A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification
In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the pre...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 21; číslo 16; s. 5571 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
18.08.2021
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods—Mutual Information, ReliefF, Chi Square, and Xvariance—and then each feature from the union set was assessed by three classification algorithms—support vector machine, naïve Bayes, and k-nearest neighbors—and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost. |
|---|---|
| AbstractList | In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods—Mutual Information, ReliefF, Chi Square, and Xvariance—and then each feature from the union set was assessed by three classification algorithms—support vector machine, naïve Bayes, and k-nearest neighbors—and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost. In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods-Mutual Information, ReliefF, Chi Square, and Xvariance-and then each feature from the union set was assessed by three classification algorithms-support vector machine, naïve Bayes, and k-nearest neighbors-and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost.In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods-Mutual Information, ReliefF, Chi Square, and Xvariance-and then each feature from the union set was assessed by three classification algorithms-support vector machine, naïve Bayes, and k-nearest neighbors-and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost. In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods-Mutual Information, ReliefF, Chi Square, and Xvariance-and then each feature from the union set was assessed by three classification algorithms-support vector machine, naïve Bayes, and -nearest neighbors-and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost. |
| Author | Mandal, Moumita Ijaz, Muhammad Fazal Sarkar, Ram Singh, Pawan Kumar Shafi, Jana |
| AuthorAffiliation | 2 Department of Information Technology, Jadavpur University, Kolkata 700106, India; pksingh.it@jadavpuruniversity.in 1 Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India; moumita.mandal.iiit@gmail.com (M.M.); ram.sarkar@jadavpuruniversity.in (R.S.) 4 Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdul Aziz University, Wadi Ad-Dwasir 11991, Saudi Arabia; j.jana@psau.edu.sa 3 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India; moumita.mandal.iiit@gmail.com (M.M.); ram.sarkar@jadavpuruniversity.in (R.S.) – name: 4 Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdul Aziz University, Wadi Ad-Dwasir 11991, Saudi Arabia; j.jana@psau.edu.sa – name: 2 Department of Information Technology, Jadavpur University, Kolkata 700106, India; pksingh.it@jadavpuruniversity.in – name: 3 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea |
| Author_xml | – sequence: 1 givenname: Moumita orcidid: 0000-0002-5487-1261 surname: Mandal fullname: Mandal, Moumita – sequence: 2 givenname: Pawan Kumar orcidid: 0000-0002-9598-7981 surname: Singh fullname: Singh, Pawan Kumar – sequence: 3 givenname: Muhammad Fazal orcidid: 0000-0001-5206-272X surname: Ijaz fullname: Ijaz, Muhammad Fazal – sequence: 4 givenname: Jana surname: Shafi fullname: Shafi, Jana – sequence: 5 givenname: Ram orcidid: 0000-0001-8813-4086 surname: Sarkar fullname: Sarkar, Ram |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34451013$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktv1DAUhS1URB-w4A-gSGxgEepXHGeDVA0dqFQJoRaxtG6c68FDJp7aCaj_HqdTRm3Fyvb156Nzfe4xORjCgIS8ZvSDEA09TZwxVVU1e0aOmOSy1JzTgwf7Q3Kc0ppSLoTQL8ihkLJilIkj8u2suI6-vBphhcWPCNstxnLp-xFjsUQYp4jFFfZoRx-GYhlhg39C_FW4EItPPiEkLBY9pOSdtzBDL8lzB33CV_frCfm-PL9efCkvv36-WJxdllaqZiyh5g5ppTh2jqOzVaW0VtY6JWuO6LpKQ21d3aGCRrZdNt6CQlXX4BzFRpyQi51uF2BtttFvIN6aAN7cFUJcGYijtz0aqdC1DTituZKITNe2pXXDWaPzqa2y1sed1nZqN9hZHMYI_SPRxzeD_2lW4bfRknLezALv7gViuJkwjWbjk8W-hwHDlAyvlKJCskZk9O0TdB2mOOSvmqkcIqN67u7NQ0d7K_-Sy8D7HWBjSCmi2yOMmnkqzH4qMnv6hLV-vAsrN-P7_7z4C6nKuOw |
| CitedBy_id | crossref_primary_10_1007_s11042_022_12886_0 crossref_primary_10_3390_s22051848 crossref_primary_10_3390_diagnostics13061026 crossref_primary_10_1007_s11042_023_15115_4 crossref_primary_10_3390_healthcare9121632 crossref_primary_10_1007_s11042_022_14164_5 crossref_primary_10_1007_s42235_023_00478_z crossref_primary_10_1016_j_inffus_2023_102191 crossref_primary_10_1007_s12553_022_00700_8 crossref_primary_10_3390_s22082988 crossref_primary_10_3390_cancers14174191 crossref_primary_10_1007_s11042_022_12539_2 crossref_primary_10_1109_ACCESS_2022_3179418 crossref_primary_10_1016_j_eswa_2022_118988 crossref_primary_10_1007_s11042_023_15207_1 crossref_primary_10_1016_j_jhydrol_2025_134167 crossref_primary_10_1038_s41598_025_06121_7 crossref_primary_10_1007_s11042_023_15704_3 crossref_primary_10_1371_journal_pone_0284619 crossref_primary_10_1007_s11042_023_15123_4 crossref_primary_10_32604_cmc_2024_053132 crossref_primary_10_3389_fmars_2024_1517170 crossref_primary_10_32604_cmc_2022_023286 crossref_primary_10_1007_s11042_022_13776_1 crossref_primary_10_3390_diagnostics14232698 crossref_primary_10_1007_s11042_023_15061_1 crossref_primary_10_1007_s11831_022_09776_x crossref_primary_10_7717_peerj_cs_1229 crossref_primary_10_1016_j_jksuci_2023_101757 crossref_primary_10_3390_diagnostics11112017 crossref_primary_10_3390_diagnostics13101783 crossref_primary_10_1007_s11042_023_14627_3 crossref_primary_10_1007_s10586_022_03652_w crossref_primary_10_1007_s11042_023_15047_z crossref_primary_10_1007_s11042_023_16862_0 crossref_primary_10_1007_s13042_024_02299_w crossref_primary_10_3390_biomimetics10080523 crossref_primary_10_48084_etasr_11388 crossref_primary_10_1007_s11042_023_15280_6 crossref_primary_10_1016_j_eswa_2022_118286 crossref_primary_10_1155_2022_4848425 crossref_primary_10_3390_s21238095 crossref_primary_10_1016_j_asoc_2023_110055 crossref_primary_10_1016_j_eij_2025_100639 crossref_primary_10_1016_j_eswa_2023_119535 crossref_primary_10_1007_s11042_023_17259_9 crossref_primary_10_3389_fdata_2025_1624507 crossref_primary_10_1007_s11042_023_17234_4 crossref_primary_10_1007_s11042_022_14253_5 crossref_primary_10_1007_s11042_023_14634_4 crossref_primary_10_3390_e23121588 crossref_primary_10_1186_s13040_022_00304_y crossref_primary_10_1111_exsy_13609 crossref_primary_10_1109_ACCESS_2022_3223085 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_3233_JIFS_232128 crossref_primary_10_3389_fimmu_2023_1304165 crossref_primary_10_3390_sym14020194 crossref_primary_10_5812_ijcm_138653 crossref_primary_10_3389_fmed_2022_893208 crossref_primary_10_1007_s11042_023_14876_2 crossref_primary_10_1038_s41598_024_54990_1 crossref_primary_10_1155_2022_4357088 crossref_primary_10_3233_JIFS_235991 crossref_primary_10_3390_math10030368 crossref_primary_10_1155_2022_1413597 |
| Cites_doi | 10.1016/j.apm.2019.01.044 10.1016/j.jtbi.2018.12.010 10.1016/j.jbi.2018.07.015 10.1109/ACCESS.2020.3035531 10.1016/j.compeleceng.2013.11.024 10.1103/PhysRevE.69.066138 10.1007/978-981-13-1642-5 10.1016/j.asoc.2017.11.006 10.3322/caac.21492 10.1016/j.neucom.2016.07.080 10.1109/ACCESS.2020.2991543 10.1063/5.0028662 10.1016/B978-1-55860-247-2.50037-1 10.1109/ACCESS.2020.3028121 10.1109/ACCESS.2020.3019809 10.1109/ACCESS.2020.3006197 10.1016/j.mehy.2020.109577 10.1016/j.ygeno.2019.07.002 10.1504/IJCSM.2016.080073 10.1007/s12652-020-02454-5 10.1145/1569901.1569930 10.1007/BF00994018 10.1007/978-981-16-2543-5_42 10.3390/app10082816 10.1007/s11517-018-1874-4 10.1109/ACCESS.2020.2988157 10.3390/e21020138 10.1080/10590501.2015.1002999 10.1126/science.286.5439.531 10.1007/s10489-018-1334-8 10.1016/j.chemolab.2018.11.010 10.1109/ACCESS.2019.2936346 10.1111/exsy.12459 10.1109/ICMEW.2017.8026250 10.1016/j.advengsoft.2016.01.008 10.1007/978-981-16-2543-5_18 10.1007/978-981-10-8863-6_9 10.2307/1403797 10.1007/s12065-019-00279-6 10.1016/j.knosys.2017.09.006 10.1109/ACCESS.2020.3028241 10.1109/ACCESS.2020.2996611 10.18502/ijpho.v11i2.5838 10.1007/s40747-020-00237-1 10.1109/ACCESS.2018.2818682 10.1007/s11517-019-02100-z 10.1109/ICoDSA50139.2020.9213051 10.23940/ijpe.21.03.p2.263275 10.1016/j.compbiomed.2020.103974 10.1504/IJAPR.2015.068929 10.1109/ACCESS.2020.3012838 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s21165571 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_46efb9af88264ee187cb0792198ee1b5 PMC8402295 34451013 10_3390_s21165571 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c469t-a72fe0562edf2efc556886ccf6472eefd58a7cf7de6a94bd338ba6e677aff0e93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690118700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:29:43 EST 2025 Tue Nov 04 01:30:00 EST 2025 Sun Nov 09 10:04:35 EST 2025 Tue Oct 07 06:59:32 EDT 2025 Wed Feb 19 02:08:53 EST 2025 Sat Nov 29 07:17:38 EST 2025 Tue Nov 18 22:30:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | disease classification arrhythmia cancer dataset whale optimization algorithm wrapper method feature selection filter method |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-a72fe0562edf2efc556886ccf6472eefd58a7cf7de6a94bd338ba6e677aff0e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9598-7981 0000-0002-5487-1261 0000-0001-5206-272X 0000-0001-8813-4086 |
| OpenAccessLink | https://doaj.org/article/46efb9af88264ee187cb0792198ee1b5 |
| PMID | 34451013 |
| PQID | 2565711089 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_46efb9af88264ee187cb0792198ee1b5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402295 proquest_miscellaneous_2566034193 proquest_journals_2565711089 pubmed_primary_34451013 crossref_primary_10_3390_s21165571 crossref_citationtrail_10_3390_s21165571 |
| PublicationCentury | 2000 |
| PublicationDate | 20210818 |
| PublicationDateYYYYMMDD | 2021-08-18 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210818 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lu (ref_5) 2017; 256 ref_50 Cui (ref_14) 2020; 8 ref_57 ref_12 Filippini (ref_8) 2015; 33 ref_11 ref_55 ref_10 ref_54 Prabhakar (ref_29) 2020; 8 ref_53 ref_52 Kadam (ref_15) 2020; 16 Sheikh (ref_59) 2020; 8 Golub (ref_58) 1999; 286 ref_18 Liu (ref_28) 2018; 6 Douiri (ref_26) 2019; 2019 Zhou (ref_23) 2017; Volume 136 Ghosh (ref_2) 2020; 8 Wang (ref_16) 2021; 17 Wang (ref_17) 2019; 71 Alirezanejad (ref_27) 2019; 112 ref_67 ref_22 ref_65 ref_64 ref_63 ref_62 Fix (ref_44) 1989; 57 Singh (ref_61) 2016; 7 Urbanowicz (ref_56) 2018; 85 Mafarja (ref_51) 2018; 62 Yan (ref_25) 2019; Volume 184 Santhakumar (ref_21) 2020; 12 Das (ref_40) 2020; 8 Kang (ref_24) 2018; 463 ref_36 ref_35 ref_31 ref_30 Tubishat (ref_49) 2018; 49 Cortes (ref_45) 1995; 20 Dey (ref_38) 2020; 8 ref_37 Singh (ref_60) 2015; 2 Thejas (ref_66) 2019; 7 Ghosh (ref_42) 2018; 57 Guha (ref_39) 2020; 8 Chandrashekar (ref_4) 2014; 40 Khamees (ref_19) 2020; 2290 ref_47 ref_46 Chatterjee (ref_33) 2020; 8 ref_43 Mirjalili (ref_48) 2016; 95 Kilicarslan (ref_20) 2020; 137 ref_41 Bray (ref_9) 2018; 68 ref_3 Sahebi (ref_13) 2020; 125 Lima (ref_32) 2020; 58 Ghosh (ref_34) 2020; 8 Ghosh (ref_1) 2019; 12 ref_7 ref_6 |
| References_xml | – volume: 71 start-page: 286 year: 2019 ident: ref_17 article-title: Informative gene selection for microarray classification via adaptive elastic net with conditional mutual information publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.01.044 – volume: 463 start-page: 77 year: 2018 ident: ref_24 article-title: Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2018.12.010 – ident: ref_55 – volume: 85 start-page: 168 year: 2018 ident: ref_56 article-title: Benchmarking relief-based feature selection methods for bioinformatics data mining publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.015 – volume: 8 start-page: 200953 year: 2020 ident: ref_38 article-title: A Hybrid Meta-Heuristic Feature Selection Method Using Golden Ratio and Equilibrium Optimization Algorithms for Speech Emotion Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3035531 – volume: 40 start-page: 16 year: 2014 ident: ref_4 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – ident: ref_41 doi: 10.1103/PhysRevE.69.066138 – ident: ref_12 doi: 10.1007/978-981-13-1642-5 – volume: 62 start-page: 441 year: 2018 ident: ref_51 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.006 – volume: 68 start-page: 394 year: 2018 ident: ref_9 article-title: Global cancer statistics. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: Cancer J. Clin. doi: 10.3322/caac.21492 – volume: 256 start-page: 56 year: 2017 ident: ref_5 article-title: A hybrid feature selection algorithm for gene expression data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.080 – ident: ref_65 – volume: 8 start-page: 83548 year: 2020 ident: ref_2 article-title: Improved Binary Sailfish Optimizer Based on Adaptive β-Hill Climbing for Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991543 – volume: 2290 start-page: 040001 year: 2020 ident: ref_19 article-title: Hybrid SCA-CS optimization algorithm for feature selection in classification problems publication-title: AIP Conf. Proc. doi: 10.1063/5.0028662 – ident: ref_43 doi: 10.1016/B978-1-55860-247-2.50037-1 – volume: 8 start-page: 182868 year: 2020 ident: ref_39 article-title: Hybrid Feature Selection Method Based on Harmony Search and Naked Mole-Rat Algorithms for Spoken Language Identification from Audio Signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028121 – volume: 8 start-page: 158125 year: 2020 ident: ref_59 article-title: EHHM: Electrical Harmony Based Hybrid Meta-Heuristic for Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019809 – volume: 8 start-page: 127462 year: 2020 ident: ref_29 article-title: Transformation Based Tri-Level Feature Selection Approach Using Wavelets and Swarm Computing for Prostate Cancer Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006197 – volume: 137 start-page: 109577 year: 2020 ident: ref_20 article-title: Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2020.109577 – volume: 112 start-page: 1173 year: 2019 ident: ref_27 article-title: Heuristic filter feature selection methods for medical datasets publication-title: Genomics doi: 10.1016/j.ygeno.2019.07.002 – volume: 7 start-page: 410 year: 2016 ident: ref_61 article-title: Significance of non-parametric statistical tests for comparison of classifiers over multiple datasets publication-title: Int. J. Comput. Sci. Math. doi: 10.1504/IJCSM.2016.080073 – volume: 12 start-page: 2965 year: 2020 ident: ref_21 article-title: Hybrid ant lion mutated ant colony optimizer technique for Leukemia prediction using microarray gene data publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02454-5 – ident: ref_31 – ident: ref_3 doi: 10.1145/1569901.1569930 – ident: ref_52 – ident: ref_10 – volume: 20 start-page: 273 year: 1995 ident: ref_45 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_57 doi: 10.1007/978-981-16-2543-5_42 – ident: ref_37 doi: 10.3390/app10082816 – volume: 57 start-page: 159 year: 2018 ident: ref_42 article-title: Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1874-4 – volume: 8 start-page: 75393 year: 2020 ident: ref_33 article-title: Late Acceptance Hill Climbing Based Social Ski Driver Algorithm for Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988157 – ident: ref_62 – ident: ref_18 doi: 10.3390/e21020138 – volume: 33 start-page: 36 year: 2015 ident: ref_8 article-title: A Review and Meta-Analysis of Outdoor Air Pollution and Risk of Childhood Leukemia publication-title: J. Environ. Sci. Health Part C doi: 10.1080/10590501.2015.1002999 – volume: 286 start-page: 531 year: 1999 ident: ref_58 article-title: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – ident: ref_7 – ident: ref_53 – volume: 49 start-page: 1688 year: 2018 ident: ref_49 article-title: Improved whale optimization algorithm for feature selection in Arabic sentiment analysis publication-title: Appl. Intell. doi: 10.1007/s10489-018-1334-8 – volume: Volume 184 start-page: 102 year: 2019 ident: ref_25 article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high dimensional biomedical datasets publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2018.11.010 – volume: 7 start-page: 116875 year: 2019 ident: ref_66 article-title: Mini-Batch Normalized Mutual Information: A Hybrid Feature Selection Method publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936346 – ident: ref_47 – ident: ref_35 doi: 10.1111/exsy.12459 – ident: ref_11 doi: 10.1109/ICMEW.2017.8026250 – volume: 95 start-page: 51 year: 2016 ident: ref_48 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_67 doi: 10.1007/978-981-16-2543-5_18 – ident: ref_50 doi: 10.1007/978-981-10-8863-6_9 – ident: ref_63 – volume: 57 start-page: 238 year: 1989 ident: ref_44 article-title: Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties publication-title: Int. Stat. Rev. doi: 10.2307/1403797 – volume: 12 start-page: 713 year: 2019 ident: ref_1 article-title: A histogram based fuzzy ensemble technique for feature selection publication-title: Evol. Intell. doi: 10.1007/s12065-019-00279-6 – volume: Volume 136 start-page: 187 year: 2017 ident: ref_23 article-title: Online feature selection for high dimensional class-imbalanced data publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.09.006 – ident: ref_6 – volume: 8 start-page: 181432 year: 2020 ident: ref_40 article-title: A Hybrid Meta-Heuristic Feature Selection Method for Identification of Indian Spoken Languages from Audio Signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028241 – ident: ref_54 – volume: 8 start-page: 97890 year: 2020 ident: ref_34 article-title: Binary Social Mimic Optimization Algorithm With X-Shaped Transfer Function for Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2996611 – volume: 16 start-page: 25 year: 2020 ident: ref_15 article-title: Bagging based ensemble of Support Vector Machines with improved elitist GA-SVM features selection for cardiac arrhythmia classification publication-title: Int. J. Hybrid Intell. Syst. – ident: ref_46 – ident: ref_22 doi: 10.18502/ijpho.v11i2.5838 – volume: 2019 start-page: 7828590 year: 2019 ident: ref_26 article-title: Gene Selection via a New Hybrid Ant Colony Optimization Algorithm for Cancer Classification in High-Dimensional Data publication-title: Comput. Math. Methods Med. – ident: ref_36 doi: 10.1007/s40747-020-00237-1 – volume: 6 start-page: 22863 year: 2018 ident: ref_28 article-title: A Hybrid Genetic Algorithm with Wrapper-Embedded Approaches for Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2818682 – volume: 58 start-page: 519 year: 2020 ident: ref_32 article-title: Medical data set classification using a new feature selection algorithm combined with twin-bounded support vector machine publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-019-02100-z – ident: ref_64 – ident: ref_30 doi: 10.1109/ICoDSA50139.2020.9213051 – volume: 17 start-page: 263 year: 2021 ident: ref_16 article-title: Arrhythmia Classification Algorithm based on SMOTE and Feature Selection publication-title: IJPE doi: 10.23940/ijpe.21.03.p2.263275 – volume: 125 start-page: 103974 year: 2020 ident: ref_13 article-title: GeFeS: A generalized wrapper feature selection approach for optimizing classification performance publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103974 – volume: 2 start-page: 1 year: 2015 ident: ref_60 article-title: Statistical validation of multiple classifiers over multiple datasets in the field of pattern recognition publication-title: Int. J. Appl. Pattern Recognit. doi: 10.1504/IJAPR.2015.068929 – volume: 8 start-page: 155619 year: 2020 ident: ref_14 article-title: A Hybrid Improved Dragonfly Algorithm for Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3012838 |
| SSID | ssj0023338 |
| Score | 2.5996408 |
| Snippet | In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5571 |
| SubjectTerms | Accuracy Algorithms arrhythmia Bayes Theorem Cardiac arrhythmia Classification Cluster Analysis Datasets disease classification Feature selection filter method Heart Humans Leukemia Literature reviews Machine Learning Male Medical tests Methods Neural networks Principal components analysis Prostate cancer Support Vector Machine Support vector machines whale optimization algorithm wrapper method |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BlgMc-IYGCjKIAxerGzuJ4xPq14rTqkARvUWOM25XQtltdpffj8fxhm5Vcekx8Rwsj8d-4xm9B_CpyJTWtbW8lGnNM6tTrp3IuKkblDma0uZ1EJtQ02l5fq5P44PbMrZVbs7EcFA3c0tv5PuC6nPUs66_LK44qUZRdTVKaNyHHWIqy0awc3gyPf0-pFzSZ2A9n5D0yf3-UhDbTK7SrVsokPXfhjBvNkpeu3kmT-4656fwOGJOdtBvkmdwD9vn8OgaE-EL-HbAzroZ99DzAtmvziwW2PHJjErpjFDiukP2I0jmeD-yyaaji3nIy477Gg8L-prUeRSc_RJ-Tk7Ojr7yqLbArU-RV9wo4ZDgEDZOoLNETVYW1joimEd0TV4a4jBqsDA6qxu_srUpsFDKODdGLV_BqJ23uAtsrGWhMBUpvVR6AGOEzI3HkqkpG2mFSODzZvUrG6nISRHjd-VTEnJUNTgqgY-D6aLn37jN6JBcOBgQZXb4Me8uqhiBVVagq7VxPqUoMsS0VLYeK-1P7NJ_1XkCexsnVjGOl9U_DybwYRj2EUhlFdPifB1sijHR4skEXvf7ZZiJJP43j7ITUFs7aWuq2yPt7DKwfPvMm6TW3_x_Wm_hoaAuGyLpLfdgtOrW-A4e2D-r2bJ7H8PhL8JaFrg priority: 102 providerName: ProQuest |
| Title | A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34451013 https://www.proquest.com/docview/2565711089 https://www.proquest.com/docview/2566034193 https://pubmed.ncbi.nlm.nih.gov/PMC8402295 https://doaj.org/article/46efb9af88264ee187cb0792198ee1b5 |
| Volume | 21 |
| WOSCitedRecordID | wos000690118700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Nj9MwEIZHsHCAA-KbwFIFxIFLtI2dxPZxF1rBYasCiyinyHHGSyWUrdKWI7-dGSeNWrQSFy6RYvvgzMTyO_HkGYA3RaaMqZxLtEyrJHMmTYwXWWKrGmWOVru8CsUm1GymFwsz3yv1xTlhHR64M9xJVqCvjPWkBIsMMdXKVWNlaKFpuqsCvZRUzy6Y6kMtSZFXxxGSFNSfrAVTZnKVHuw-AdJ_nbL8O0Fyb8eZ3od7vVSMT7spPoAb2DyEu3sAwUfw6TS-aJcJKcZLjL-1drXCNpku-QQ8ZnG3bTH-EirdkPnj6S4RKyalGr_vjmbiUBaTE4aCjx7D1-nk4t2HpC-SkDiKbDeJVcIjqxisvUDvmCimC-c8c-ERfZ1ry-ihGgtrsqomw1S2wEIp6_0YjXwCR81Vg88gHhtZKExFyh8YSXdYIXNLEjC1upZOiAje7oxXup4gzoUsfpYUSbCdy8HOEbwehq46bMZ1g87YA8MAJl2HBvJ_2fu__Jf_Izje-a_sl9-6FHyYyz84mAheDd20cPg0xDZ4tQ1jijHT7GQETzt3DzORjG0jcRyBOngRDqZ62NMsfwQ4NwXMXCH9-f94thdwR3AKDRN49TEcbdotvoTb7tdmuW5HcFMtVLjqEdw6m8zmn0dhFdD1_PeE2uYfz-ff_wBRIQ3a |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgwBsaKGAQSFyiJnYe9gGhQll11Xa1iEW0p-A443YltLtkd0H8KX4jnrzooopbDxwTz8GxP8_DM_kG4EUSpUrlxvhShLkfGRX6yvLI13mBIkYtTZxXzSbS4VAeH6vRBvxq_4WhsspWJ1aKupgZuiPf4ZSfo5p19Wb-zaeuUZRdbVto1LA4wJ8_XMi2eD3Yc_v7kvP--_G7fb_pKuAbFwoufZ1yi2T2sbAcrSEKLpkYY4lIHdEWsdTE1VNgolWUFy6Gy3WCSZpqawMk8iWn8jcjB3bZg83R4Gh00oV4wknX_EVCqGBnwYndJk7DNatXNQe4yKP9uzDznKXr3_zf1ugW3Gh8arZbH4LbsIHTO3D9HNPiXfiwy8blxHeu9Smyz6Wez7H0-xMqFWDkBa9KZB-rlkAOp6zfVqwx59KzvTqHxar-oVRZVYH5Hny6lG-6D73pbIpbwAIlkhRDHtJNrHPQNBexdr5yqGUhDOcevGp3OzMN1Tp1_PiauZCLgJF1wPDgeSc6r_lFLhJ6S5DpBIgSvHoxK0-zRsNkUYI2V9q6kCmJEEOZmjxIlbNI0j3lsQfbLWiyRk8tsj-I8eBZN-w0DKWN9BRnq0omCYj2T3jwoMZnNxNB_HYuivAgXUPu2lTXR6aTs4rFXLqV4yp--O9pPYWr--Ojw-xwMDx4BNc4VRQRIbHcht6yXOFjuGK-LyeL8klzFBl8uWxk_wZw7ngE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLUL0wPsRKGAQSFyiTZynDwgVlhWrwmoRRZRTcJxxuxLKLtldEH-NX8dMXnRRxa0Hjonn4Nifx9_Yk28AnsRholRujJsGfu6GRvmusjJ0dV5gEKFOTZTXxSaSySQ9OlLTLfjV_QvDaZWdT6wddTE3fEY-kHw_xznramDbtIjpcPRi8c3lClJ809qV02ggcoA_f1D4tnw-HtJcP5Vy9Prw1Ru3rTDgGgoLV65OpEWmAFhYidawHFcaG2NZVB3RFlGqWbenwFirMC8onst1jHGSaGs9ZCEmcv87RMlDWmM70_G76ec-3AvIutEyCgLlDZaSlW6ixN_YAetCAWex27-TNE_teqMr__N4XYXLLdcW-83iuAZbWF6H3VMKjDfg_b44rGYuUe5jFJ8qvVhg5Y5mnEIgmB2vKxQf6lJBhF8x6jLZBFF9MWzutkRdV5QzrmqQ34SP5_JNt2C7nJd4B4SngjhBX_p8QkvETcsg0sShfZ0WgZHSgWfdzGemlWDnSiBfMwrFGCRZDxIHHvemi0Z35Cyjlwyf3oClwusX8-o4az1PFsZoc6UthVJxiOinicm9RNFOldJTHjmw1wEoa_3XMvuDHgce9c3kefg6SZc4X9c2scdygIEDtxus9j0JWPeOogsHkg0Ub3R1s6WcndTq5imNnFTR3X936yFcJDhnb8eTg3twSXKiEesUp3uwvarWeB8umO-r2bJ60K5KAV_OG9i_AbkOgMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tri-Stage+Wrapper-Filter+Feature+Selection+Framework+for+Disease+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Moumita+Mandal&rft.au=Pawan+Kumar+Singh&rft.au=Muhammad+Fazal+Ijaz&rft.au=Jana+Shafi&rft.date=2021-08-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=16&rft.spage=5571&rft_id=info:doi/10.3390%2Fs21165571&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_46efb9af88264ee187cb0792198ee1b5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |