Improved Swarm Intelligent Blind Source Separation Based on Signal Cross-Correlation
In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 22; H. 1; S. 118 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
24.12.2021
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average. |
|---|---|
| AbstractList | In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average. In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average.In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average. |
| Author | Huang, Xin Liu, Jiang Zi, Jiali Gao, Mingyuan Lv, Danju Zhang, Yan Xi, Rui Yao, Wang |
| AuthorAffiliation | 2 School of Mathematics and Physics, Southwest Forestry University, Kunming 650224, China; zhangyan@swfu.edu.cn 1 College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China; zijiali@swfu.edu.cn (J.Z.); jungleliu@swfu.edu.cn (J.L.); huangxin615@swfu.edu.cn (X.H.); yaowang@swfu.edu.cn (W.Y.); TuAYuan@swfu.edu.cn (M.G.); xirui@swfu.edu.cn (R.X.) |
| AuthorAffiliation_xml | – name: 1 College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China; zijiali@swfu.edu.cn (J.Z.); jungleliu@swfu.edu.cn (J.L.); huangxin615@swfu.edu.cn (X.H.); yaowang@swfu.edu.cn (W.Y.); TuAYuan@swfu.edu.cn (M.G.); xirui@swfu.edu.cn (R.X.) – name: 2 School of Mathematics and Physics, Southwest Forestry University, Kunming 650224, China; zhangyan@swfu.edu.cn |
| Author_xml | – sequence: 1 givenname: Jiali surname: Zi fullname: Zi, Jiali – sequence: 2 givenname: Danju surname: Lv fullname: Lv, Danju – sequence: 3 givenname: Jiang surname: Liu fullname: Liu, Jiang – sequence: 4 givenname: Xin surname: Huang fullname: Huang, Xin – sequence: 5 givenname: Wang surname: Yao fullname: Yao, Wang – sequence: 6 givenname: Mingyuan surname: Gao fullname: Gao, Mingyuan – sequence: 7 givenname: Rui surname: Xi fullname: Xi, Rui – sequence: 8 givenname: Yan surname: Zhang fullname: Zhang, Yan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35009658$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkk1rGzEQhkVIyWcP_QNloZfmsI0-d6VLITFpawjk4PQsZiWtK6NdudI6pf--sp2EJEUHDe888zLMzCk6HOPoEPpA8BfGFL7MlGKCCZEH6IRwymtZhMMX8TE6zXmFMWWMySN0zATGqhHyBN3Ph3WKD85Wiz-Qhmo-Ti4Ev3TjVF0HPxY9bpJx1cKtIcHk41hdQy58CRZ-OUKoZinmXM9iSi7siHP0roeQ3fvH_wz9_HZzP_tR3959n8-ubmvDGzXVyoKwRvaNcBSAdh1pQZUMWAlGEgNKMqCktVhuddpj0VoHpmu4FZwpdobme18bYaXXyQ-Q_uoIXu-EmJYa0uRNcNqC6gztjG0t5e3WWpiO953hvClSU7y-7r3Wm25w1pQBJAivTF9nRv9LL-ODli1vKcHF4POjQYq_Ny5PevDZlGHC6OIma9oQqQhhrSjopzfoqgy5jHJP0UaUV6iPLzt6buVpeQW43ANmu4Dkem38tFtAadAHTbDenod-Po9ScfGm4sn0f_Yfda66Eg |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3313972 crossref_primary_10_3390_s24072291 crossref_primary_10_3390_s22113979 crossref_primary_10_3390_electronics12183954 |
| Cites_doi | 10.1038/scientificamerican0792-66 10.12720/jcm.15.11.841-848 10.1190/geo2012-0136.1 10.7498/aps.63.050502 10.1007/s00500-018-3102-4 10.1016/j.compstruc.2016.03.001 10.1109/ICAIIS49377.2020.9194908 10.1088/1742-6596/1804/1/012097 10.1155/2012/183541 10.1023/A:1008202821328 10.3390/s21144844 10.3103/S0735272711060045 10.1109/TASL.2011.2114881 10.1016/j.sigpro.2018.05.017 10.1109/HNICEM.2014.7016226 10.1051/matecconf/20166103008 10.1007/BF00175354 10.1155/2021/6627804 10.1109/ACCESS.2020.3004430 10.1007/s00034-020-01621-5 10.3390/s20154233 10.1109/AICI.2009.442 10.1109/ICASSP.2019.8683855 10.1186/s13638-021-01920-8 10.1051/matecconf/201817303052 10.1016/j.jneumeth.2014.02.019 10.1016/j.rse.2014.10.023 10.1080/03772063.2014.961573 10.1016/0165-1684(94)90029-9 10.1016/j.knosys.2015.12.022 10.1121/10.0002702 10.1109/IMCEC.2018.8469280 10.21105/joss.02154 10.3390/app6060175 10.12783/dtcse/cnai2018/24131 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22010118 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_da9bc2bcd7d247ca985cb4fbc4467d26 PMC8747210 35009658 10_3390_s22010118 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Kunming Forestry Information Engineering Technology Research Center grantid: No.2015FIA02 – fundername: Major scientific and technological projects in Yunnan Province grantid: No. 202002AA10007 – fundername: National Natural Science Foundation of China grantid: No.61462078 – fundername: National Natural Science Foundation of China grantid: No. 333 31860332 – fundername: Major Special Projects in Yunnan Province grantid: No.202002AD080002 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-9da5dc8f65e2aa2bb17a9469ad8ac81ca983a217d08a9462f057deacb64d54393 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798025000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:31:34 EST 2025 Tue Nov 04 02:02:18 EST 2025 Fri Sep 05 10:28:42 EDT 2025 Tue Oct 07 07:12:55 EDT 2025 Wed Feb 19 02:28:28 EST 2025 Sat Nov 29 07:17:26 EST 2025 Tue Nov 18 21:19:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | swarm intelligence optimization algorithms cross-correlation speech separation blind source separation |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-9da5dc8f65e2aa2bb17a9469ad8ac81ca983a217d08a9462f057deacb64d54393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2618265656?pq-origsite=%requestingapplication% |
| PMID | 35009658 |
| PQID | 2618265656 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_da9bc2bcd7d247ca985cb4fbc4467d26 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8747210 proquest_miscellaneous_2618911375 proquest_journals_2618265656 pubmed_primary_35009658 crossref_citationtrail_10_3390_s22010118 crossref_primary_10_3390_s22010118 |
| PublicationCentury | 2000 |
| PublicationDate | 20211224 |
| PublicationDateYYYYMMDD | 2021-12-24 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211224 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Hennequin (ref_43) 2020; 5 (ref_31) 2020; 42 Dong (ref_40) 2020; 148 Ding (ref_47) 2018; 173 ref_52 ref_51 ref_18 ref_16 ref_15 Storn (ref_28) 1997; 11 Li (ref_35) 2021; 48 Wang (ref_46) 2021; 40 Zarzoso (ref_9) 2000; 27 Askarzadeh (ref_36) 2016; 169 Do (ref_42) 2020; 15 ref_24 ref_23 Nguyen (ref_13) 2012; 19 Liang (ref_29) 2008; 21 Liu (ref_7) 2013; 78 ref_27 Prakash (ref_11) 2015; 110 Luo (ref_53) 2020; 8 Luo (ref_14) 2012; 7 Ghahramani (ref_4) 2014; 60 Li (ref_19) 2016; 2016 Metsomaa (ref_10) 2014; 228 Feng (ref_20) 2018; 152 Whitley (ref_26) 1994; 4 Arora (ref_34) 2019; 23 ref_32 Liu (ref_8) 2007; 4 Taal (ref_38) 2011; 19 Salman (ref_56) 2021; 1804 Khalfa (ref_21) 2019; 13 Mirjalili (ref_30) 2016; 96 ref_39 Li (ref_50) 2021; 2021 Liu (ref_33) 2021; 49 ref_37 Holland (ref_25) 1992; 267 Li (ref_22) 2021; 2021 Salman (ref_55) 2021; 2 Barnie (ref_12) 2015; 158 ref_45 ref_44 ref_41 ref_1 ref_49 (ref_6) 2014; 63 ref_48 Comon (ref_2) 1994; 36 Li (ref_3) 2016; 61 ref_5 Zhucheng (ref_17) 2019; 36 Mavaddaty (ref_54) 2011; 54 |
| References_xml | – volume: 267 start-page: 66 year: 1992 ident: ref_25 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – ident: ref_5 – ident: ref_32 – volume: 15 start-page: 841 year: 2020 ident: ref_42 article-title: Speech Separation in the Frequency Domain with Autoencoder publication-title: J. Commun. doi: 10.12720/jcm.15.11.841-848 – volume: 78 start-page: V119 year: 2013 ident: ref_7 article-title: Blind-source separation of seismic signals based on information maximization publication-title: Geophysics doi: 10.1190/geo2012-0136.1 – volume: 63 start-page: 050502 year: 2014 ident: ref_6 article-title: Blind source separation of chaotic signals in wireless sensor networks publication-title: Acta Phys. Sin. doi: 10.7498/aps.63.050502 – volume: 48 start-page: 260 year: 2021 ident: ref_35 article-title: Improved Crow Search Algorithm Based on Parameter Adaptive Strategy publication-title: Comput. Sci. – ident: ref_16 – volume: 23 start-page: 715 year: 2019 ident: ref_34 article-title: Butterfly optimization algorithm: A novel approach for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – volume: 169 start-page: 1 year: 2016 ident: ref_36 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.03.001 – ident: ref_48 doi: 10.1109/ICAIIS49377.2020.9194908 – volume: 7 start-page: 248 year: 2012 ident: ref_14 article-title: Research and Application of Blind Signal Separation Algorithm to the Aircraft Engine Vibration Signal and Fault Diagnosis Based on Fast ICA publication-title: J. Converg. Inf. Technol. – volume: 1804 start-page: 012097 year: 2021 ident: ref_56 article-title: Comparative Study of QPSO and other methods in Blind Source Separation publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1804/1/012097 – ident: ref_1 – volume: 19 start-page: 795 year: 2012 ident: ref_13 article-title: Fault diagnosis in industrial systems based on blind source separation techniques using one single vibration sensor publication-title: Shock. Vib. doi: 10.1155/2012/183541 – volume: 11 start-page: 341 year: 1997 ident: ref_28 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 2 start-page: 1 year: 2021 ident: ref_55 article-title: Speech Signals Separation Using Optimized Independent Component Analysis and Mutual Information publication-title: Science – ident: ref_44 doi: 10.3390/s21144844 – volume: 54 start-page: 315 year: 2011 ident: ref_54 article-title: Blind signals separation with genetic algorithm and particle swarm optimization based on mutual information publication-title: Radioelectron. Commun. Syst. doi: 10.3103/S0735272711060045 – volume: 19 start-page: 2125 year: 2011 ident: ref_38 article-title: An algorithm for intelligibility prediction of time–frequency weighted noisy speech publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2011.2114881 – volume: 152 start-page: 165 year: 2018 ident: ref_20 article-title: Revisiting sparse ICA from a synthesis point of view: Blind Source Separation for over and underdetermined mixtures publication-title: Sig. Process. doi: 10.1016/j.sigpro.2018.05.017 – ident: ref_23 doi: 10.1109/HNICEM.2014.7016226 – ident: ref_27 – volume: 61 start-page: 03008 year: 2016 ident: ref_3 article-title: A blind source separation algorithm based on dynamic niching particle swarm optimization publication-title: MATEC Web Conf. doi: 10.1051/matecconf/20166103008 – volume: 4 start-page: 65 year: 1994 ident: ref_26 article-title: A genetic algorithm tutorial publication-title: Stat. Comput. doi: 10.1007/BF00175354 – volume: 42 start-page: 1674 year: 2020 ident: ref_31 article-title: A sine cosine algorithm based on differential evolution publication-title: Chin. J. Eng. – ident: ref_41 – volume: 2021 start-page: 6627804 year: 2021 ident: ref_50 article-title: Quantum Particle Swarm Optimization Extraction Algorithm Based on Quantum Chaos Encryption publication-title: Complexity doi: 10.1155/2021/6627804 – volume: 8 start-page: 120798 year: 2020 ident: ref_53 article-title: Optimal performance and application for firework algorithm using a novel chaotic approach publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004430 – volume: 110 start-page: 40 year: 2015 ident: ref_11 article-title: Blind source separation for speech music and speech speech mixtures publication-title: Int. J. Comput. Appl. – volume: 2016 start-page: 1 year: 2016 ident: ref_19 article-title: Glowworm swarm optimization and its application to blind signal separation publication-title: Math. Probl. Eng. – volume: 40 start-page: 3338 year: 2021 ident: ref_46 article-title: Blind Source Separation Based on Adaptive Artificial Bee Colony Optimization and Kurtosis publication-title: Circuits Syst. Sig. Pro. doi: 10.1007/s00034-020-01621-5 – ident: ref_45 doi: 10.3390/s20154233 – ident: ref_51 doi: 10.1109/AICI.2009.442 – ident: ref_39 doi: 10.1109/ICASSP.2019.8683855 – volume: 2021 start-page: 38 year: 2021 ident: ref_22 article-title: Blind signal separation based on widely linear complex autoregressive process of order one publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/s13638-021-01920-8 – ident: ref_24 – volume: 13 start-page: 2574 year: 2019 ident: ref_21 article-title: Blind Audio Source Separation Based On High Exploration Particle Swarm Optimization publication-title: KSII Trans. Internet Inf. Syst. (TIIS) – volume: 21 start-page: 506 year: 2008 ident: ref_29 article-title: A Survey of Differential Evolution Algorithms publication-title: PR Al – volume: 173 start-page: 03052 year: 2018 ident: ref_47 article-title: Blind Source Separation based on Whale Optimization Algorithm publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201817303052 – volume: 49 start-page: 1068 year: 2021 ident: ref_33 article-title: Improved Butterfly Algorithm for Multi-dimensional Complex Function Optimization Problem publication-title: ACTA Electonica Sin. – ident: ref_37 – volume: 27 start-page: 431 year: 2000 ident: ref_9 article-title: Fetal ECG extraction from maternal skin electrodes using blind source separation and adaptive noise cancellation techniques publication-title: Comput. Cardiol. – volume: 228 start-page: 15 year: 2014 ident: ref_10 article-title: Multi-trial evoked EEG and independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.02.019 – volume: 158 start-page: 56 year: 2015 ident: ref_12 article-title: Extracting high temperature event radiance from satellite images and correcting for saturation using independent component analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.023 – volume: 36 start-page: 2992 year: 2019 ident: ref_17 article-title: Blind separation of speech mixtures based on improved glowworm swarm optimization publication-title: Appl. Res. Comput. – volume: 60 start-page: 331 year: 2014 ident: ref_4 article-title: Maritime radar target detection in presence of strong sea clutter based on blind source separation publication-title: IETE J. Res. doi: 10.1080/03772063.2014.961573 – volume: 36 start-page: 287 year: 1994 ident: ref_2 article-title: Independent component analysis, a new concept? publication-title: Sig. Process. doi: 10.1016/0165-1684(94)90029-9 – volume: 4 start-page: 21 year: 2007 ident: ref_8 article-title: ICA with banded mixing matrix based seismic blind deconvolution publication-title: Prog. Geophys. – volume: 96 start-page: 120 year: 2016 ident: ref_30 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 148 start-page: 3348 year: 2020 ident: ref_40 article-title: Towards real-world objective speech quality and intelligibility assessment using speech-enhancement residuals and convolutional long short-term memory networks publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0002702 – ident: ref_49 doi: 10.1109/IMCEC.2018.8469280 – ident: ref_15 – volume: 5 start-page: 2154 year: 2020 ident: ref_43 article-title: Spleeter: A fast and efficient music source separation tool with pre-trained models publication-title: J. Open Source Softw. doi: 10.21105/joss.02154 – ident: ref_18 doi: 10.3390/app6060175 – ident: ref_52 doi: 10.12783/dtcse/cnai2018/24131 |
| SSID | ssj0023338 |
| Score | 2.3809571 |
| Snippet | In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 118 |
| SubjectTerms | Accuracy Algorithms Animals blind source separation Butterflies cross-correlation Fault diagnosis Intelligence Optimization algorithms Signal processing speech separation swarm intelligence optimization algorithms |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5ViEM5VEBLG15KKw69RGwce2Mf2RWovaBKCxK3yPZ425VKFu0D_j4zcTbaRUhcuEXjUeTMjOP57NE3AGfGCPRW5pnvo8-kdi6zro9MIWodWom9HjbNJsrra313Z_6stfrimrBIDxwNd47WOC-cxxKFLL01Wnknx84TjiFRQ7ZNWc8KTLVQqyDkFXmECgL153PBl745d_ZY230akv7XMsuXBZJrO87VLnxqU8X0Ik5xDz6Eeh921ggEP8NNPBMImI6e7Ow-_d0RbC7SASWQJG8O59NRiBzf0zod0L6FKT2MJn_5_UOeaTbkLh2xLu4L3F5d3gx_ZW2fhMwTuF1kBq1Cr8d9FYS1wrm8tIZGLGrrdc42KyxBD-xplosx5WhIP1zXl6goISkOYKue1uEbpMh08aUJxktLWz15EaVyPoxNqVTQPoGfK_tVviUR514W_ysCE2zqqjN1Aj861YfInPGa0oCd0Ckw2XUjoBCo2hCo3gqBBI5XLqzaFTivCBkScuJ0NYHv3TCtHb4QsXWYLqMO_eyLUiXwNXq8m0mheg0xTgLlRixsTHVzpJ78a_i5NUE0QtKH7_FtR_BRcBVNLjIhj2FrMVuGE9j2j4vJfHbaBP0zQYUL5A priority: 102 providerName: Directory of Open Access Journals |
| Title | Improved Swarm Intelligent Blind Source Separation Based on Signal Cross-Correlation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35009658 https://www.proquest.com/docview/2618265656 https://www.proquest.com/docview/2618911375 https://pubmed.ncbi.nlm.nih.gov/PMC8747210 https://doaj.org/article/da9bc2bcd7d247ca985cb4fbc4467d26 |
| Volume | 22 |
| WOSCitedRecordID | wos000798025000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXQ5w4P0ILFVAHLhE2zgP2ydEq67Yw1YVXaRyimyPu1sJkqXtwo3fzkyShhatuHCxorEV2Ro_vm9sfQPwVmuBzqRx5HJ0UaqsjYzNkSVEjUWT4mCAdbIJOZmo-VxP24Dbun1Wud0T640aK8cx8mNC-oSEGX68v_oecdYovl1tU2gcwCErlaU9OByOJ9NPHeVKiIE1ekIJkfvjteDL35gzfOycQrVY_00I8--Hkjsnz8n9_-3zA7jXYs7wQzNJHsItXz6CuztKhI_hvAkueAxnP83qW3jaKXVuwiEhUbLXUf5w5hux8KoMh3QAYkgfs-UF_3_EQ41GnO6jeWD3BD6fjM9HH6M24ULkiCVvIo0mQ6cWeeaFMcLaWBpNNQaVcSp2RqvEEIfBgWK7WBDYQ9q5bZ5iRsgmeQq9sir9cwiRdeel9tqlhjADTQdMM-v8Qsss88oF8G7rgMK1auScFONrQayEfVV0vgrgTdf0qpHguKnRkL3YNWDV7NpQrS6KdhEWaLR1wjqUKFLJw8mcTRfWEScmUx7A0daPRbuU18UfJwbwuqumRcg3K6b01XXThk6NRGYBPGumTNeTJBvUCjsByL3JtNfV_ZpyeVkLfSviekTJX_y7Wy_hjuCHNrGIRHoEvc3q2r-C2-7HZrle9eFAzmVdqn67Ovp14IHKs19jsk1Pz6ZffgNt0R9k |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8MBQwCiYtVe_1Y7wEhEqgatURICVJuZndnUyKBXZKUij_Fb2TGjt0EVdx64Gbtrla79ueZb7zjbwBeKiXQ6iQKbIY2SHJjAm0yZAlRbVAnGIZYF5uQw2E-mahPW_C7_ReG0ypbm1gbaqwsfyPfJaZPTJjpx9vjHwFXjeLT1baERgOLA_frlEK2xZvBe3q-r4TY-zDu7werqgKBpVBwGSjUKdp8mqVOaC2MiaRW1KMx1zaPrFZ5rImoY5hzu5gSo0EyTyZLMCX3HdO8l-Ay2XHJKWRychbgxRTvNepFcazC3YXgo-aI64ms-by6NMB5fPbvtMw1P7d383-7Q7fgxopR---aV-A2bLnyDlxf01m8C-Pm04lDf3Sq59_9QadDuvR7xLOpvT7D8EeukUKvSr9H7h19uhjNjnj-Pt_aoM_FTJr0wXvw-UK2dR-2y6p0D8FHVtWXyimbaGJEBHZMUmPdVMk0dbn14HX7wAu70lrnkh_fCoq5GBtFhw0PXnRDjxuBkfMG9Rg13QDWBK8bqvlRsTIxBWplrDAWJYpE8nZSa5KpsRTxU1PmwU6Lm2JlqBbFGWg8eN51k4nhcyNduuqkGUM-MZapBw8aiHYridOw1g_yQG6Ad2Opmz3l7GstY55TJCui8NG_l_UMru6PPx4Wh4PhwWO4JjilKBKBSHZgezk_cU_giv25nC3mT-t30YcvFw3tPzr8dtE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFiE48P1hKGAQSFys2Ot17D0gRFIiokIUKUVqT2Z3Z10igVOSlIq_xq9jxnZMgipuPXCLdlfW2n4z88Y7eQPwQimBVssosF20gcyMCbTpIkuIaoNaYhhi1WwiHY2yw0M13oJfq__CcFnlyidWjhpnlr-Rd4jpExNm-tEpmrKI8d7gzcn3gDtI8Unrqp1GDZF99_OM0rfF6-EeveuXQgzeHfTfB02HgcBSWrgMFOoEbVZ0Eye0FsZEqVY0ozHTNousVlmsibRjmPG4KIjdILkq05WYUCiP6bqXYIcouSQb2xkPP46P2nQvpuyv1jKKYxV2FoIPniPuLrIWAatGAeex27-LNNei3uDG__y8bsL1hmv7b2vjuAVbrrwN19YUGO_AQf1RxaE_OdPzb_6wVShd-j1i4DRenW74E1eLpM9Kv0eBH336MZke8_X7_JiDPrc5qQsL78KnC7mte7Bdzkr3AHxkvf1UOWWlJq5EZoAyMdYVKk0Sl1kPXq1efm4bFXZuBvI1p2yMcZK3OPHgebv0pJYeOW9RjxHULmC18GpgNj_OG-eTo1bGCmMxRSFTvp3EGlkYKylMouh6sLvCUN64sEX-B0AePGunyfnwiZIu3ey0XkPRMk4TD-7XcG13EidhpSzkQboB5I2tbs6U0y-VwHlGBiWi8OG_t_UUrhCi8w_D0f4juCq41igSgZC7sL2cn7rHcNn-WE4X8yeNYfrw-aKx_Rs4pIEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Swarm+Intelligent+Blind+Source+Separation+Based+on+Signal+Cross-Correlation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zi%2C+Jiali&rft.au=Lv%2C+Danju&rft.au=Liu%2C+Jiang&rft.au=Huang%2C+Xin&rft.date=2021-12-24&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=1&rft_id=info:doi/10.3390%2Fs22010118&rft_id=info%3Apmid%2F35009658&rft.externalDocID=PMC8747210 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |