A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification

In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the pre...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 21; no. 16; p. 5571
Main Authors: Mandal, Moumita, Singh, Pawan Kumar, Ijaz, Muhammad Fazal, Shafi, Jana, Sarkar, Ram
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 18.08.2021
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods—Mutual Information, ReliefF, Chi Square, and Xvariance—and then each feature from the union set was assessed by three classification algorithms—support vector machine, naïve Bayes, and k-nearest neighbors—and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost.
AbstractList In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods—Mutual Information, ReliefF, Chi Square, and Xvariance—and then each feature from the union set was assessed by three classification algorithms—support vector machine, naïve Bayes, and k-nearest neighbors—and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost.
In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods-Mutual Information, ReliefF, Chi Square, and Xvariance-and then each feature from the union set was assessed by three classification algorithms-support vector machine, naïve Bayes, and k-nearest neighbors-and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost.In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods-Mutual Information, ReliefF, Chi Square, and Xvariance-and then each feature from the union set was assessed by three classification algorithms-support vector machine, naïve Bayes, and k-nearest neighbors-and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost.
In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for classification or clustering purposes, sometimes we observe that the learning algorithms do not perform well. One possible reason for this is the presence of redundant, noisy, and non-informative features or attributes in the datasets. Hence, feature selection methods are used to identify the subset of relevant features that can maximize the model performance. Moreover, due to reduction in feature dimension, both training time and storage required by the model can be reduced as well. In this paper, we present a tri-stage wrapper-filter-based feature selection framework for the purpose of medical report-based disease detection. In the first stage, an ensemble was formed by four filter methods-Mutual Information, ReliefF, Chi Square, and Xvariance-and then each feature from the union set was assessed by three classification algorithms-support vector machine, naïve Bayes, and -nearest neighbors-and an average accuracy was calculated. The features with higher accuracy were selected to obtain a preliminary subset of optimal features. In the second stage, Pearson correlation was used to discard highly correlated features. In these two stages, XGBoost classification algorithm was applied to obtain the most contributing features that, in turn, provide the best optimal subset. Then, in the final stage, we fed the obtained feature subset to a meta-heuristic algorithm, called whale optimization algorithm, in order to further reduce the feature set and to achieve higher accuracy. We evaluated the proposed feature selection framework on four publicly available disease datasets taken from the UCI machine learning repository, namely, arrhythmia, leukemia, DLBCL, and prostate cancer. Our obtained results confirm that the proposed method can perform better than many state-of-the-art methods and can detect important features as well. Less features ensure less medical tests for correct diagnosis, thus saving both time and cost.
Author Mandal, Moumita
Ijaz, Muhammad Fazal
Sarkar, Ram
Singh, Pawan Kumar
Shafi, Jana
AuthorAffiliation 2 Department of Information Technology, Jadavpur University, Kolkata 700106, India; pksingh.it@jadavpuruniversity.in
1 Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India; moumita.mandal.iiit@gmail.com (M.M.); ram.sarkar@jadavpuruniversity.in (R.S.)
4 Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdul Aziz University, Wadi Ad-Dwasir 11991, Saudi Arabia; j.jana@psau.edu.sa
3 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea
AuthorAffiliation_xml – name: 1 Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India; moumita.mandal.iiit@gmail.com (M.M.); ram.sarkar@jadavpuruniversity.in (R.S.)
– name: 4 Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdul Aziz University, Wadi Ad-Dwasir 11991, Saudi Arabia; j.jana@psau.edu.sa
– name: 2 Department of Information Technology, Jadavpur University, Kolkata 700106, India; pksingh.it@jadavpuruniversity.in
– name: 3 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea
Author_xml – sequence: 1
  givenname: Moumita
  orcidid: 0000-0002-5487-1261
  surname: Mandal
  fullname: Mandal, Moumita
– sequence: 2
  givenname: Pawan Kumar
  orcidid: 0000-0002-9598-7981
  surname: Singh
  fullname: Singh, Pawan Kumar
– sequence: 3
  givenname: Muhammad Fazal
  orcidid: 0000-0001-5206-272X
  surname: Ijaz
  fullname: Ijaz, Muhammad Fazal
– sequence: 4
  givenname: Jana
  surname: Shafi
  fullname: Shafi, Jana
– sequence: 5
  givenname: Ram
  orcidid: 0000-0001-8813-4086
  surname: Sarkar
  fullname: Sarkar, Ram
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34451013$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAUhS1URB-w4A-gSGxgEepXHGeDVA0dqFQJoRaxtG6c68FDJp7aCaj_HqdTRm3Fyvb156Nzfe4xORjCgIS8ZvSDEA09TZwxVVU1e0aOmOSy1JzTgwf7Q3Kc0ppSLoTQL8ihkLJilIkj8u2suI6-vBphhcWPCNstxnLp-xFjsUQYp4jFFfZoRx-GYhlhg39C_FW4EItPPiEkLBY9pOSdtzBDL8lzB33CV_frCfm-PL9efCkvv36-WJxdllaqZiyh5g5ppTh2jqOzVaW0VtY6JWuO6LpKQ21d3aGCRrZdNt6CQlXX4BzFRpyQi51uF2BtttFvIN6aAN7cFUJcGYijtz0aqdC1DTituZKITNe2pXXDWaPzqa2y1sed1nZqN9hZHMYI_SPRxzeD_2lW4bfRknLezALv7gViuJkwjWbjk8W-hwHDlAyvlKJCskZk9O0TdB2mOOSvmqkcIqN67u7NQ0d7K_-Sy8D7HWBjSCmi2yOMmnkqzH4qMnv6hLV-vAsrN-P7_7z4C6nKuOw
CitedBy_id crossref_primary_10_1007_s11042_022_12886_0
crossref_primary_10_3390_s22051848
crossref_primary_10_3390_diagnostics13061026
crossref_primary_10_1007_s11042_023_15115_4
crossref_primary_10_3390_healthcare9121632
crossref_primary_10_1007_s11042_022_14164_5
crossref_primary_10_1007_s42235_023_00478_z
crossref_primary_10_1016_j_inffus_2023_102191
crossref_primary_10_1007_s12553_022_00700_8
crossref_primary_10_3390_s22082988
crossref_primary_10_3390_cancers14174191
crossref_primary_10_1007_s11042_022_12539_2
crossref_primary_10_1109_ACCESS_2022_3179418
crossref_primary_10_1016_j_eswa_2022_118988
crossref_primary_10_1007_s11042_023_15207_1
crossref_primary_10_1016_j_jhydrol_2025_134167
crossref_primary_10_1038_s41598_025_06121_7
crossref_primary_10_1007_s11042_023_15704_3
crossref_primary_10_1371_journal_pone_0284619
crossref_primary_10_1007_s11042_023_15123_4
crossref_primary_10_32604_cmc_2024_053132
crossref_primary_10_3389_fmars_2024_1517170
crossref_primary_10_32604_cmc_2022_023286
crossref_primary_10_1007_s11042_022_13776_1
crossref_primary_10_3390_diagnostics14232698
crossref_primary_10_1007_s11042_023_15061_1
crossref_primary_10_1007_s11831_022_09776_x
crossref_primary_10_7717_peerj_cs_1229
crossref_primary_10_1016_j_jksuci_2023_101757
crossref_primary_10_3390_diagnostics11112017
crossref_primary_10_3390_diagnostics13101783
crossref_primary_10_1007_s11042_023_14627_3
crossref_primary_10_1007_s10586_022_03652_w
crossref_primary_10_1007_s11042_023_15047_z
crossref_primary_10_1007_s11042_023_16862_0
crossref_primary_10_1007_s13042_024_02299_w
crossref_primary_10_3390_biomimetics10080523
crossref_primary_10_48084_etasr_11388
crossref_primary_10_1007_s11042_023_15280_6
crossref_primary_10_1016_j_eswa_2022_118286
crossref_primary_10_1155_2022_4848425
crossref_primary_10_3390_s21238095
crossref_primary_10_1016_j_asoc_2023_110055
crossref_primary_10_1016_j_eij_2025_100639
crossref_primary_10_1016_j_eswa_2023_119535
crossref_primary_10_1007_s11042_023_17259_9
crossref_primary_10_3389_fdata_2025_1624507
crossref_primary_10_1007_s11042_023_17234_4
crossref_primary_10_1007_s11042_022_14253_5
crossref_primary_10_1007_s11042_023_14634_4
crossref_primary_10_3390_e23121588
crossref_primary_10_1186_s13040_022_00304_y
crossref_primary_10_1111_exsy_13609
crossref_primary_10_1109_ACCESS_2022_3223085
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_3233_JIFS_232128
crossref_primary_10_3389_fimmu_2023_1304165
crossref_primary_10_3390_sym14020194
crossref_primary_10_5812_ijcm_138653
crossref_primary_10_3389_fmed_2022_893208
crossref_primary_10_1007_s11042_023_14876_2
crossref_primary_10_1038_s41598_024_54990_1
crossref_primary_10_1155_2022_4357088
crossref_primary_10_3233_JIFS_235991
crossref_primary_10_3390_math10030368
crossref_primary_10_1155_2022_1413597
Cites_doi 10.1016/j.apm.2019.01.044
10.1016/j.jtbi.2018.12.010
10.1016/j.jbi.2018.07.015
10.1109/ACCESS.2020.3035531
10.1016/j.compeleceng.2013.11.024
10.1103/PhysRevE.69.066138
10.1007/978-981-13-1642-5
10.1016/j.asoc.2017.11.006
10.3322/caac.21492
10.1016/j.neucom.2016.07.080
10.1109/ACCESS.2020.2991543
10.1063/5.0028662
10.1016/B978-1-55860-247-2.50037-1
10.1109/ACCESS.2020.3028121
10.1109/ACCESS.2020.3019809
10.1109/ACCESS.2020.3006197
10.1016/j.mehy.2020.109577
10.1016/j.ygeno.2019.07.002
10.1504/IJCSM.2016.080073
10.1007/s12652-020-02454-5
10.1145/1569901.1569930
10.1007/BF00994018
10.1007/978-981-16-2543-5_42
10.3390/app10082816
10.1007/s11517-018-1874-4
10.1109/ACCESS.2020.2988157
10.3390/e21020138
10.1080/10590501.2015.1002999
10.1126/science.286.5439.531
10.1007/s10489-018-1334-8
10.1016/j.chemolab.2018.11.010
10.1109/ACCESS.2019.2936346
10.1111/exsy.12459
10.1109/ICMEW.2017.8026250
10.1016/j.advengsoft.2016.01.008
10.1007/978-981-16-2543-5_18
10.1007/978-981-10-8863-6_9
10.2307/1403797
10.1007/s12065-019-00279-6
10.1016/j.knosys.2017.09.006
10.1109/ACCESS.2020.3028241
10.1109/ACCESS.2020.2996611
10.18502/ijpho.v11i2.5838
10.1007/s40747-020-00237-1
10.1109/ACCESS.2018.2818682
10.1007/s11517-019-02100-z
10.1109/ICoDSA50139.2020.9213051
10.23940/ijpe.21.03.p2.263275
10.1016/j.compbiomed.2020.103974
10.1504/IJAPR.2015.068929
10.1109/ACCESS.2020.3012838
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21165571
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_46efb9af88264ee187cb0792198ee1b5
PMC8402295
34451013
10_3390_s21165571
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-a72fe0562edf2efc556886ccf6472eefd58a7cf7de6a94bd338ba6e677aff0e93
IEDL.DBID DOA
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000690118700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:29:43 EST 2025
Tue Nov 04 01:30:00 EST 2025
Sun Nov 09 10:04:35 EST 2025
Tue Oct 07 06:59:32 EDT 2025
Wed Feb 19 02:08:53 EST 2025
Sat Nov 29 07:17:38 EST 2025
Tue Nov 18 22:30:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords disease classification
arrhythmia
cancer dataset
whale optimization algorithm
wrapper method
feature selection
filter method
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a72fe0562edf2efc556886ccf6472eefd58a7cf7de6a94bd338ba6e677aff0e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9598-7981
0000-0002-5487-1261
0000-0001-5206-272X
0000-0001-8813-4086
OpenAccessLink https://doaj.org/article/46efb9af88264ee187cb0792198ee1b5
PMID 34451013
PQID 2565711089
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_46efb9af88264ee187cb0792198ee1b5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402295
proquest_miscellaneous_2566034193
proquest_journals_2565711089
pubmed_primary_34451013
crossref_primary_10_3390_s21165571
crossref_citationtrail_10_3390_s21165571
PublicationCentury 2000
PublicationDate 20210818
PublicationDateYYYYMMDD 2021-08-18
PublicationDate_xml – month: 8
  year: 2021
  text: 20210818
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lu (ref_5) 2017; 256
ref_50
Cui (ref_14) 2020; 8
ref_57
ref_12
Filippini (ref_8) 2015; 33
ref_11
ref_55
ref_10
ref_54
Prabhakar (ref_29) 2020; 8
ref_53
ref_52
Kadam (ref_15) 2020; 16
Sheikh (ref_59) 2020; 8
Golub (ref_58) 1999; 286
ref_18
Liu (ref_28) 2018; 6
Douiri (ref_26) 2019; 2019
Zhou (ref_23) 2017; Volume 136
Ghosh (ref_2) 2020; 8
Wang (ref_16) 2021; 17
Wang (ref_17) 2019; 71
Alirezanejad (ref_27) 2019; 112
ref_67
ref_22
ref_65
ref_64
ref_63
ref_62
Fix (ref_44) 1989; 57
Singh (ref_61) 2016; 7
Urbanowicz (ref_56) 2018; 85
Mafarja (ref_51) 2018; 62
Yan (ref_25) 2019; Volume 184
Santhakumar (ref_21) 2020; 12
Das (ref_40) 2020; 8
Kang (ref_24) 2018; 463
ref_36
ref_35
ref_31
ref_30
Tubishat (ref_49) 2018; 49
Cortes (ref_45) 1995; 20
Dey (ref_38) 2020; 8
ref_37
Singh (ref_60) 2015; 2
Thejas (ref_66) 2019; 7
Ghosh (ref_42) 2018; 57
Guha (ref_39) 2020; 8
Chandrashekar (ref_4) 2014; 40
Khamees (ref_19) 2020; 2290
ref_47
ref_46
Chatterjee (ref_33) 2020; 8
ref_43
Mirjalili (ref_48) 2016; 95
Kilicarslan (ref_20) 2020; 137
ref_41
Bray (ref_9) 2018; 68
ref_3
Sahebi (ref_13) 2020; 125
Lima (ref_32) 2020; 58
Ghosh (ref_34) 2020; 8
Ghosh (ref_1) 2019; 12
ref_7
ref_6
References_xml – volume: 71
  start-page: 286
  year: 2019
  ident: ref_17
  article-title: Informative gene selection for microarray classification via adaptive elastic net with conditional mutual information
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.01.044
– volume: 463
  start-page: 77
  year: 2018
  ident: ref_24
  article-title: Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2018.12.010
– ident: ref_55
– volume: 85
  start-page: 168
  year: 2018
  ident: ref_56
  article-title: Benchmarking relief-based feature selection methods for bioinformatics data mining
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.015
– volume: 8
  start-page: 200953
  year: 2020
  ident: ref_38
  article-title: A Hybrid Meta-Heuristic Feature Selection Method Using Golden Ratio and Equilibrium Optimization Algorithms for Speech Emotion Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3035531
– volume: 40
  start-page: 16
  year: 2014
  ident: ref_4
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref_41
  doi: 10.1103/PhysRevE.69.066138
– ident: ref_12
  doi: 10.1007/978-981-13-1642-5
– volume: 62
  start-page: 441
  year: 2018
  ident: ref_51
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.006
– volume: 68
  start-page: 394
  year: 2018
  ident: ref_9
  article-title: Global cancer statistics. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: Cancer J. Clin.
  doi: 10.3322/caac.21492
– volume: 256
  start-page: 56
  year: 2017
  ident: ref_5
  article-title: A hybrid feature selection algorithm for gene expression data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.080
– ident: ref_65
– volume: 8
  start-page: 83548
  year: 2020
  ident: ref_2
  article-title: Improved Binary Sailfish Optimizer Based on Adaptive β-Hill Climbing for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991543
– volume: 2290
  start-page: 040001
  year: 2020
  ident: ref_19
  article-title: Hybrid SCA-CS optimization algorithm for feature selection in classification problems
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0028662
– ident: ref_43
  doi: 10.1016/B978-1-55860-247-2.50037-1
– volume: 8
  start-page: 182868
  year: 2020
  ident: ref_39
  article-title: Hybrid Feature Selection Method Based on Harmony Search and Naked Mole-Rat Algorithms for Spoken Language Identification from Audio Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028121
– volume: 8
  start-page: 158125
  year: 2020
  ident: ref_59
  article-title: EHHM: Electrical Harmony Based Hybrid Meta-Heuristic for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019809
– volume: 8
  start-page: 127462
  year: 2020
  ident: ref_29
  article-title: Transformation Based Tri-Level Feature Selection Approach Using Wavelets and Swarm Computing for Prostate Cancer Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006197
– volume: 137
  start-page: 109577
  year: 2020
  ident: ref_20
  article-title: Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2020.109577
– volume: 112
  start-page: 1173
  year: 2019
  ident: ref_27
  article-title: Heuristic filter feature selection methods for medical datasets
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.07.002
– volume: 7
  start-page: 410
  year: 2016
  ident: ref_61
  article-title: Significance of non-parametric statistical tests for comparison of classifiers over multiple datasets
  publication-title: Int. J. Comput. Sci. Math.
  doi: 10.1504/IJCSM.2016.080073
– volume: 12
  start-page: 2965
  year: 2020
  ident: ref_21
  article-title: Hybrid ant lion mutated ant colony optimizer technique for Leukemia prediction using microarray gene data
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02454-5
– ident: ref_31
– ident: ref_3
  doi: 10.1145/1569901.1569930
– ident: ref_52
– ident: ref_10
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_45
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_57
  doi: 10.1007/978-981-16-2543-5_42
– ident: ref_37
  doi: 10.3390/app10082816
– volume: 57
  start-page: 159
  year: 2018
  ident: ref_42
  article-title: Genetic algorithm based cancerous gene identification from microarray data using ensemble of filter methods
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1874-4
– volume: 8
  start-page: 75393
  year: 2020
  ident: ref_33
  article-title: Late Acceptance Hill Climbing Based Social Ski Driver Algorithm for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988157
– ident: ref_62
– ident: ref_18
  doi: 10.3390/e21020138
– volume: 33
  start-page: 36
  year: 2015
  ident: ref_8
  article-title: A Review and Meta-Analysis of Outdoor Air Pollution and Risk of Childhood Leukemia
  publication-title: J. Environ. Sci. Health Part C
  doi: 10.1080/10590501.2015.1002999
– volume: 286
  start-page: 531
  year: 1999
  ident: ref_58
  article-title: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– ident: ref_7
– ident: ref_53
– volume: 49
  start-page: 1688
  year: 2018
  ident: ref_49
  article-title: Improved whale optimization algorithm for feature selection in Arabic sentiment analysis
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1334-8
– volume: Volume 184
  start-page: 102
  year: 2019
  ident: ref_25
  article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high dimensional biomedical datasets
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2018.11.010
– volume: 7
  start-page: 116875
  year: 2019
  ident: ref_66
  article-title: Mini-Batch Normalized Mutual Information: A Hybrid Feature Selection Method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936346
– ident: ref_47
– ident: ref_35
  doi: 10.1111/exsy.12459
– ident: ref_11
  doi: 10.1109/ICMEW.2017.8026250
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_48
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_67
  doi: 10.1007/978-981-16-2543-5_18
– ident: ref_50
  doi: 10.1007/978-981-10-8863-6_9
– ident: ref_63
– volume: 57
  start-page: 238
  year: 1989
  ident: ref_44
  article-title: Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties
  publication-title: Int. Stat. Rev.
  doi: 10.2307/1403797
– volume: 12
  start-page: 713
  year: 2019
  ident: ref_1
  article-title: A histogram based fuzzy ensemble technique for feature selection
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-019-00279-6
– volume: Volume 136
  start-page: 187
  year: 2017
  ident: ref_23
  article-title: Online feature selection for high dimensional class-imbalanced data
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.09.006
– ident: ref_6
– volume: 8
  start-page: 181432
  year: 2020
  ident: ref_40
  article-title: A Hybrid Meta-Heuristic Feature Selection Method for Identification of Indian Spoken Languages from Audio Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028241
– ident: ref_54
– volume: 8
  start-page: 97890
  year: 2020
  ident: ref_34
  article-title: Binary Social Mimic Optimization Algorithm With X-Shaped Transfer Function for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2996611
– volume: 16
  start-page: 25
  year: 2020
  ident: ref_15
  article-title: Bagging based ensemble of Support Vector Machines with improved elitist GA-SVM features selection for cardiac arrhythmia classification
  publication-title: Int. J. Hybrid Intell. Syst.
– ident: ref_46
– ident: ref_22
  doi: 10.18502/ijpho.v11i2.5838
– volume: 2019
  start-page: 7828590
  year: 2019
  ident: ref_26
  article-title: Gene Selection via a New Hybrid Ant Colony Optimization Algorithm for Cancer Classification in High-Dimensional Data
  publication-title: Comput. Math. Methods Med.
– ident: ref_36
  doi: 10.1007/s40747-020-00237-1
– volume: 6
  start-page: 22863
  year: 2018
  ident: ref_28
  article-title: A Hybrid Genetic Algorithm with Wrapper-Embedded Approaches for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2818682
– volume: 58
  start-page: 519
  year: 2020
  ident: ref_32
  article-title: Medical data set classification using a new feature selection algorithm combined with twin-bounded support vector machine
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-019-02100-z
– ident: ref_64
– ident: ref_30
  doi: 10.1109/ICoDSA50139.2020.9213051
– volume: 17
  start-page: 263
  year: 2021
  ident: ref_16
  article-title: Arrhythmia Classification Algorithm based on SMOTE and Feature Selection
  publication-title: IJPE
  doi: 10.23940/ijpe.21.03.p2.263275
– volume: 125
  start-page: 103974
  year: 2020
  ident: ref_13
  article-title: GeFeS: A generalized wrapper feature selection approach for optimizing classification performance
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103974
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_60
  article-title: Statistical validation of multiple classifiers over multiple datasets in the field of pattern recognition
  publication-title: Int. J. Appl. Pattern Recognit.
  doi: 10.1504/IJAPR.2015.068929
– volume: 8
  start-page: 155619
  year: 2020
  ident: ref_14
  article-title: A Hybrid Improved Dragonfly Algorithm for Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3012838
SSID ssj0023338
Score 2.5996408
Snippet In machine learning and data science, feature selection is considered as a crucial step of data preprocessing. When we directly apply the raw data for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5571
SubjectTerms Accuracy
Algorithms
arrhythmia
Bayes Theorem
Cardiac arrhythmia
Classification
Cluster Analysis
Datasets
disease classification
Feature selection
filter method
Heart
Humans
Leukemia
Literature reviews
Machine Learning
Male
Medical tests
Methods
Neural networks
Principal components analysis
Prostate cancer
Support Vector Machine
Support vector machines
whale optimization algorithm
wrapper method
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMceEMDBRnEgYvVvDaxT6ivFadVgSJ6i2Jn3K6EstvsLr-fGccbulXFpZdIiedgZWY8M57R9wF8MhTjyBZimTvnZE4xRKpxbukRJ84hauNiTzZRTqfq_Fyfhgu3ZRir3JyJ_qBu5pbvyPdT7s_xzLr-sriSzBrF3dVAoXEfdhipLB_BzuHJ9PT7UHJlVIH1eEIZFff7y5TRZsZlshWFPFj_bRnmzUHJa5Fn8uSue34Kj0POKQ56I3kG97B9Do-uIRG-gG8H4qybSUo9L1D86urFAjs5mXErXXCWuO5Q_PCUOaRHMdlMdAlKecVx3-MRnl-TJ4-8sl_Cz8nJ2dFXGdgWpKUSeSXrMnXI6RA2LkVnGZpMFdY6BphHdM1Y1Yxh1GBR69w09GdNXWBRlrVzMersFYzaeYu7INA0LnMZ6hhVTimZVjZJGq0MuTuppIjg8-bvVzZAkTMjxu-KShJWVDUoKoKPg-iix9-4TeiQVTgIMGS2_zDvLqrggVVeoDO6dlRSFDliokpr4lLTia3ozYwj2NsosQp-vKz-aTCCD8MyeSC3VeoW52svU8QMi5dF8Lq3l2EnGeO_UZYdQbllSVtb3V5pZ5ce5Zsqb6Zaf_P_bb2FhylP2TBIr9qD0apb4zt4YP-sZsvufXCHvyizFwo
  priority: 102
  providerName: ProQuest
Title A Tri-Stage Wrapper-Filter Feature Selection Framework for Disease Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/34451013
https://www.proquest.com/docview/2565711089
https://www.proquest.com/docview/2566034193
https://pubmed.ncbi.nlm.nih.gov/PMC8402295
https://doaj.org/article/46efb9af88264ee187cb0792198ee1b5
Volume 21
WOSCitedRecordID wos000690118700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4UAPqLyKS4kWxIGLVb_i3T22NBEcGgUoIpws73q2jYTcyEl67G9nZu1YCarEhctK9s5hPbOj-UYz_gbgg6EYR3chCjPnXJhRDAnVMLO0RLFziNq4yA-bkJOJms30dGvUF_eEtfTAreJOshyd0aUjJJhniLGS1kRSk6MpejKevZRQzyaZ6lKtlDKvlkcopaT-ZJkwy8xQxjvRx5P034cs_26Q3Io44wN42kFFcdoe8Rk8wPo57G8RCL6Ar6fispmHhBivUPxsysUCm3A85wq4YHC3blB895NuSP1ivGnEEoRUxXlbmhF-LCY3DHkbvYQf49Hlp89hNyQhtJTZrsJSJg4ZxWDlEnSWGcVUbq1jXnhEVw1VydRDFealzkxFijFljrmUpXMR6vQV7NU3Nb4GgaZyqUtRR6gyQlJa2TiutDLkpaTRPICPG-UVtmMQ50EWvwvKJFjPRa_nAN73oouWNuM-oTO2QC_ATNf-Bdm_6Oxf_Mv-ARxv7Fd07rcsEi7m8g8OOoB3_TY5DldDyhpv1l4mj5jNLg3gsDV3f5KUadsIHAcgdy7CzlF3d-r5tSfnpoSZJ6Qf_Y9vewNPEm6hYQZedQx7q2aNb-GxvV3Nl80AHsqZ9KsawKOz0WT6beC9gNaLuxG9m365mP76A_fCDiw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRJw4A01FFgQSFxW9Sv27gGhQokatY2CCKI9GXs920ZCTnASEH-K38iMXzSo4tYDF0v2zmHt_TwP7_j7AF5kFOMIC64MrbUypBgiVT80dHA9axF1Zt1KbCIejdTxsR5vwK_2Xxhuq2x9YuWo85nhb-Q7Pu_Pcc-6fjP_Jlk1indXWwmNGhYH-PMHlWyL18M9Wt-Xvj94P3m3LxtVAWmoFFzKNPYtctjH3PpoDVNwqcgYy0TqiDbvq5S5enKMUh1mOdVwWRphFMeptS4y-RK5_M2QwK56sDkeHo1PuhIvIOuavygItLuz8Jndph97a1GvEge4KKP9uzHzXKQb3PzfntEtuNHk1GK3fgluwwYWd-D6OabFu_BhV0zKqaTU-hTF5zKdz7GUgym3CgjOglclio-VJBDhVAzajjVBKb3Yq_ewRKUfyp1VFZjvwadLuaf70CtmBW6BwCy3gQ1Qu6hCSjm1Mp6Xa5WROyMIRA68alc7MQ3VOit-fE2o5GJgJB0wHHjemc5rfpGLjN4yZDoDpgSvLszK06TxMEkYoc10aqlkikJET8Umc2NNEUnRWdZ3YLsFTdL4qUXyBzEOPOuGycPwtlFa4GxV2UQu0_4FDjyo8dnNJGB-O6oiHIjXkLs21fWRYnpWsZir0GUp-Yf_ntZTuLo_OTpMDoejg0dwzeeOIiYkVtvQW5YrfAxXzPfldFE-aV5FAV8uG9m_AXomeFY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VLUL0wPthKLAgkLhY8Sv27gGhQrCIClEQRZST8a5n20jICU4C4q_x65jxiwZV3HrgYsneOaztb-fhHX8fwBNNMY6w4LmRtdaNKIa4chgZOni-tYhKW68Wm0gmE3l0pKZb8Kv7F4bbKjufWDvqYm74G_kg4P057llXA9u2RUxH6YvFN5cVpHintZPTaCBygD9_UPm2fD4e0bt-GgTp68NXb9xWYcA1VBau3DwJLHIKgIUN0Bqm45KxMZZJ1RFtMZQ58_YUGOcq0gXVczqPMU6S3FoPmYiJ3P8OpeQRrbGd6fjd9HNf7oVk3XAZhaHyBsuAmW6Gib8RAWuhgLOy27-bNE9FvfTK__y8rsLlNtcW-83iuAZbWF6H3VMMjDfg_b44rGYupdzHKD5V-WKBlZvOuIVAcHa8rlB8qKWCCL8i7TrZBKX6YtTsbYlaV5Q7rmqQ34SP53JPt2C7nJd4BwTqwoY2ROWhjCgVVdL4fqGkJjdHcIgdeNa9-cy0FOysBPI1o1KMQZL1IHHgcW-6aHhHzjJ6yfDpDZgqvL4wr46z1vNkUYxWq9xSKRVHiL5MjPYSRZFK0pkeOrDXAShr_dcy-4MeBx71w-R5eDspL3G-rm1ij-kAQwduN1jtZxIy7x1VFw4kGyjemOrmSDk7qdnNZeSxxPzdf0_rIVwkOGdvx5ODe3Ap4EYj5imWe7C9qtZ4Hy6Y76vZsnrQrkoBX84b2L8BtCyBFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tri-Stage+Wrapper-Filter+Feature+Selection+Framework+for+Disease+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Moumita+Mandal&rft.au=Pawan+Kumar+Singh&rft.au=Muhammad+Fazal+Ijaz&rft.au=Jana+Shafi&rft.date=2021-08-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=16&rft.spage=5571&rft_id=info:doi/10.3390%2Fs21165571&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_46efb9af88264ee187cb0792198ee1b5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon