Improved Swarm Intelligent Blind Source Separation Based on Signal Cross-Correlation

In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 22; H. 1; S. 118
Hauptverfasser: Zi, Jiali, Lv, Danju, Liu, Jiang, Huang, Xin, Yao, Wang, Gao, Mingyuan, Xi, Rui, Zhang, Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 24.12.2021
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average.
AbstractList In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average.
In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average.In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average.
Author Huang, Xin
Liu, Jiang
Zi, Jiali
Gao, Mingyuan
Lv, Danju
Zhang, Yan
Xi, Rui
Yao, Wang
AuthorAffiliation 2 School of Mathematics and Physics, Southwest Forestry University, Kunming 650224, China; zhangyan@swfu.edu.cn
1 College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China; zijiali@swfu.edu.cn (J.Z.); jungleliu@swfu.edu.cn (J.L.); huangxin615@swfu.edu.cn (X.H.); yaowang@swfu.edu.cn (W.Y.); TuAYuan@swfu.edu.cn (M.G.); xirui@swfu.edu.cn (R.X.)
AuthorAffiliation_xml – name: 1 College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China; zijiali@swfu.edu.cn (J.Z.); jungleliu@swfu.edu.cn (J.L.); huangxin615@swfu.edu.cn (X.H.); yaowang@swfu.edu.cn (W.Y.); TuAYuan@swfu.edu.cn (M.G.); xirui@swfu.edu.cn (R.X.)
– name: 2 School of Mathematics and Physics, Southwest Forestry University, Kunming 650224, China; zhangyan@swfu.edu.cn
Author_xml – sequence: 1
  givenname: Jiali
  surname: Zi
  fullname: Zi, Jiali
– sequence: 2
  givenname: Danju
  surname: Lv
  fullname: Lv, Danju
– sequence: 3
  givenname: Jiang
  surname: Liu
  fullname: Liu, Jiang
– sequence: 4
  givenname: Xin
  surname: Huang
  fullname: Huang, Xin
– sequence: 5
  givenname: Wang
  surname: Yao
  fullname: Yao, Wang
– sequence: 6
  givenname: Mingyuan
  surname: Gao
  fullname: Gao, Mingyuan
– sequence: 7
  givenname: Rui
  surname: Xi
  fullname: Xi, Rui
– sequence: 8
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35009658$$D View this record in MEDLINE/PubMed
BookMark eNplkk1rGzEQhkVIyWcP_QNloZfmsI0-d6VLITFpawjk4PQsZiWtK6NdudI6pf--sp2EJEUHDe888zLMzCk6HOPoEPpA8BfGFL7MlGKCCZEH6IRwymtZhMMX8TE6zXmFMWWMySN0zATGqhHyBN3Ph3WKD85Wiz-Qhmo-Ti4Ev3TjVF0HPxY9bpJx1cKtIcHk41hdQy58CRZ-OUKoZinmXM9iSi7siHP0roeQ3fvH_wz9_HZzP_tR3959n8-ubmvDGzXVyoKwRvaNcBSAdh1pQZUMWAlGEgNKMqCktVhuddpj0VoHpmu4FZwpdobme18bYaXXyQ-Q_uoIXu-EmJYa0uRNcNqC6gztjG0t5e3WWpiO953hvClSU7y-7r3Wm25w1pQBJAivTF9nRv9LL-ODli1vKcHF4POjQYq_Ny5PevDZlGHC6OIma9oQqQhhrSjopzfoqgy5jHJP0UaUV6iPLzt6buVpeQW43ANmu4Dkem38tFtAadAHTbDenod-Po9ScfGm4sn0f_Yfda66Eg
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3313972
crossref_primary_10_3390_s24072291
crossref_primary_10_3390_s22113979
crossref_primary_10_3390_electronics12183954
Cites_doi 10.1038/scientificamerican0792-66
10.12720/jcm.15.11.841-848
10.1190/geo2012-0136.1
10.7498/aps.63.050502
10.1007/s00500-018-3102-4
10.1016/j.compstruc.2016.03.001
10.1109/ICAIIS49377.2020.9194908
10.1088/1742-6596/1804/1/012097
10.1155/2012/183541
10.1023/A:1008202821328
10.3390/s21144844
10.3103/S0735272711060045
10.1109/TASL.2011.2114881
10.1016/j.sigpro.2018.05.017
10.1109/HNICEM.2014.7016226
10.1051/matecconf/20166103008
10.1007/BF00175354
10.1155/2021/6627804
10.1109/ACCESS.2020.3004430
10.1007/s00034-020-01621-5
10.3390/s20154233
10.1109/AICI.2009.442
10.1109/ICASSP.2019.8683855
10.1186/s13638-021-01920-8
10.1051/matecconf/201817303052
10.1016/j.jneumeth.2014.02.019
10.1016/j.rse.2014.10.023
10.1080/03772063.2014.961573
10.1016/0165-1684(94)90029-9
10.1016/j.knosys.2015.12.022
10.1121/10.0002702
10.1109/IMCEC.2018.8469280
10.21105/joss.02154
10.3390/app6060175
10.12783/dtcse/cnai2018/24131
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22010118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database ProQuest
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_da9bc2bcd7d247ca985cb4fbc4467d26
PMC8747210
35009658
10_3390_s22010118
Genre Journal Article
GrantInformation_xml – fundername: Kunming Forestry Information Engineering Technology Research Center
  grantid: No.2015FIA02
– fundername: Major scientific and technological projects in Yunnan Province
  grantid: No. 202002AA10007
– fundername: National Natural Science Foundation of China
  grantid: No.61462078
– fundername: National Natural Science Foundation of China
  grantid: No. 333 31860332
– fundername: Major Special Projects in Yunnan Province
  grantid: No.202002AD080002
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-9da5dc8f65e2aa2bb17a9469ad8ac81ca983a217d08a9462f057deacb64d54393
IEDL.DBID BENPR
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798025000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:31:34 EST 2025
Tue Nov 04 02:02:18 EST 2025
Fri Sep 05 10:28:42 EDT 2025
Tue Oct 07 07:12:55 EDT 2025
Wed Feb 19 02:28:28 EST 2025
Sat Nov 29 07:17:26 EST 2025
Tue Nov 18 21:19:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords swarm intelligence optimization algorithms
cross-correlation
speech separation
blind source separation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-9da5dc8f65e2aa2bb17a9469ad8ac81ca983a217d08a9462f057deacb64d54393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2618265656?pq-origsite=%requestingapplication%
PMID 35009658
PQID 2618265656
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_da9bc2bcd7d247ca985cb4fbc4467d26
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8747210
proquest_miscellaneous_2618911375
proquest_journals_2618265656
pubmed_primary_35009658
crossref_citationtrail_10_3390_s22010118
crossref_primary_10_3390_s22010118
PublicationCentury 2000
PublicationDate 20211224
PublicationDateYYYYMMDD 2021-12-24
PublicationDate_xml – month: 12
  year: 2021
  text: 20211224
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hennequin (ref_43) 2020; 5
(ref_31) 2020; 42
Dong (ref_40) 2020; 148
Ding (ref_47) 2018; 173
ref_52
ref_51
ref_18
ref_16
ref_15
Storn (ref_28) 1997; 11
Li (ref_35) 2021; 48
Wang (ref_46) 2021; 40
Zarzoso (ref_9) 2000; 27
Askarzadeh (ref_36) 2016; 169
Do (ref_42) 2020; 15
ref_24
ref_23
Nguyen (ref_13) 2012; 19
Liang (ref_29) 2008; 21
Liu (ref_7) 2013; 78
ref_27
Prakash (ref_11) 2015; 110
Luo (ref_53) 2020; 8
Luo (ref_14) 2012; 7
Ghahramani (ref_4) 2014; 60
Li (ref_19) 2016; 2016
Metsomaa (ref_10) 2014; 228
Feng (ref_20) 2018; 152
Whitley (ref_26) 1994; 4
Arora (ref_34) 2019; 23
ref_32
Liu (ref_8) 2007; 4
Taal (ref_38) 2011; 19
Salman (ref_56) 2021; 1804
Khalfa (ref_21) 2019; 13
Mirjalili (ref_30) 2016; 96
ref_39
Li (ref_50) 2021; 2021
Liu (ref_33) 2021; 49
ref_37
Holland (ref_25) 1992; 267
Li (ref_22) 2021; 2021
Salman (ref_55) 2021; 2
Barnie (ref_12) 2015; 158
ref_45
ref_44
ref_41
ref_1
ref_49
(ref_6) 2014; 63
ref_48
Comon (ref_2) 1994; 36
Li (ref_3) 2016; 61
ref_5
Zhucheng (ref_17) 2019; 36
Mavaddaty (ref_54) 2011; 54
References_xml – volume: 267
  start-page: 66
  year: 1992
  ident: ref_25
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– ident: ref_5
– ident: ref_32
– volume: 15
  start-page: 841
  year: 2020
  ident: ref_42
  article-title: Speech Separation in the Frequency Domain with Autoencoder
  publication-title: J. Commun.
  doi: 10.12720/jcm.15.11.841-848
– volume: 78
  start-page: V119
  year: 2013
  ident: ref_7
  article-title: Blind-source separation of seismic signals based on information maximization
  publication-title: Geophysics
  doi: 10.1190/geo2012-0136.1
– volume: 63
  start-page: 050502
  year: 2014
  ident: ref_6
  article-title: Blind source separation of chaotic signals in wireless sensor networks
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.63.050502
– volume: 48
  start-page: 260
  year: 2021
  ident: ref_35
  article-title: Improved Crow Search Algorithm Based on Parameter Adaptive Strategy
  publication-title: Comput. Sci.
– ident: ref_16
– volume: 23
  start-page: 715
  year: 2019
  ident: ref_34
  article-title: Butterfly optimization algorithm: A novel approach for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3102-4
– volume: 169
  start-page: 1
  year: 2016
  ident: ref_36
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.03.001
– ident: ref_48
  doi: 10.1109/ICAIIS49377.2020.9194908
– volume: 7
  start-page: 248
  year: 2012
  ident: ref_14
  article-title: Research and Application of Blind Signal Separation Algorithm to the Aircraft Engine Vibration Signal and Fault Diagnosis Based on Fast ICA
  publication-title: J. Converg. Inf. Technol.
– volume: 1804
  start-page: 012097
  year: 2021
  ident: ref_56
  article-title: Comparative Study of QPSO and other methods in Blind Source Separation
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1804/1/012097
– ident: ref_1
– volume: 19
  start-page: 795
  year: 2012
  ident: ref_13
  article-title: Fault diagnosis in industrial systems based on blind source separation techniques using one single vibration sensor
  publication-title: Shock. Vib.
  doi: 10.1155/2012/183541
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_28
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 2
  start-page: 1
  year: 2021
  ident: ref_55
  article-title: Speech Signals Separation Using Optimized Independent Component Analysis and Mutual Information
  publication-title: Science
– ident: ref_44
  doi: 10.3390/s21144844
– volume: 54
  start-page: 315
  year: 2011
  ident: ref_54
  article-title: Blind signals separation with genetic algorithm and particle swarm optimization based on mutual information
  publication-title: Radioelectron. Commun. Syst.
  doi: 10.3103/S0735272711060045
– volume: 19
  start-page: 2125
  year: 2011
  ident: ref_38
  article-title: An algorithm for intelligibility prediction of time–frequency weighted noisy speech
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2011.2114881
– volume: 152
  start-page: 165
  year: 2018
  ident: ref_20
  article-title: Revisiting sparse ICA from a synthesis point of view: Blind Source Separation for over and underdetermined mixtures
  publication-title: Sig. Process.
  doi: 10.1016/j.sigpro.2018.05.017
– ident: ref_23
  doi: 10.1109/HNICEM.2014.7016226
– ident: ref_27
– volume: 61
  start-page: 03008
  year: 2016
  ident: ref_3
  article-title: A blind source separation algorithm based on dynamic niching particle swarm optimization
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/20166103008
– volume: 4
  start-page: 65
  year: 1994
  ident: ref_26
  article-title: A genetic algorithm tutorial
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175354
– volume: 42
  start-page: 1674
  year: 2020
  ident: ref_31
  article-title: A sine cosine algorithm based on differential evolution
  publication-title: Chin. J. Eng.
– ident: ref_41
– volume: 2021
  start-page: 6627804
  year: 2021
  ident: ref_50
  article-title: Quantum Particle Swarm Optimization Extraction Algorithm Based on Quantum Chaos Encryption
  publication-title: Complexity
  doi: 10.1155/2021/6627804
– volume: 8
  start-page: 120798
  year: 2020
  ident: ref_53
  article-title: Optimal performance and application for firework algorithm using a novel chaotic approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004430
– volume: 110
  start-page: 40
  year: 2015
  ident: ref_11
  article-title: Blind source separation for speech music and speech speech mixtures
  publication-title: Int. J. Comput. Appl.
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_19
  article-title: Glowworm swarm optimization and its application to blind signal separation
  publication-title: Math. Probl. Eng.
– volume: 40
  start-page: 3338
  year: 2021
  ident: ref_46
  article-title: Blind Source Separation Based on Adaptive Artificial Bee Colony Optimization and Kurtosis
  publication-title: Circuits Syst. Sig. Pro.
  doi: 10.1007/s00034-020-01621-5
– ident: ref_45
  doi: 10.3390/s20154233
– ident: ref_51
  doi: 10.1109/AICI.2009.442
– ident: ref_39
  doi: 10.1109/ICASSP.2019.8683855
– volume: 2021
  start-page: 38
  year: 2021
  ident: ref_22
  article-title: Blind signal separation based on widely linear complex autoregressive process of order one
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/s13638-021-01920-8
– ident: ref_24
– volume: 13
  start-page: 2574
  year: 2019
  ident: ref_21
  article-title: Blind Audio Source Separation Based On High Exploration Particle Swarm Optimization
  publication-title: KSII Trans. Internet Inf. Syst. (TIIS)
– volume: 21
  start-page: 506
  year: 2008
  ident: ref_29
  article-title: A Survey of Differential Evolution Algorithms
  publication-title: PR Al
– volume: 173
  start-page: 03052
  year: 2018
  ident: ref_47
  article-title: Blind Source Separation based on Whale Optimization Algorithm
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201817303052
– volume: 49
  start-page: 1068
  year: 2021
  ident: ref_33
  article-title: Improved Butterfly Algorithm for Multi-dimensional Complex Function Optimization Problem
  publication-title: ACTA Electonica Sin.
– ident: ref_37
– volume: 27
  start-page: 431
  year: 2000
  ident: ref_9
  article-title: Fetal ECG extraction from maternal skin electrodes using blind source separation and adaptive noise cancellation techniques
  publication-title: Comput. Cardiol.
– volume: 228
  start-page: 15
  year: 2014
  ident: ref_10
  article-title: Multi-trial evoked EEG and independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.02.019
– volume: 158
  start-page: 56
  year: 2015
  ident: ref_12
  article-title: Extracting high temperature event radiance from satellite images and correcting for saturation using independent component analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.023
– volume: 36
  start-page: 2992
  year: 2019
  ident: ref_17
  article-title: Blind separation of speech mixtures based on improved glowworm swarm optimization
  publication-title: Appl. Res. Comput.
– volume: 60
  start-page: 331
  year: 2014
  ident: ref_4
  article-title: Maritime radar target detection in presence of strong sea clutter based on blind source separation
  publication-title: IETE J. Res.
  doi: 10.1080/03772063.2014.961573
– volume: 36
  start-page: 287
  year: 1994
  ident: ref_2
  article-title: Independent component analysis, a new concept?
  publication-title: Sig. Process.
  doi: 10.1016/0165-1684(94)90029-9
– volume: 4
  start-page: 21
  year: 2007
  ident: ref_8
  article-title: ICA with banded mixing matrix based seismic blind deconvolution
  publication-title: Prog. Geophys.
– volume: 96
  start-page: 120
  year: 2016
  ident: ref_30
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 148
  start-page: 3348
  year: 2020
  ident: ref_40
  article-title: Towards real-world objective speech quality and intelligibility assessment using speech-enhancement residuals and convolutional long short-term memory networks
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0002702
– ident: ref_49
  doi: 10.1109/IMCEC.2018.8469280
– ident: ref_15
– volume: 5
  start-page: 2154
  year: 2020
  ident: ref_43
  article-title: Spleeter: A fast and efficient music source separation tool with pre-trained models
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02154
– ident: ref_18
  doi: 10.3390/app6060175
– ident: ref_52
  doi: 10.12783/dtcse/cnai2018/24131
SSID ssj0023338
Score 2.3809571
Snippet In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 118
SubjectTerms Accuracy
Algorithms
Animals
blind source separation
Butterflies
cross-correlation
Fault diagnosis
Intelligence
Optimization algorithms
Signal processing
speech separation
swarm intelligence optimization algorithms
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5ViEM5VEBLG15KKw69RGwce2Mf2RWovaBKCxK3yPZ425VKFu0D_j4zcTbaRUhcuEXjUeTMjOP57NE3AGfGCPRW5pnvo8-kdi6zro9MIWodWom9HjbNJsrra313Z_6stfrimrBIDxwNd47WOC-cxxKFLL01Wnknx84TjiFRQ7ZNWc8KTLVQqyDkFXmECgL153PBl745d_ZY230akv7XMsuXBZJrO87VLnxqU8X0Ik5xDz6Eeh921ggEP8NNPBMImI6e7Ow-_d0RbC7SASWQJG8O59NRiBzf0zod0L6FKT2MJn_5_UOeaTbkLh2xLu4L3F5d3gx_ZW2fhMwTuF1kBq1Cr8d9FYS1wrm8tIZGLGrrdc42KyxBD-xplosx5WhIP1zXl6goISkOYKue1uEbpMh08aUJxktLWz15EaVyPoxNqVTQPoGfK_tVviUR514W_ysCE2zqqjN1Aj861YfInPGa0oCd0Ckw2XUjoBCo2hCo3gqBBI5XLqzaFTivCBkScuJ0NYHv3TCtHb4QsXWYLqMO_eyLUiXwNXq8m0mheg0xTgLlRixsTHVzpJ78a_i5NUE0QtKH7_FtR_BRcBVNLjIhj2FrMVuGE9j2j4vJfHbaBP0zQYUL5A
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved Swarm Intelligent Blind Source Separation Based on Signal Cross-Correlation
URI https://www.ncbi.nlm.nih.gov/pubmed/35009658
https://www.proquest.com/docview/2618265656
https://www.proquest.com/docview/2618911375
https://pubmed.ncbi.nlm.nih.gov/PMC8747210
https://doaj.org/article/da9bc2bcd7d247ca985cb4fbc4467d26
Volume 22
WOSCitedRecordID wos000798025000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXQ5w4P0ILFVAHLhE2zgP2ydEq67Yw1YVXaRyimyPu1sJkqXtwo3fzkyShhatuHCxorEV2Ro_vm9sfQPwVmuBzqRx5HJ0UaqsjYzNkSVEjUWT4mCAdbIJOZmo-VxP24Dbun1Wud0T640aK8cx8mNC-oSEGX68v_oecdYovl1tU2gcwCErlaU9OByOJ9NPHeVKiIE1ekIJkfvjteDL35gzfOycQrVY_00I8--Hkjsnz8n9_-3zA7jXYs7wQzNJHsItXz6CuztKhI_hvAkueAxnP83qW3jaKXVuwiEhUbLXUf5w5hux8KoMh3QAYkgfs-UF_3_EQ41GnO6jeWD3BD6fjM9HH6M24ULkiCVvIo0mQ6cWeeaFMcLaWBpNNQaVcSp2RqvEEIfBgWK7WBDYQ9q5bZ5iRsgmeQq9sir9cwiRdeel9tqlhjADTQdMM-v8Qsss88oF8G7rgMK1auScFONrQayEfVV0vgrgTdf0qpHguKnRkL3YNWDV7NpQrS6KdhEWaLR1wjqUKFLJw8mcTRfWEScmUx7A0daPRbuU18UfJwbwuqumRcg3K6b01XXThk6NRGYBPGumTNeTJBvUCjsByL3JtNfV_ZpyeVkLfSviekTJX_y7Wy_hjuCHNrGIRHoEvc3q2r-C2-7HZrle9eFAzmVdqn67Ovp14IHKs19jsk1Pz6ZffgNt0R9k
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8MBQwCiYtVe_1Y7wEhEqgatURICVJuZndnUyKBXZKUij_Fb2TGjt0EVdx64Gbtrla79ueZb7zjbwBeKiXQ6iQKbIY2SHJjAm0yZAlRbVAnGIZYF5uQw2E-mahPW_C7_ReG0ypbm1gbaqwsfyPfJaZPTJjpx9vjHwFXjeLT1baERgOLA_frlEK2xZvBe3q-r4TY-zDu7werqgKBpVBwGSjUKdp8mqVOaC2MiaRW1KMx1zaPrFZ5rImoY5hzu5gSo0EyTyZLMCX3HdO8l-Ay2XHJKWRychbgxRTvNepFcazC3YXgo-aI64ms-by6NMB5fPbvtMw1P7d383-7Q7fgxopR---aV-A2bLnyDlxf01m8C-Pm04lDf3Sq59_9QadDuvR7xLOpvT7D8EeukUKvSr9H7h19uhjNjnj-Pt_aoM_FTJr0wXvw-UK2dR-2y6p0D8FHVtWXyimbaGJEBHZMUmPdVMk0dbn14HX7wAu70lrnkh_fCoq5GBtFhw0PXnRDjxuBkfMG9Rg13QDWBK8bqvlRsTIxBWplrDAWJYpE8nZSa5KpsRTxU1PmwU6Lm2JlqBbFGWg8eN51k4nhcyNduuqkGUM-MZapBw8aiHYridOw1g_yQG6Ad2Opmz3l7GstY55TJCui8NG_l_UMru6PPx4Wh4PhwWO4JjilKBKBSHZgezk_cU_giv25nC3mT-t30YcvFw3tPzr8dtE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFiE48P1hKGAQSFys2Ot17D0gRFIiokIUKUVqT2Z3Z10igVOSlIq_xq9jxnZMgipuPXCLdlfW2n4z88Y7eQPwQimBVssosF20gcyMCbTpIkuIaoNaYhhi1WwiHY2yw0M13oJfq__CcFnlyidWjhpnlr-Rd4jpExNm-tEpmrKI8d7gzcn3gDtI8Unrqp1GDZF99_OM0rfF6-EeveuXQgzeHfTfB02HgcBSWrgMFOoEbVZ0Eye0FsZEqVY0ozHTNousVlmsibRjmPG4KIjdILkq05WYUCiP6bqXYIcouSQb2xkPP46P2nQvpuyv1jKKYxV2FoIPniPuLrIWAatGAeex27-LNNei3uDG__y8bsL1hmv7b2vjuAVbrrwN19YUGO_AQf1RxaE_OdPzb_6wVShd-j1i4DRenW74E1eLpM9Kv0eBH336MZke8_X7_JiDPrc5qQsL78KnC7mte7Bdzkr3AHxkvf1UOWWlJq5EZoAyMdYVKk0Sl1kPXq1efm4bFXZuBvI1p2yMcZK3OPHgebv0pJYeOW9RjxHULmC18GpgNj_OG-eTo1bGCmMxRSFTvp3EGlkYKylMouh6sLvCUN64sEX-B0AePGunyfnwiZIu3ey0XkPRMk4TD-7XcG13EidhpSzkQboB5I2tbs6U0y-VwHlGBiWi8OG_t_UUrhCi8w_D0f4juCq41igSgZC7sL2cn7rHcNn-WE4X8yeNYfrw-aKx_Rs4pIEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Swarm+Intelligent+Blind+Source+Separation+Based+on+Signal+Cross-Correlation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zi%2C+Jiali&rft.au=Lv%2C+Danju&rft.au=Liu%2C+Jiang&rft.au=Huang%2C+Xin&rft.date=2021-12-24&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=1&rft_id=info:doi/10.3390%2Fs22010118&rft_id=info%3Apmid%2F35009658&rft.externalDocID=PMC8747210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon