Artificial Neural Network for Atrial Fibrillation Identification in Portable Devices

Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical facilities. The aim of the present work is to propose a new artificial neural network for reliable AF ident...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 20; no. 12; p. 3570
Main Authors: Marinucci, Daniele, Sbrollini, Agnese, Marcantoni, Ilaria, Morettini, Micaela, Swenne, Cees A., Burattini, Laura
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 24.06.2020
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical facilities. The aim of the present work is to propose a new artificial neural network for reliable AF identification in ECGs acquired through portable devices. A supervised fully connected artificial neural network (RSL_ANN), receiving 19 ECG features (11 morphological, 4 on F waves and 4 on heart-rate variability (HRV)) in input and discriminating between AF and non-AF classes in output, was created using the repeated structuring and learning (RSL) procedure. RSL_ANN was created and tested on 8028 (training: 4493; validation: 1125; testing: 2410) annotated ECGs belonging to the “AF Classification from a Short Single Lead ECG Recording” database and acquired with the portable KARDIA device by AliveCor. RSL_ANN performance was evaluated in terms of area under the curve (AUC) and confidence intervals (CIs) of the received operating characteristic. RSL_ANN performance was very good and very similar in training, validation and testing datasets. AUC was 91.1% (CI: 89.1–93.0%), 90.2% (CI: 86.2–94.3%) and 90.8% (CI: 88.1–93.5%) for the training, validation and testing datasets, respectively. Thus, RSL_ANN is a promising tool for reliable identification of AF in ECGs acquired by portable devices.
AbstractList Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical facilities. The aim of the present work is to propose a new artificial neural network for reliable AF identification in ECGs acquired through portable devices. A supervised fully connected artificial neural network (RSL_ANN), receiving 19 ECG features (11 morphological, 4 on F waves and 4 on heart-rate variability (HRV)) in input and discriminating between AF and non-AF classes in output, was created using the repeated structuring and learning (RSL) procedure. RSL_ANN was created and tested on 8028 (training: 4493; validation: 1125; testing: 2410) annotated ECGs belonging to the “AF Classification from a Short Single Lead ECG Recording” database and acquired with the portable KARDIA device by AliveCor. RSL_ANN performance was evaluated in terms of area under the curve (AUC) and confidence intervals (CIs) of the received operating characteristic. RSL_ANN performance was very good and very similar in training, validation and testing datasets. AUC was 91.1% (CI: 89.1–93.0%), 90.2% (CI: 86.2–94.3%) and 90.8% (CI: 88.1–93.5%) for the training, validation and testing datasets, respectively. Thus, RSL_ANN is a promising tool for reliable identification of AF in ECGs acquired by portable devices.
Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical facilities. The aim of the present work is to propose a new artificial neural network for reliable AF identification in ECGs acquired through portable devices. A supervised fully connected artificial neural network (RSL_ANN), receiving 19 ECG features (11 morphological, 4 on F waves and 4 on heart-rate variability (HRV)) in input and discriminating between AF and non-AF classes in output, was created using the repeated structuring and learning (RSL) procedure. RSL_ANN was created and tested on 8028 (training: 4493; validation: 1125; testing: 2410) annotated ECGs belonging to the "AF Classification from a Short Single Lead ECG Recording" database and acquired with the portable KARDIA device by AliveCor. RSL_ANN performance was evaluated in terms of area under the curve (AUC) and confidence intervals (CIs) of the received operating characteristic. RSL_ANN performance was very good and very similar in training, validation and testing datasets. AUC was 91.1% (CI: 89.1-93.0%), 90.2% (CI: 86.2-94.3%) and 90.8% (CI: 88.1-93.5%) for the training, validation and testing datasets, respectively. Thus, RSL_ANN is a promising tool for reliable identification of AF in ECGs acquired by portable devices.Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical facilities. The aim of the present work is to propose a new artificial neural network for reliable AF identification in ECGs acquired through portable devices. A supervised fully connected artificial neural network (RSL_ANN), receiving 19 ECG features (11 morphological, 4 on F waves and 4 on heart-rate variability (HRV)) in input and discriminating between AF and non-AF classes in output, was created using the repeated structuring and learning (RSL) procedure. RSL_ANN was created and tested on 8028 (training: 4493; validation: 1125; testing: 2410) annotated ECGs belonging to the "AF Classification from a Short Single Lead ECG Recording" database and acquired with the portable KARDIA device by AliveCor. RSL_ANN performance was evaluated in terms of area under the curve (AUC) and confidence intervals (CIs) of the received operating characteristic. RSL_ANN performance was very good and very similar in training, validation and testing datasets. AUC was 91.1% (CI: 89.1-93.0%), 90.2% (CI: 86.2-94.3%) and 90.8% (CI: 88.1-93.5%) for the training, validation and testing datasets, respectively. Thus, RSL_ANN is a promising tool for reliable identification of AF in ECGs acquired by portable devices.
Author Marcantoni, Ilaria
Burattini, Laura
Marinucci, Daniele
Swenne, Cees A.
Morettini, Micaela
Sbrollini, Agnese
AuthorAffiliation 2 Cardiology Department, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; c.a.swenne@lumc.nl
1 Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, 60131 Ancona, Italy; daniele.marinucci90@gmail.com (D.M.); a.sbrollini@pm.univpm.it (A.S.); i.marcantoni@pm.univpm.it (I.M.); m.morettini@univpm.it (M.M.)
AuthorAffiliation_xml – name: 1 Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, 60131 Ancona, Italy; daniele.marinucci90@gmail.com (D.M.); a.sbrollini@pm.univpm.it (A.S.); i.marcantoni@pm.univpm.it (I.M.); m.morettini@univpm.it (M.M.)
– name: 2 Cardiology Department, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; c.a.swenne@lumc.nl
Author_xml – sequence: 1
  givenname: Daniele
  surname: Marinucci
  fullname: Marinucci, Daniele
– sequence: 2
  givenname: Agnese
  orcidid: 0000-0002-9152-7216
  surname: Sbrollini
  fullname: Sbrollini, Agnese
– sequence: 3
  givenname: Ilaria
  surname: Marcantoni
  fullname: Marcantoni, Ilaria
– sequence: 4
  givenname: Micaela
  orcidid: 0000-0002-8327-8379
  surname: Morettini
  fullname: Morettini, Micaela
– sequence: 5
  givenname: Cees A.
  orcidid: 0000-0001-9801-2760
  surname: Swenne
  fullname: Swenne, Cees A.
– sequence: 6
  givenname: Laura
  orcidid: 0000-0002-9474-7046
  surname: Burattini
  fullname: Burattini, Laura
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32599796$$D View this record in MEDLINE/PubMed
BookMark eNplkktPGzEQx60KVF499AtUK_VCDwE_1_alUkRLGwm1PcDZGntt6nSzpvYuFd8eJwEE9DT2zH9-mtcB2hnS4BF6T_AJYxqfFooJZULiN2ifcMpnilK88-y9hw5KWWJMGWPqLdpjVGgtdbuPLud5jCG6CH3zw095Y8Z_Kf9pQsrNfMzryHm0OfY9jDENzaLzwyZn-41D8yvlEWzvmy_-NjpfjtBugL74dw_2EF2df708-z67-PltcTa_mDne6nGmdVASe86hCxpTEZhrO2wpJWCxBSAqhCAsIaCI8D5YrKkEJwLX0IIN7BAtttwuwdLc5LiCfGcSRLNxpHxtoLbnem8011IRBxREx3kIWkrZUm87IjDvKKmsz1vWzWRXvnO1xzqMF9CXkSH-Ntfp1kjGaxe6Ao4fADn9nXwZzSoW5-vUBp-mYignGivJVVulH19Jl2nKQx3VWiW1UIzSqvrwvKKnUh6XVwWnW4HLqZTsg3Fx3CylFhh7Q7BZn4d5Oo-a8elVxiP0f-09a6K54g
CitedBy_id crossref_primary_10_3390_s22124450
crossref_primary_10_1016_j_cmpb_2022_106899
crossref_primary_10_1016_j_heliyon_2024_e41195
crossref_primary_10_3390_app14020817
crossref_primary_10_3390_biomedicines11061526
crossref_primary_10_1007_s11227_021_03959_2
crossref_primary_10_1016_j_heliyon_2024_e27200
crossref_primary_10_1097_MAT_0000000000001926
crossref_primary_10_1111_apha_13784
crossref_primary_10_2196_44003
crossref_primary_10_1093_cvr_cvab169
crossref_primary_10_3389_fcvm_2025_1581683
crossref_primary_10_2459_JCM_0000000000001431
crossref_primary_10_3390_diagnostics13142442
crossref_primary_10_1109_ACCESS_2022_3203586
crossref_primary_10_1002_j_2040_4603_2022_tb00218_x
crossref_primary_10_3390_s23063350
crossref_primary_10_3390_s23073538
crossref_primary_10_1016_j_compbiomed_2021_104404
crossref_primary_10_1016_j_bspc_2022_104185
crossref_primary_10_1016_j_bspc_2023_105677
crossref_primary_10_3390_s23177521
crossref_primary_10_1088_1361_6579_ace241
crossref_primary_10_3389_fphys_2021_570705
crossref_primary_10_3390_app11156711
crossref_primary_10_3390_app13031712
crossref_primary_10_1016_j_bspc_2023_104615
crossref_primary_10_3390_ijerph182111302
crossref_primary_10_1016_j_jpsychores_2021_110632
crossref_primary_10_1038_s41598_023_38541_8
crossref_primary_10_1016_j_trsl_2024_01_006
crossref_primary_10_3390_s21206848
crossref_primary_10_3390_s20247353
crossref_primary_10_3390_jcm11195702
crossref_primary_10_3390_s24134201
crossref_primary_10_1016_j_compbiomed_2022_105270
Cites_doi 10.1093/eurheartj/ehz834
10.1093/ehjci/eux136.008
10.3390/s19235079
10.18637/jss.v008.i02
10.1177/0267659118808703
10.1053/euhj.1998.1050
10.1016/j.amjcard.2018.01.035
10.1007/s10916-020-01565-y
10.3390/s18020405
10.1161/01.CIR.0000018443.44005.D8
10.3390/ijerph17020498
10.2196/11606
10.1016/j.future.2019.09.012
10.1016/j.medengphy.2016.03.011
10.1186/s12938-019-0630-9
10.22489/CinC.2018.066
10.1016/S0893-6080(05)80056-5
10.1016/j.compbiomed.2020.103726
10.22489/CinC.2018.099
10.1007/978-3-642-35289-8
10.1109/TBME.2012.2208112
10.1109/JBHI.2017.2688473
10.1016/j.bspc.2019.101753
10.1161/CIRCULATIONAHA.113.005119
10.3346/jkms.2019.34.e64
10.1109/TBME.1985.325532
10.1088/1361-6579/aac552
10.1161/01.CIR.101.23.e215
10.22489/CinC.2017.065-469
10.1109/EMBC.2018.8512761
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20123570
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_949781ca2a5d44ff977762ebd1504d21
PMC7348709
32599796
10_3390_s20123570
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-99f870e44adf9025f3c6d0b221ab0baa18fff5b11a815eefb0927ac5f49a6abf3
IEDL.DBID BENPR
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553125900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 14:37:41 EDT 2025
Tue Nov 04 01:54:14 EST 2025
Fri Sep 05 06:48:41 EDT 2025
Tue Oct 07 06:46:32 EDT 2025
Wed Feb 19 02:29:10 EST 2025
Tue Nov 18 22:44:28 EST 2025
Sat Nov 29 07:13:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords artificial neural networks
atrial fibrillation
portable devices
machine learning algorithms
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-99f870e44adf9025f3c6d0b221ab0baa18fff5b11a815eefb0927ac5f49a6abf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9152-7216
0000-0002-8327-8379
0000-0002-9474-7046
0000-0001-9801-2760
OpenAccessLink https://www.proquest.com/docview/2417958322?pq-origsite=%requestingapplication%
PMID 32599796
PQID 2417958322
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_949781ca2a5d44ff977762ebd1504d21
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7348709
proquest_miscellaneous_2419087486
proquest_journals_2417958322
pubmed_primary_32599796
crossref_citationtrail_10_3390_s20123570
crossref_primary_10_3390_s20123570
PublicationCentury 2000
PublicationDate 20200624
PublicationDateYYYYMMDD 2020-06-24
PublicationDate_xml – month: 6
  year: 2020
  text: 20200624
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Goldberger (ref_22) 2000; 101
Lahdenoja (ref_10) 2018; 22
Lee (ref_9) 2012; 60
Chugh (ref_3) 2013; 129
ref_13
Murat (ref_33) 2020; 120
ref_34
ref_32
Rozen (ref_7) 2018; 121
ref_30
Wang (ref_15) 2020; 102
(ref_29) 1993; 6
ref_19
ref_18
Bettoni (ref_28) 2002; 105
Athif (ref_17) 2018; 39
Schmitz (ref_4) 2018; 34
Yang (ref_12) 1994; 32
King (ref_31) 2003; 8
Breithardt (ref_2) 1998; 19
Nicolet (ref_14) 2020; 57
ref_25
ref_24
Sbrollini (ref_21) 2019; 18
ref_20
Krivoshei (ref_5) 2017; 19
Ghosh (ref_16) 2020; 44
Chong (ref_8) 2015; 19
Erdenebayar (ref_11) 2019; 34
Mortelmans (ref_6) 2017; 19
Pan (ref_23) 1985; 32
ref_27
Li (ref_35) 2019; 7
Agostinelli (ref_26) 2016; 38
Jones (ref_1) 2019; 41
References_xml – volume: 32
  start-page: 615
  year: 1994
  ident: ref_12
  article-title: Artificial neural networks for the diagnosis of atrial fibrillation
  publication-title: Med. Boil. Eng.
– volume: 41
  start-page: 1075
  year: 2019
  ident: ref_1
  article-title: Screening for atrial fibrillation: A call for evidence
  publication-title: Eur. Hear. J.
  doi: 10.1093/eurheartj/ehz834
– volume: 19
  start-page: 16
  year: 2017
  ident: ref_6
  article-title: Validation of a new smartphone application for the diagnosis of atrial fibrillation in primary care
  publication-title: Europace
  doi: 10.1093/ehjci/eux136.008
– ident: ref_20
  doi: 10.3390/s19235079
– volume: 8
  start-page: 137
  year: 2003
  ident: ref_31
  article-title: Logistic Regression in rare events data
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v008.i02
– volume: 19
  start-page: 815
  year: 2015
  ident: ref_8
  article-title: Arrhythmia discrimination using a smart phone
  publication-title: IEEE J. Biomed. Heal. Inf.
– volume: 34
  start-page: 174
  year: 2018
  ident: ref_4
  article-title: Book Review: Braunwald’s heart disease: A textbook of cardiovascular medicine
  publication-title: Perfusion
  doi: 10.1177/0267659118808703
– volume: 19
  start-page: 1294
  year: 1998
  ident: ref_2
  article-title: Atrial fibrillation: Current knowledge and recommendations for management *1
  publication-title: Eur. Hear. J.
  doi: 10.1053/euhj.1998.1050
– volume: 121
  start-page: 1187
  year: 2018
  ident: ref_7
  article-title: Diagnostic accuracy of a novel mobile phone application for the detection and monitoring of atrial fibrillation
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2018.01.035
– volume: 44
  start-page: 114
  year: 2020
  ident: ref_16
  article-title: Detection of atrial fibrillation from single lead ECG signal using multirate cosine filter bank and deep neural network
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01565-y
– ident: ref_24
  doi: 10.3390/s18020405
– volume: 105
  start-page: 2753
  year: 2002
  ident: ref_28
  article-title: Autonomic tone variations before the onset of paroxysmal atrial fibrillation
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000018443.44005.D8
– ident: ref_13
  doi: 10.3390/ijerph17020498
– ident: ref_18
– volume: 7
  start-page: e11606
  year: 2019
  ident: ref_35
  article-title: The current state of mobile phone apps for monitoring heart rate, heart rate variability, and atrial fibrillation: Narrative review
  publication-title: JMIR mHealth uHealth
  doi: 10.2196/11606
– volume: 102
  start-page: 670
  year: 2020
  ident: ref_15
  article-title: A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.09.012
– volume: 38
  start-page: 560
  year: 2016
  ident: ref_26
  article-title: Segmented beat modulation method for electrocardiogram estimation from noisy recordings
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.03.011
– volume: 18
  start-page: 15
  year: 2019
  ident: ref_21
  article-title: Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: A deep-learning approach
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-019-0630-9
– ident: ref_27
  doi: 10.22489/CinC.2018.066
– ident: ref_25
– volume: 6
  start-page: 525
  year: 1993
  ident: ref_29
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 120
  start-page: 103726
  year: 2020
  ident: ref_33
  article-title: Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review
  publication-title: Comput. Boil. Med.
  doi: 10.1016/j.compbiomed.2020.103726
– volume: 19
  start-page: 753
  year: 2017
  ident: ref_5
  article-title: Smart detection of atrial fibrillation†
  publication-title: Europace
– ident: ref_32
  doi: 10.22489/CinC.2018.099
– ident: ref_30
  doi: 10.1007/978-3-642-35289-8
– volume: 60
  start-page: 203
  year: 2012
  ident: ref_9
  article-title: Atrial fibrillation detection using an iPhone 4S
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2208112
– volume: 22
  start-page: 108
  year: 2018
  ident: ref_10
  article-title: Atrial fibrillation detection via accelerometer and gyroscope of a smartphone
  publication-title: IEEE J. Biomed. Heal. Informatics
  doi: 10.1109/JBHI.2017.2688473
– volume: 57
  start-page: 101753
  year: 2020
  ident: ref_14
  article-title: Classification of intracavitary electrograms in atrial fibrillation using information and complexity measures
  publication-title: Biomed. Signal. Process. Control.
  doi: 10.1016/j.bspc.2019.101753
– volume: 129
  start-page: 837
  year: 2013
  ident: ref_3
  article-title: Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.005119
– volume: 34
  start-page: e64
  year: 2019
  ident: ref_11
  article-title: Automatic prediction of atrial fibrillation based on convolutional neural network using a short-term normal electrocardiogram signal
  publication-title: J. Korean Med. Sci.
  doi: 10.3346/jkms.2019.34.e64
– volume: 32
  start-page: 230
  year: 1985
  ident: ref_23
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 39
  start-page: 064002
  year: 2018
  ident: ref_17
  article-title: Detecting atrial fibrillation from short single lead ECGs using statistical and morphological features
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aac552
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_22
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref_19
  doi: 10.22489/CinC.2017.065-469
– ident: ref_34
  doi: 10.1109/EMBC.2018.8512761
SSID ssj0023338
Score 2.5017254
Snippet Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3570
SubjectTerms Algorithms
artificial neural networks
atrial fibrillation
Atrial Fibrillation - diagnosis
Cardiac arrhythmia
Datasets
Electrocardiography
Electrocardiography - instrumentation
Heart
Heart Rate
Humans
Identification
machine learning algorithms
Medical equipment
Morphology
Neural networks
Neural Networks, Computer
Noise
Population
portable devices
Signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hxIEeKkpfAYpc1EMvEbHjxPERCqueUA8gcYvsxKOutAoVu_T3M2Nno12E1EtPkeJR5MzDmYnH3wfwrUHXG68wt70ucx1kmVtEmUvn69CT0Y3sItmEublp7u_trw2qL-4JS_DASXHnlinQZOeUq3qtESlfofgNvqdMRvfxCLmirGddTI2lVkmVV8IRKqmoP1-qeCaUGYk3vj4RpP-1zPJlg-TGF2d2AG_HVFFcpCm-g50wHMKbDQDB93DLgwkDQjDMRrzEvm5Byai4iJwcYsZt_YvU9CbSyVwcf9WJ-SBiM6lfBHEV4rLxAe5m17c_fuYjT0LeUXG7yq1FirqgteuRdw2x7Oq-8EqRwgvvnGwQsfJSukZWIaAvrDKuq1BbVzuP5UfYHR6G8BlEML4yrqkK5OcVtJDrWrrgrCflG6cz-L7WX9uNIOLMZbFoqZhgVbeTqjM4m0T_JOSM14Qu2QiTAINdxxvkAu3oAu2_XCCDk7UJ2zECl61iarWK16sMvk7DFDu8IeKG8PAUZWzRGN3UGXxKFp9mUlJdaI2lEbPlC1tT3R4Z5r8jPjcDBpnCHv2PdzuGfcUVflHnSp_A7urxKXyBve7var58PI1O_wwNGAjb
  priority: 102
  providerName: Directory of Open Access Journals
Title Artificial Neural Network for Atrial Fibrillation Identification in Portable Devices
URI https://www.ncbi.nlm.nih.gov/pubmed/32599796
https://www.proquest.com/docview/2417958322
https://www.proquest.com/docview/2419087486
https://pubmed.ncbi.nlm.nih.gov/PMC7348709
https://doaj.org/article/949781ca2a5d44ff977762ebd1504d21
Volume 20
WOSCitedRecordID wos000553125900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5iHQc48BsWGJVBHLhEix0njk9og1ZwWFWhIZVTZMf2qFSlW9tx5G_Hz3FDiyYuXBzJtqInPT_7vefn7wN4VzllhGYulYbnKbc0T6VzNKVKl9Z4pQvaBLIJMZlUs5mcxoTbOpZVbvfEsFGbZYM58hOGVFkFrr8PV9cpskbh7Wqk0DiAQ0Qq4wM4PBtNpl_7kCv3EViHJ5T74P5kzcLbUGQm3jmFAlj_bR7m34WSOyfP-OH_yvwIHkSfk5x2i-Qx3LHtE7i_g0T4FC5wsAOTIIjXET6hQJx4r5acBnIPMsb3AYuueo50T3xdzPmReUtCVapeWPLJhv3nGXwbjy4-fk4j4ULa-Ch5k0rpvPlazpVxeP3o8qY0mWbMay7TStHKOVdoSlVFC2udziQTqikcl6pU2uXPYdAuW3sExApdCFUVmcP_Zf5E4CVVVkltOBeKJ_B-q4C6iWjkSIqxqH1Ugrqqe10l8LafetVBcNw26Qy12E9A1OzQsVxd1tEIa4l0erRRTBVeCue87-vPAquN94q5YTSB460e62jK6_qPEhN40w97I8SbFdXa5U2YI7NK8KpM4EW3ZHpJch9gSiH9iNhbTHui7o-08x8B6BuRh0QmX_5brFdwj2ESICtTxo9hsFnd2Ndwt_m5ma9XQzgQMxHaahitYxgSD749_zXyfdMv59PvvwGpTh6B
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRL0wDc0UMAgkLhEjR0njg8VKpRVV21Xe1ikckrtxIaVVtmyuwXxp_iN9Tgf7KKKWw-cIsVWNIlfxjP2-D2AN5lVpdDMhrLkccgNjUNpLQ2p0qkp3aALWnixCTEcZqencrQBv9uzMFhW2fpE76jLWYFr5LsMpbISxN_78-8hqkbh7moroVHD4sj8-ulStsXe4MCN71vG-p_GHw_DRlUgLFwquAyltA6jhnNVWtxjs3GRlpFmzJkXaaVoZq1NNKUqo4kxVkeSCVUklkuVKm1j99wbsMkd2LMebI4GJ6MvXYoXu4yv5i-KYxntLpg_i4pKyCuznhcHuCqi_bswc2Wm69_9377RPbjTxNRkv_4J7sOGqR7A1grT4kMYY2NNlkGQj8RffAE8cVE72ffiJaSP5x-mdXUgqY8w22ZNk0wq4qtu9dSQA-P96yP4fC2v9Rh61awy20CM0IlQWRJZfF7kZjyeUmWU1CXnQvEA3rUDnhcN2zqKfkxzl3UhNvIOGwG87rqe1xQjV3X6gKjpOiAruL8xm3_NGyeTS5QLpIViKnFWWOtiezfXGV26qJ-XjAaw0-Imb1zVIv8DmgBedc3OyeDOkarM7ML3kVEmeJYG8KSGaGdJ7BJoKaRrEWvgXTN1vaWafPNE5sisJCL59N9mvYRbh-OT4_x4MDx6BrcZLnhEacj4DvSW8wvzHG4WP5aTxfxF8zcSOLtucF8ChxF48Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB0tuwjBge-PwgIGgcQlauw4cXxAaKFUVAtVD4u0nIKd2FCpSpe2C-Kv8euYcdLQohW3PXCKVFvRpH4ez9jj9wCe5d5Uygof6UomkXQ8ibT3POLGZq7CQVe8DGITajzOj4_1ZAd-re_CUFnl2icGR13NS9oj7wuSykoJf33flkVMBsNXJ98iUpCik9a1nEYDkUP38wemb8uXowGO9XMhhm-P3ryLWoWBqMS0cBVp7RGvTkpTeTpv80mZVbEVAk2NrTE8996nlnOT89Q5b2MtlClTL7XJjPUJvvcC7GFILnGO7U1GHyafunQvweyv4TJKEh33lyLcSyVV5I0VMAgFnBXd_l2kubHqDa_9z__XdbjaxtrsoJkcN2DH1TfhygYD4y04osaGRIMRT0l4hMJ4htE8OwiiJmxI9yJmTdUga642-3avk01rFqpx7cyxgQt-9zZ8PJfPugO79bx294A5ZVNl8jT29L4YV0KZceOMtpWUysgevFgPflG2LOwkBjIrMBsjnBQdTnrwtOt60lCPnNXpNSGo60Bs4eGH-eJL0TqfQpOMIC-NMCla4T3G_LgGOlthNiArwXuwv8ZQ0bqwZfEHQD140jWj86ETJVO7-Wnoo-NcyTzrwd0Grp0lCSbWWmlsUVtA3jJ1u6Wefg0E58S4pGJ9_99mPYZLiOji_Wh8-AAuC9oHibNIyH3YXS1O3UO4WH5fTZeLR-3EZPD5vLH9G-L7gbE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network+for+Atrial+Fibrillation+Identification+in+Portable+Devices&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Marinucci%2C+Daniele&rft.au=Sbrollini%2C+Agnese&rft.au=Marcantoni%2C+Ilaria&rft.au=Morettini%2C+Micaela&rft.date=2020-06-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=12&rft.spage=3570&rft_id=info:doi/10.3390%2Fs20123570&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon