030-17344-9_10 – ident: ref_18 – ident: ref_21 doi: 10.3390/e20070528 – volume: 50 start-page: 452 year: 2017 ident: ref_25 article-title: An unstructured flexible nonlinear model for the cascaded water-tanks benchmark publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.074 – volume: 11 start-page: 335 year: 2005 ident: ref_5 article-title: Identification for control: From the early achievements to the revival of experiment design publication-title: Eur. J. Control doi: 10.3166/ejc.11.335-352 – volume: 44 start-page: 2706 year: 2008 ident: ref_8 article-title: On the equivalence of least costly and traditional experiment design for control publication-title: Automatica doi: 10.1016/j.automatica.2008.03.023 – volume: 31 start-page: 1 year: 2015 ident: ref_13 article-title: Experimental evaluation of model predictive control with excitation (MPC-X) on an industrial depropanizer publication-title: J. Process. Control doi: 10.1016/j.jprocont.2015.03.011 – volume: 56 start-page: 1467 year: 2011 ident: ref_10 article-title: Plant friendly input design: Convex relaxation and quality publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2011.2132290 – ident: ref_29 – ident: ref_33 – volume: 16 start-page: 5822 year: 2014 ident: ref_30 article-title: Plant friendly input design for parameter estimation in an inertial system with respect to D-efficiency constraints publication-title: Entropy doi: 10.3390/e16115822 – ident: ref_4 doi: 10.1093/oso/9780199296590.001.0001 – volume: 11 start-page: 560 year: 2009 ident: ref_20 article-title: An Entropy-Like Estimator for Robust Parameter Identification publication-title: Entropy doi: 10.3390/e11040560 – ident: ref_19 – volume: 17 start-page: 5995 year: 2015 ident: ref_24 article-title: Proportionate Minimum Error Entropy Algorithm for Sparse System Identification publication-title: Entropy doi: 10.3390/e17095995 – volume: 8 start-page: 456 year: 2000 ident: ref_26 article-title: The quadruple-tank process: A multivariable laboratory process with an adjustable zero publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/87.845876 – volume: Volume 11703 start-page: 457 year: 2019 ident: ref_15 article-title: Design of a State Estimation Considering Model Predictive Control Strategy for a Nonlinear Water Tanks Process publication-title: Computer Information Systems and Industrial Management doi: 10.1007/978-3-030-28957-7_38 – ident: ref_22 doi: 10.1007/978-1-4419-1570-2 – volume: 37 start-page: 31 year: 2017 ident: ref_27 article-title: Application-Oriented Input Design in System Identification: Optimal Input Design for Control publication-title: IEEE Control Syst. doi: 10.1109/MCS.2016.2643243 |
| SSID | ssj0023216 |
| Score | 2.223323 |
| Snippet | The main objective of the system identification is to deliver maximum information about the system dynamics, while still ensuring an acceptable cost of the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 834 |
| SubjectTerms | Accuracy Adaptive filters Adaptive systems Algorithms Computer simulation Empirical analysis Entropy Entropy (Information theory) Error analysis Estimators Evaluation Experiments Identification methods Mathematical models Methods model fitting Noise Nonlinear systems optimal control Parameter estimation Parameter identification Quadratic programming robust estimation Robustness (mathematics) System dynamics System identification Water purification Water tanks White noise Working conditions |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqxKEXVAQtaQEZ1EMvEY7ttb1HQCAOsEJVW3GLYnsskGgW7Ud_PzNxNmIREpfeInukODOx572J88zYd1MBLYy6hJB8qUdNKl004xIzc0gG9Ai6Ys6fazuZuLu78e2Lo75oT1iWB86OO0FEIWKoRslThQKCMyBkjEH7GJ1WHTQSdrwiUz3VUrIyWUdIIak_ASkRGTml17JPJ9L_FrJ8vUHyRca5_MS2eqjIT_MQt9kHaHfYzc-pX84XtEDxlaAInyaOOI5f4HT9SyR6zhGKdk2TrITRzHiWJuf5x9zUV-p22e_Li1_nV2V_JEIZkMcuSq90kMGaJlU2IS52mH9IYUVE4ZWvGuGtABUhgDU-0JUAGZ0DjbSsUlF9ZhvttIU9xqVJzoIfRYtZXIXUmLEVPjhf4YVysmA_Vq6qQ68XTsdWPNbIG8ir9eDVgh0Ppk9ZJOMtozPy92BAutZdA0a77qNdvxftgu2volX3k21e4_BFhUye7nE0dOM0oW8fTQvTJdkYp5RB-lSwLzm4w0iUks4grSuYXQv72lDXe9qH-06K25LQt9Jf_8ezfWMfJZF5KhyLfbaxmC3hgG2Gf4uH-eywe7-fAV5lAi8 priority: 102 providerName: Directory of Open Access Journals |
| Title | Robustness Analysis of the Estimators for the Nonlinear System Identification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33286605 https://www.proquest.com/docview/2430188834 https://www.proquest.com/docview/2468336597 https://pubmed.ncbi.nlm.nih.gov/PMC7517434 https://doaj.org/article/5400dc15fb3540ec86e02ddc4bdd843a |
| Volume | 22 |
| WOSCitedRecordID | wos000564141700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXWsQrtKwC4sAlqmN7be8JUbQVSHS1Kg8tpyh-lUqQlM0uR347M0k2ZVHFhUtkxT6MMh7P942dzwAvVB5oYZRZcNFmclzGzHg1yTAzu6iCHIe2mPP5vZ7NzGIxmfcFt6Y_VrlZE9uF2teOauTHXOJURLom5KurHxndGkW7q_0VGjuwRyoJeXt078NAuATPVacmJJDaHwfOER8ZIbdyUCvVfxO-_PuY5B9553T_fy0-gLs94kxfd1PkHtwK1X04O6_tulnROpdudEnSOqYIB9MpRv134uJNioi2fTXrBDXKZdopnKfd_72xL_g9gE-n049v3mb9zQqZQzq8yqyQjjutypjriPDaYBojoRbmmRU2L5nVLAgfXNDKOmqxwL0xQSK7y4UXD2G3qqvwGFKuotHBjr1GMCBcLNVEM-uMzbEhDE_g5eZbF66XHafbL74VSD_ILcXglgSeD0OvOq2NmwadkMOGASSP3b6olxdFH20FwlDmXT6OlspawRkVGPfeSeu9kaJM4GjjsqKP2aa49lcCz4ZujDbaQimrUK9pjDJCKGRhCTzqZsdgiRDcKGSHCeitebNl6nZPdfm1VfTWpBcu5JN_m3UIdzixfaossyPYXS3X4Sncdj9Xl81yBDt6YUawdzKdzc9HbW1h1IYDPX9NsWf-7mz-5Tc6ABXn |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQk2PMQrUMAgkNhEdWyP7SwQ4tGqVacjBAV1l8YvqARJmcyA-Cm-keu8YFDFrgt2UWJFTnJyfO61fS7AY5n5SIwi9TaYVEzKkGon8xRHZhukFxPfJnM-TNVspg8P8zdr8HPYCxOXVQ6c2BK1q23MkW8ygVDEcI2L5ydf01g1Ks6uDiU0Oljs-R_fMWRrnu2-xu_7hLHtrYNXO2lfVSC1GAouUsOFZVbJMmQqoLTUSOHRpIQ6arjJSmoU9dx565U0Nh5Rz5zWXmBkk3HH8b7n4DzKCJa3SwXfjQEeZ5ns3Is4z-mmZwz1mOZiZcxrSwOcpmf_Xpb5xzi3feV_e0NX4XKvqMmL7he4Bmu-ug77b2uzbBaRx8ngu0LqQFDuki1ktS8x19AQVOztqVlnGFLOSefgTrr9y6FPaN6A92fyBDdhvaorfxsIk0ErbyZOodjhNpQyV9RYbTI84Jol8HT4toXtbdVjdY_PBYZXEQbFCIMEHo1NTzovkdMavYwAGRtE--_2RD3_WPRsUqDMps5mk2Bi2s5bLT1lzllhnNOClwlsDBApek5qit_4SODheBnZJE4RlZWvl7GN1JxLjDITuNWhcewJ50xLjH4TUCs4Xenq6pXq-FPrWK6iHzoXd_7drQdwcedgf1pMd2d7d-ESi5mNmEWnG7C-mC_9Pbhgvy2Om_n99rcjcHTWKP4FgrFswA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgix4SFegQEMAolNVMd2bXeBEDBTUc1MVSFAwyrELxgJmqFpQfwaX8d1XlA0YjcLdlFiRU5ycnzutX0uwCOZ-UiMIvU2mFSMipBqJ8cpjsw2SC9Gvk7mvDtQs5k-OhrPt-BntxcmLqvsOLEmalfamCMfMoFQxHCNi2Fol0XMdyfPTr6msYJUnGntymk0ENn3P75j-FY9ne7it37M2GTvzctXaVthILUYFq5Sw4VlVskiZCqgzNRI59GwhDpquMkKahT13HnrlTQ2HlHPnNZeYJSTccfxvudgGyW5YAPYnk8P5-_7cI-zTDZeRpyP6dAzhupMc7ExAtaFAk5Tt38v0vxj1Jtc_p_f1xW41Gpt8rz5Oa7Cll9cg8PXpVlXq8jwpHNkIWUgKITJHvLdl5iFqAhq-frUrLESKZak8XYnzc7m0KY6r8PbM3mCGzBYlAt_CwiTQStvRk6hDOI2FHKsqLHaZHjANUvgSfedc9sarse6H59zDLwiJPIeEgk87JueNC4jpzV6EcHSN4jG4PWJcvkxb3kmRwFOnc1GwcSEnrdaesqcs8I4pwUvEtjp4JK3bFXlv7GSwIP-MvJMnDwqFr5cxzZScy4x_kzgZoPMviecMy0xLk5AbWB2o6ubVxbHn2ovcxWd0rm4_e9u3YcLCN78YDrbvwMXWUx5xPQ63YHBarn2d-G8_bY6rpb32n-QwIezhvEvZd929g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+Analysis+of+the+Estimators+for+the+Nonlinear+System+Identification&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Jakowluk%2C+Wiktor&rft.au=Godlewski%2C+Karol&rft.date=2020-07-30&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=22&rft.issue=8&rft.spage=834&rft_id=info:doi/10.3390%2Fe22080834&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |