Comparative Analysis of Warp Function for Digital Image Correlation-Based Accurate Single-Shot 3D Shape Measurement

Digital image correlation (DIC)-based stereo 3D shape measurement is a kind of single-shot method, which can achieve high precision and is robust to vibration as well as environment noise. The efficiency of DIC has been greatly improved with the proposal of inverse compositional Gauss-Newton (IC-GN)...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 18; číslo 4; s. 1208
Hlavní autori: Yang, Xiao, Chen, Xiaobo, Xi, Juntong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 16.04.2018
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Digital image correlation (DIC)-based stereo 3D shape measurement is a kind of single-shot method, which can achieve high precision and is robust to vibration as well as environment noise. The efficiency of DIC has been greatly improved with the proposal of inverse compositional Gauss-Newton (IC-GN) operators for both first-order and second-order warp functions. Without the algorithm itself, both the registration accuracy and efficiency of DIC-based stereo matching for shapes with different complexities are closely related to the selection of warp function, subset size, and convergence criteria. Understanding the similarity and difference of the impacts of prescribed subset size and convergence criteria on first-order and second-order warp functions, and how to choose a proper warp function and set optimal subset size as well as convergence criteria for different shapes are fundamental problems in realizing efficient and accurate 3D shape measurement. In this work, we present a comparative analysis of first-order and second-order warp functions for DIC-based 3D shape measurement using IC-GN algorithm. The effects of subset size and convergence criteria of first-order and second-order warp functions on the accuracy and efficiency of DIC are comparatively examined with both simulation tests and real experiments. Reference standards for the selection of warp function for different kinds of 3D shape measurement and the setting of proper convergence criteria are recommended. The effects of subset size on the measuring precision using different warp functions are also concluded.
AbstractList Digital image correlation (DIC)-based stereo 3D shape measurement is a kind of single-shot method, which can achieve high precision and is robust to vibration as well as environment noise. The efficiency of DIC has been greatly improved with the proposal of inverse compositional Gauss-Newton (IC-GN) operators for both first-order and second-order warp functions. Without the algorithm itself, both the registration accuracy and efficiency of DIC-based stereo matching for shapes with different complexities are closely related to the selection of warp function, subset size, and convergence criteria. Understanding the similarity and difference of the impacts of prescribed subset size and convergence criteria on first-order and second-order warp functions, and how to choose a proper warp function and set optimal subset size as well as convergence criteria for different shapes are fundamental problems in realizing efficient and accurate 3D shape measurement. In this work, we present a comparative analysis of first-order and second-order warp functions for DIC-based 3D shape measurement using IC-GN algorithm. The effects of subset size and convergence criteria of first-order and second-order warp functions on the accuracy and efficiency of DIC are comparatively examined with both simulation tests and real experiments. Reference standards for the selection of warp function for different kinds of 3D shape measurement and the setting of proper convergence criteria are recommended. The effects of subset size on the measuring precision using different warp functions are also concluded.
Digital image correlation (DIC)-based stereo 3D shape measurement is a kind of single-shot method, which can achieve high precision and is robust to vibration as well as environment noise. The efficiency of DIC has been greatly improved with the proposal of inverse compositional Gauss-Newton (IC-GN) operators for both first-order and second-order warp functions. Without the algorithm itself, both the registration accuracy and efficiency of DIC-based stereo matching for shapes with different complexities are closely related to the selection of warp function, subset size, and convergence criteria. Understanding the similarity and difference of the impacts of prescribed subset size and convergence criteria on first-order and second-order warp functions, and how to choose a proper warp function and set optimal subset size as well as convergence criteria for different shapes are fundamental problems in realizing efficient and accurate 3D shape measurement. In this work, we present a comparative analysis of first-order and second-order warp functions for DIC-based 3D shape measurement using IC-GN algorithm. The effects of subset size and convergence criteria of first-order and second-order warp functions on the accuracy and efficiency of DIC are comparatively examined with both simulation tests and real experiments. Reference standards for the selection of warp function for different kinds of 3D shape measurement and the setting of proper convergence criteria are recommended. The effects of subset size on the measuring precision using different warp functions are also concluded.Digital image correlation (DIC)-based stereo 3D shape measurement is a kind of single-shot method, which can achieve high precision and is robust to vibration as well as environment noise. The efficiency of DIC has been greatly improved with the proposal of inverse compositional Gauss-Newton (IC-GN) operators for both first-order and second-order warp functions. Without the algorithm itself, both the registration accuracy and efficiency of DIC-based stereo matching for shapes with different complexities are closely related to the selection of warp function, subset size, and convergence criteria. Understanding the similarity and difference of the impacts of prescribed subset size and convergence criteria on first-order and second-order warp functions, and how to choose a proper warp function and set optimal subset size as well as convergence criteria for different shapes are fundamental problems in realizing efficient and accurate 3D shape measurement. In this work, we present a comparative analysis of first-order and second-order warp functions for DIC-based 3D shape measurement using IC-GN algorithm. The effects of subset size and convergence criteria of first-order and second-order warp functions on the accuracy and efficiency of DIC are comparatively examined with both simulation tests and real experiments. Reference standards for the selection of warp function for different kinds of 3D shape measurement and the setting of proper convergence criteria are recommended. The effects of subset size on the measuring precision using different warp functions are also concluded.
Author Xi, Juntong
Chen, Xiaobo
Yang, Xiao
AuthorAffiliation 3 State Key Laboratory of Mechanical System and Vibration, Shanghai 200240, China
2 Shanghai Key Laboratory of Advanced Manufacturing Environment, Shanghai 200030, China
1 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; yangxiao1992@sjtu.edu.cn (X.Y.); xiaoboc@sjtu.edu.cn (X.C.)
AuthorAffiliation_xml – name: 1 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; yangxiao1992@sjtu.edu.cn (X.Y.); xiaoboc@sjtu.edu.cn (X.C.)
– name: 3 State Key Laboratory of Mechanical System and Vibration, Shanghai 200240, China
– name: 2 Shanghai Key Laboratory of Advanced Manufacturing Environment, Shanghai 200030, China
Author_xml – sequence: 1
  givenname: Xiao
  orcidid: 0000-0003-4558-8947
  surname: Yang
  fullname: Yang, Xiao
– sequence: 2
  givenname: Xiaobo
  surname: Chen
  fullname: Chen, Xiaobo
– sequence: 3
  givenname: Juntong
  surname: Xi
  fullname: Xi, Juntong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29659492$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiH7AgT-ALHGBw1J_7toXpJBSiFTEISCOq4k9mzjaXQd7t1L_PQ4pUVtxsuV55vXMvHNenAxhwKJ4zegHIQy9TExTyTjVz4ozJrksNef05MH9tDhPaUspF0LoF8UpN5Uy0vCzIs1Dv4MIo79FMhugu0s-kdCSXxB35Hoa7OjDQNoQyZVf-xE6suhhjWQeYsQO9tHyEyR0ZGbtlIWQLP2w7rBcbsJIxBVZbmCH5BtCmiL2OIwvi-ctdAlf3Z8Xxc_rzz_mX8ub718W89lNaWVlxhKoVJJWWHFXO25BCODcrIRSTkmleM01OiXcStUgZK0lrmzVCuNcrXJKKy6KxUHXBdg2u-h7iHdNAN_8fQhx3UAcve2wUXRlqWWV0aaVleTG5r9dnhY4hi2qrPXxoLWbVj06m9uI0D0SfRwZ_KZZh9smz1krxrLAu3uBGH5PmMam98li18GAYUoNp7ySTDCtM_r2CboNU8ze7ClJdS0YN5l687CiYyn_vM3A-wNgY0gpYntEGG32e9Mc9yazl09Ym73em5ub8d1_Mv4A9ObDDA
CitedBy_id crossref_primary_10_1109_TIM_2025_3591191
crossref_primary_10_3390_s20030910
crossref_primary_10_3390_s22114114
crossref_primary_10_1016_j_optcom_2021_127584
crossref_primary_10_1016_j_optlaseng_2019_05_012
crossref_primary_10_1088_1742_6596_2285_1_012028
crossref_primary_10_1364_AO_380322
crossref_primary_10_3390_s18113882
crossref_primary_10_1016_j_measurement_2023_113947
Cites_doi 10.1016/j.optlaseng.2016.09.010
10.3390/s17122782
10.1117/1.1387992
10.1117/1.2714926
10.1111/str.12066
10.1016/j.optlaseng.2012.01.007
10.1088/0957-0233/25/3/035401
10.1016/j.optlaseng.2017.05.010
10.3390/s17010164
10.1007/s11431-017-9125-7
10.1364/AO.55.000696
10.1007/978-3-319-22446-6_25
10.3390/s150818587
10.3390/s16091534
10.3390/s151026430
10.1364/AO.48.001535
10.1364/AO.47.005527
10.1364/AO.49.005501
10.1007/BF02326485
10.1364/OE.16.007037
10.1007/s11340-012-9639-8
10.1016/j.optlaseng.2014.05.013
10.1016/j.optlaseng.2013.07.016
10.1007/s11340-016-0133-6
10.1023/B:VISI.0000011205.11775.fd
10.1007/s11340-013-9717-6
10.1016/j.precisioneng.2007.08.008
10.1088/0957-0233/21/3/035101
10.1142/S1758825111001019
10.1023/B:VISI.0000029664.99615.94
10.1016/j.promfg.2017.07.304
ContentType Journal Article
Copyright Copyright MDPI AG 2018
2018 by the authors. 2018
Copyright_xml – notice: Copyright MDPI AG 2018
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
K9.
7X8
5PM
DOA
DOI 10.3390/s18041208
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)


CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_50bc0c16989f46429c454d333ad1efe5
PMC5948511
29659492
10_3390_s18041208
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
K9.
7X8
5PM
ID FETCH-LOGICAL-c469t-a045406e62d7d2ca33a229b355d54552728ed53db57a34784ebc6f39dd752d7f3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435574800280&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:45:22 EDT 2025
Tue Nov 04 02:02:21 EST 2025
Sun Nov 09 11:55:19 EST 2025
Tue Oct 07 06:43:01 EDT 2025
Wed Feb 19 02:44:22 EST 2025
Tue Nov 18 20:54:10 EST 2025
Sat Nov 29 07:15:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords inverse compositional Gauss-Newton algorithm
single-shot 3D shape measurement
warp function
digital image correlation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-a045406e62d7d2ca33a229b355d54552728ed53db57a34784ebc6f39dd752d7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4558-8947
OpenAccessLink https://doaj.org/article/50bc0c16989f46429c454d333ad1efe5
PMID 29659492
PQID 2040873129
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_50bc0c16989f46429c454d333ad1efe5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948511
proquest_miscellaneous_2026413188
proquest_journals_2040873129
pubmed_primary_29659492
crossref_primary_10_3390_s18041208
crossref_citationtrail_10_3390_s18041208
PublicationCentury 2000
PublicationDate 2018-04-16
PublicationDateYYYYMMDD 2018-04-16
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-16
  day: 16
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_4) 2008; 32
Wu (ref_19) 2016; 56
Asundi (ref_25) 2008; 47
Pan (ref_14) 2009; 48
Baker (ref_16) 2004; 56
Zhou (ref_31) 2001; 40
Huang (ref_32) 2011; 3
ref_15
Zhang (ref_10) 2012; 50
Huang (ref_29) 2010; 21
Yuan (ref_34) 2017; 97
Jung (ref_3) 2015; 15
Yan (ref_8) 2017; 61
Pan (ref_23) 2014; 50
Kieu (ref_6) 2014; 25
Bai (ref_21) 2017; 90
ref_24
Xie (ref_11) 2007; 46
Lowe (ref_27) 2004; 60
Huang (ref_12) 2013; 53
Barone (ref_26) 2017; 11
Yuan (ref_33) 2014; 52
ref_1
Lu (ref_13) 2000; 40
Pan (ref_17) 2013; 53
ref_2
Gao (ref_20) 2015; 65
Nguyen (ref_5) 2015; 15
Pan (ref_22) 2008; 16
Pan (ref_30) 2010; 49
ref_28
Dai (ref_18) 2016; 55
ref_9
ref_7
References_xml – ident: ref_28
– volume: 90
  start-page: 48
  year: 2017
  ident: ref_21
  article-title: A novel 2nd-order shape function based digital image correlation method for large deformation measurements
  publication-title: Opt. Las. Eng.
  doi: 10.1016/j.optlaseng.2016.09.010
– ident: ref_7
  doi: 10.3390/s17122782
– ident: ref_24
– volume: 40
  start-page: 1613
  year: 2001
  ident: ref_31
  article-title: Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (disc)
  publication-title: Opt. Eng.
  doi: 10.1117/1.1387992
– volume: 46
  start-page: 033601
  year: 2007
  ident: ref_11
  article-title: Full-field strain measurement using a two-dimensional savitzky-golay digital differentiator in digital image correlation
  publication-title: Opt. Eng.
  doi: 10.1117/1.2714926
– volume: 50
  start-page: 48
  year: 2014
  ident: ref_23
  article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional gauss–newton algorithm
  publication-title: Strain
  doi: 10.1111/str.12066
– volume: 50
  start-page: 1097
  year: 2012
  ident: ref_10
  article-title: Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques
  publication-title: Opt. Las. Eng.
  doi: 10.1016/j.optlaseng.2012.01.007
– volume: 25
  start-page: 1
  year: 2014
  ident: ref_6
  article-title: Accurate 3D shape measurement of multiple separate objects with stereo vision
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/25/3/035401
– volume: 97
  start-page: 52
  year: 2017
  ident: ref_34
  article-title: Digital image correlation based on a fast convolution strategy
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2017.05.010
– ident: ref_2
  doi: 10.3390/s17010164
– volume: 61
  start-page: 68
  year: 2017
  ident: ref_8
  article-title: Precise 3D shape measurement of three-dimensional digital image correlation for complex surfaces
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-017-9125-7
– volume: 55
  start-page: 696
  year: 2016
  ident: ref_18
  article-title: Real-time 3D digital image correlation method and its application in human pulse monitoring
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.000696
– ident: ref_9
  doi: 10.1007/978-3-319-22446-6_25
– volume: 15
  start-page: 18587
  year: 2015
  ident: ref_5
  article-title: Structured light-based 3D reconstruction system for plants
  publication-title: Sensors
  doi: 10.3390/s150818587
– ident: ref_1
  doi: 10.3390/s16091534
– volume: 15
  start-page: 26430
  year: 2015
  ident: ref_3
  article-title: Development of kinematic 3D laser scanning system for indoor mapping and as-built bim using constrained slam
  publication-title: Sensors
  doi: 10.3390/s151026430
– volume: 48
  start-page: 1535
  year: 2009
  ident: ref_14
  article-title: Reliability-guided digital image correlation for image deformation measurement
  publication-title: Appl. Opt.
  doi: 10.1364/AO.48.001535
– volume: 47
  start-page: 5527
  year: 2008
  ident: ref_25
  article-title: Improved speckle projection profilometry for out-of-plane shape measurement
  publication-title: Appl. Opt.
  doi: 10.1364/AO.47.005527
– volume: 49
  start-page: 5501
  year: 2010
  ident: ref_30
  article-title: Equivalence of digital image correlation criteria for pattern matching
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.005501
– volume: 40
  start-page: 393
  year: 2000
  ident: ref_13
  article-title: Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient
  publication-title: Exp. Mech.
  doi: 10.1007/BF02326485
– volume: 16
  start-page: 7037
  year: 2008
  ident: ref_22
  article-title: Study on subset size selection in digital image correlation for speckle patterns
  publication-title: Opt. Express
  doi: 10.1364/OE.16.007037
– volume: 53
  start-page: 505
  year: 2013
  ident: ref_12
  article-title: Digital image correlation with self-adaptive gaussian windows
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-012-9639-8
– volume: 65
  start-page: 73
  year: 2015
  ident: ref_20
  article-title: High-efficiency and high-accuracy digital image correlation for three-dimensional measurement
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2014.05.013
– volume: 52
  start-page: 75
  year: 2014
  ident: ref_33
  article-title: Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted znssd criterion
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2013.07.016
– volume: 56
  start-page: 1
  year: 2016
  ident: ref_19
  article-title: Real-time digital image correlation for dynamic strain measurement
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-016-0133-6
– volume: 56
  start-page: 221
  year: 2004
  ident: ref_16
  article-title: Lucas-kanade 20 years on: A unifying framework
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 53
  start-page: 1277
  year: 2013
  ident: ref_17
  article-title: Fast, robust and accurate digital image correlation calculation without redundant computations
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-013-9717-6
– volume: 32
  start-page: 215
  year: 2008
  ident: ref_4
  article-title: Research and development of an accurate 3D shape measurement system based on fringe projection: Model analysis and performance evaluation
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2007.08.008
– ident: ref_15
– volume: 21
  start-page: 35101
  year: 2010
  ident: ref_29
  article-title: A high-efficiency digital image correlation method based on a fast recursive scheme
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/21/3/035101
– volume: 3
  start-page: 335
  year: 2011
  ident: ref_32
  article-title: A digital volume correlation technique for 3-D deformation measurements of soft gels
  publication-title: Int. J. Appl. Mech.
  doi: 10.1142/S1758825111001019
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_27
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 11
  start-page: 1592
  year: 2017
  ident: ref_26
  article-title: Digital image correlation based on projected pattern for high frequency vibration measurements
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2017.07.304
SSID ssj0023338
Score 2.2792926
Snippet Digital image correlation (DIC)-based stereo 3D shape measurement is a kind of single-shot method, which can achieve high precision and is robust to vibration...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1208
SubjectTerms Comparative analysis
digital image correlation
Efficiency
European Monetary Union
inverse compositional Gauss-Newton algorithm
single-shot 3D shape measurement
warp function
Title Comparative Analysis of Warp Function for Digital Image Correlation-Based Accurate Single-Shot 3D Shape Measurement
URI https://www.ncbi.nlm.nih.gov/pubmed/29659492
https://www.proquest.com/docview/2040873129
https://www.proquest.com/docview/2026413188
https://pubmed.ncbi.nlm.nih.gov/PMC5948511
https://doaj.org/article/50bc0c16989f46429c454d333ad1efe5
Volume 18
WOSCitedRecordID wos000435574800280&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED60aYdmCJL0ESWpwRQdugiRSEkkx9ixkQw2jLpF3UmgSKo2kMiGHxnz23OUZMUuAnTpwoGkhNPdkfedSHwH8DU0OtBMYm5iqcImU76KufQDlYkkwtWVcVUWm-CDgRiP5XCr1Je7E1bRA1eKu4yDDN8WujqHeYRgWeoojgxjTJnQ5rZkL0XUs0mm6lQLx0XFI8Qwqb9cho5mh7oaklvRpyTpfwlZ_n1Bcivi9A7hoIaK5KoS8Qhe2eIY9rcIBN_DsvNM3k02_CJklpNfajEnPYxZTu8EgSm5nv5x9UHI7T3uIKTjinJU1-D8NgYyQ660XjvaCDLCN99ZfzSZrQi7JqOJmlvSf_6V-AF-9ro_Ojd-XUbB15j7rnxVsuwlNqGGG6oVqo5SmSHQMAifYsqpsCZmJou5YhEXaDCd5Ewaw2N8JGcfYa-YFfYESCKNVbHQlOYY2rURSRbkGeVcSBMGSnjwbaPeVNcc467UxV2KuYazRNpYwoMvzdR5Razx0qS2s1EzwXFhlx3oIWntIem_PMSD842F03qBLlOKm5fgDNGOBxfNMC4td16iCjtbuzmIFkPc9FCOT5VDNJJQR8QYSeoB33GVHVF3R4rppKTvdgQ5CHNP_8e3ncE7RHDCHW-FyTnsrRZr-xne6ofVdLlowWs-5mUrWvCm3R0Mv7fKdYJt_7GLfcPb_vD3E01bGEw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Warp+Function+for+Digital+Image+Correlation-Based+Accurate+Single-Shot+3D+Shape+Measurement&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Xiao&rft.au=Chen%2C+Xiaobo&rft.au=Juntong+Xi&rft.date=2018-04-16&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=18&rft.issue=4&rft.spage=1208&rft_id=info:doi/10.3390%2Fs18041208&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon