Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy
The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn’s disease (CD) on capsule endoscopy (CE) images of individual patients. We retrospectively collected CE images of known CD patients and control subjects. Each image w...
Gespeichert in:
| Veröffentlicht in: | Gastrointestinal endoscopy Jg. 91; H. 3; S. 606 - 613.e2 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.03.2020
|
| Schlagworte: | |
| ISSN: | 0016-5107, 1097-6779, 1097-6779 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn’s disease (CD) on capsule endoscopy (CE) images of individual patients.
We retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n – 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network.
Overall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99).
Deep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading.
[Display omitted] |
|---|---|
| AbstractList | The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn’s disease (CD) on capsule endoscopy (CE) images of individual patients.
We retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n – 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network.
Overall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99).
Deep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading.
[Display omitted] The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn's disease (CD) on capsule endoscopy (CE) images of individual patients. We retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n - 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network. Overall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99). Deep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading. The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn's disease (CD) on capsule endoscopy (CE) images of individual patients.BACKGROUND AND AIMSThe aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn's disease (CD) on capsule endoscopy (CE) images of individual patients.We retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n - 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network.METHODSWe retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n - 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network.Overall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99).RESULTSOverall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99).Deep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading.CONCLUSIONSDeep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading. |
| Author | Eliakim, Rami Ben-Horin, Shomron Barash, Yiftach Margalit, Reuma Yehuda Amitai, Marianne Michal Klang, Eyal Shimon, Orit Kopylov, Uri Soffer, Shelly Albshesh, Ahmad |
| Author_xml | – sequence: 1 givenname: Eyal surname: Klang fullname: Klang, Eyal organization: Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel – sequence: 2 givenname: Yiftach surname: Barash fullname: Barash, Yiftach organization: DeepVision Lab, Sheba Medical Center, Tel Hashomer, Israel – sequence: 3 givenname: Reuma Yehuda surname: Margalit fullname: Margalit, Reuma Yehuda organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel – sequence: 4 givenname: Shelly orcidid: 0000-0002-7853-2029 surname: Soffer fullname: Soffer, Shelly organization: Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel – sequence: 5 givenname: Orit surname: Shimon fullname: Shimon, Orit organization: Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel – sequence: 6 givenname: Ahmad surname: Albshesh fullname: Albshesh, Ahmad organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel – sequence: 7 givenname: Shomron surname: Ben-Horin fullname: Ben-Horin, Shomron organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel – sequence: 8 givenname: Marianne Michal surname: Amitai fullname: Amitai, Marianne Michal organization: Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel – sequence: 9 givenname: Rami surname: Eliakim fullname: Eliakim, Rami organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel – sequence: 10 givenname: Uri surname: Kopylov fullname: Kopylov, Uri organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31743689$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkbFu1DAchy1URK8tD8CCPLIk2Iljn8WErhSQKnWhs-XY_1x9OHawk0q38Rq8Hk9Sn64wdGgnL9_3l_z9ztBJiAEQekdJTQnlH3f11kHdECprSmtCm1doRYkUFRdCnqAVKVDVUSJO0VnOO0LIumnpG3TaUsFavpYrtL0EmLAHnYILW6z9NiY3340ZDzFhvcxx1DNYbGEGM7sYcBzwJsW78Pf3n4yty6Az4MUbSBn3e3zvLERs9JQXDxiCjdnEaX-BXg_aZ3j7-J6j26svPzbfquubr983n68rw7icq_XAWS_XVkjQfdsMxhoqiWZdx4CQ3vRSipY1WhDJJefGWGJ42xDJLAxCs_YcfTjenVL8tUCe1eiyAe91gLhkVf7PWSO7jhf0_SO69CNYNSU36rRX_-IUgB4Bk2LOCYb_CCXqMIDaqTKAOgygKFVlgOKIJ45xsz6Em5N2_lnz09GEkufeQVLZOAgGrEslvbLRPWvLJ7bxLjij_U_Yv-A-ALHvtIs |
| CitedBy_id | crossref_primary_10_1016_j_tige_2021_06_003 crossref_primary_10_3390_diagnostics11091575 crossref_primary_10_1016_j_giec_2024_07_002 crossref_primary_10_3389_fimmu_2025_1637159 crossref_primary_10_1097_MCG_0000000000001423 crossref_primary_10_2147_CEG_S292857 crossref_primary_10_1097_MCG_0000000000002115 crossref_primary_10_1186_s12880_024_01480_5 crossref_primary_10_1186_s12938_023_01148_1 crossref_primary_10_1080_17474124_2020_1779058 crossref_primary_10_3390_gastroent12020021 crossref_primary_10_1053_j_gastro_2020_12_052 crossref_primary_10_1177_17562848221132683 crossref_primary_10_1093_ecco_jcc_jjad131 crossref_primary_10_1093_ecco_jcc_jjae187 crossref_primary_10_1016_j_gastha_2022_04_008 crossref_primary_10_20517_2574_1225_2023_102 crossref_primary_10_1111_jgh_16369 crossref_primary_10_1080_03007995_2021_1940910 crossref_primary_10_3390_diagnostics15091092 crossref_primary_10_3390_diagnostics11101737 crossref_primary_10_3390_diagnostics11112122 crossref_primary_10_1016_j_bpg_2020_101722 crossref_primary_10_1080_07853890_2023_2300670 crossref_primary_10_1093_ecco_jcc_jjab117 crossref_primary_10_3390_diagnostics13040735 crossref_primary_10_2196_33267 crossref_primary_10_1177_17562848231170945 crossref_primary_10_3389_fphar_2021_720694 crossref_primary_10_1007_s40747_023_01271_5 crossref_primary_10_3390_diagnostics12102490 crossref_primary_10_4103_sjg_sjg_286_23 crossref_primary_10_1016_j_cgh_2024_05_048 crossref_primary_10_1063_5_0235668 crossref_primary_10_1177_26317745211017809 crossref_primary_10_1016_j_namjnl_2025_100051 crossref_primary_10_3389_frobt_2022_896028 crossref_primary_10_3390_diagnostics14030291 crossref_primary_10_3390_jcm11030872 crossref_primary_10_1177_17562848231172556 crossref_primary_10_1093_ibd_izaa211 crossref_primary_10_3390_diagnostics11101765 crossref_primary_10_1145_3464423 crossref_primary_10_3390_bioengineering12040413 crossref_primary_10_1177_17562848211017730 crossref_primary_10_1053_j_gastro_2021_12_238 crossref_primary_10_3390_biomedicines11112991 crossref_primary_10_3390_biomimetics7010033 crossref_primary_10_1016_j_gie_2023_11_059 crossref_primary_10_1038_s41598_021_96748_z crossref_primary_10_1016_j_gie_2020_05_066 crossref_primary_10_2196_18563 crossref_primary_10_1002_deo2_26 crossref_primary_10_3748_wjg_v27_i17_1920 crossref_primary_10_1155_2023_3228832 crossref_primary_10_3390_jcm12237328 crossref_primary_10_1016_j_bpg_2021_101742 crossref_primary_10_1055_a_1397_3005 crossref_primary_10_1111_den_14334 crossref_primary_10_1111_den_13888 crossref_primary_10_1016_j_gie_2020_04_039 crossref_primary_10_3390_diagnostics12040927 crossref_primary_10_3389_fmed_2022_1018937 crossref_primary_10_1177_17562848251350896 crossref_primary_10_1007_s11517_021_02486_9 crossref_primary_10_3748_wjg_v27_i25_3734 crossref_primary_10_1038_s41746_022_00733_3 crossref_primary_10_1016_j_autrev_2023_103496 crossref_primary_10_1007_s10044_023_01206_3 crossref_primary_10_3389_fmed_2021_656493 crossref_primary_10_3748_wjg_v27_i40_6794 crossref_primary_10_3389_frai_2025_1531362 crossref_primary_10_1109_ACCESS_2023_3290997 crossref_primary_10_1093_ibd_izae030 crossref_primary_10_1093_ecco_jcc_jjab155 crossref_primary_10_1016_j_jgeb_2025_100529 crossref_primary_10_3390_diagnostics13050960 crossref_primary_10_1007_s00330_023_10473_x crossref_primary_10_1007_s00371_021_02322_z crossref_primary_10_1007_s43154_020_00040_3 crossref_primary_10_3389_fmed_2022_1058875 crossref_primary_10_3390_jcm11133682 crossref_primary_10_1016_j_gie_2020_06_040 crossref_primary_10_3390_cancers15245861 crossref_primary_10_1097_MOG_0000000000000774 crossref_primary_10_3390_diagnostics15070905 crossref_primary_10_1016_j_artmed_2023_102606 crossref_primary_10_1016_j_giec_2022_12_001 crossref_primary_10_1136_egastro_2024_100090 crossref_primary_10_1007_s12664_024_01531_3 crossref_primary_10_1016_j_compbiomed_2020_104003 crossref_primary_10_1016_j_compbiomed_2023_107412 crossref_primary_10_1080_17474124_2022_2020646 crossref_primary_10_1136_gutjnl_2021_326376 crossref_primary_10_1016_j_gastha_2022_02_025 crossref_primary_10_3390_jcm14124291 crossref_primary_10_1093_ecco_jcc_jjaa234 crossref_primary_10_1111_jgh_15341 crossref_primary_10_1177_17562848241251569 crossref_primary_10_3748_wjg_v27_i27_4395 crossref_primary_10_1007_s10620_021_07086_z crossref_primary_10_1016_j_giec_2024_04_012 crossref_primary_10_1093_ibd_izab187 crossref_primary_10_1016_j_gie_2020_07_038 crossref_primary_10_1016_j_giec_2020_12_009 crossref_primary_10_3390_diagnostics11112139 crossref_primary_10_1007_s00464_021_08689_3 crossref_primary_10_1016_j_giec_2024_10_004 crossref_primary_10_3390_diagnostics12010043 crossref_primary_10_3390_diagnostics13040662 crossref_primary_10_1109_JTEHM_2022_3198819 crossref_primary_10_3390_diagnostics11091719 crossref_primary_10_1016_j_imu_2024_101600 crossref_primary_10_1016_j_dld_2022_04_025 crossref_primary_10_3390_s22187065 crossref_primary_10_1055_a_1881_4209 crossref_primary_10_1016_j_compbiomed_2024_108093 crossref_primary_10_3390_diagnostics11071192 crossref_primary_10_1111_eci_13960 crossref_primary_10_1007_s10489_022_04146_3 crossref_primary_10_3390_jcm11030569 crossref_primary_10_3389_fmed_2025_1600291 crossref_primary_10_3390_diagnostics13193133 crossref_primary_10_3390_diagnostics11091722 crossref_primary_10_1016_j_future_2023_01_011 crossref_primary_10_3748_wjg_v26_i46_7287 crossref_primary_10_3390_diagnostics14131384 crossref_primary_10_3390_bioengineering12060613 crossref_primary_10_1177_17562848251357407 crossref_primary_10_3390_diagnostics13081507 crossref_primary_10_3748_wjg_v29_i3_508 crossref_primary_10_1186_s12876_023_03067_w crossref_primary_10_1007_s00261_024_04326_4 crossref_primary_10_1016_j_gie_2020_04_080 crossref_primary_10_1016_j_imu_2024_101572 crossref_primary_10_1111_jgh_16931 crossref_primary_10_3390_diagnostics11071183 crossref_primary_10_1109_ACCESS_2024_3438799 crossref_primary_10_3748_wjg_v27_i38_6476 |
| Cites_doi | 10.1055/s-0031-1291385 10.1177/1756284818785571 10.1109/TMI.2018.2837002 10.1055/a-0677-170 10.1016/j.gie.2018.10.027 10.1007/s11263-015-0816-y 10.1148/radiol.2018180547 10.1093/ecco-jcc/jjw006 10.1093/ecco-jcc/jjy113 10.1007/s10439-019-02248-7 10.1002/mp.12147 10.5946/ce.2018.173 10.1007/s00261-008-9431-5 10.1177/1756283X17747780 10.1046/j.1365-2125.2003.01980.x 10.1007/s10620-016-4104-7 10.1080/17474124.2017.1359541 10.1111/j.1365-2036.2007.03556.x 10.1136/gut.2007.129999 10.1111/apt.13475 10.1097/MIB.0b013e31828133c1 10.21037/jtd.2018.02.76 10.1016/j.gpb.2017.07.003 10.1016/j.crohns.2014.06.008 10.1016/S2468-1253(19)30088-3 10.1177/1756283X16649143 10.1038/ajg.2015.221 10.1093/ibd/izx027 10.1093/ecco-jcc/jjy114 10.5009/gnl18384 10.1097/MIB.0000000000000497 10.1055/s-0034-1391855 10.1080/0284186X.2019.1584404 10.3899/jrheum.161216 10.1016/j.dld.2017.04.013 10.1111/den.13346 10.1016/j.gie.2018.06.036 10.1038/ajg.2009.713 10.1097/MOG.0b013e3282f3d946 10.1016/j.compbiomed.2017.03.031 10.1097/MOG.0b013e328334df17 10.1016/j.gie.2018.07.035 10.1016/0016-5085(89)91557-6 |
| ContentType | Journal Article |
| Copyright | 2020 American Society for Gastrointestinal Endoscopy Copyright © 2020 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2020 American Society for Gastrointestinal Endoscopy – notice: Copyright © 2020 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.gie.2019.11.012 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1097-6779 |
| EndPage | 613.e2 |
| ExternalDocumentID | 31743689 10_1016_j_gie_2019_11_012 S0016510719324289 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: AbbVie – fundername: Pfizer – fundername: Takeda – fundername: GSK – fundername: CellTrion – fundername: MSD – fundername: Jansen |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FD8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LZ1 M28 M41 MO0 N4W N9A O-L O9- OAUVE OC. ON0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SEL SES SEW SJN SPCBC SSH SSZ T5K UNMZH UV1 WH7 WOW X7M Z5R ZGI ZXP ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR RIG 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c469t-8f64b98d79eab32fcdc190a4554e00bcb997342a7096966ccd0c632094def7a43 |
| ISICitedReferencesCount | 161 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514847000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-5107 1097-6779 |
| IngestDate | Mon Sep 29 06:18:13 EDT 2025 Wed Feb 19 02:29:20 EST 2025 Sat Nov 29 07:28:35 EST 2025 Tue Nov 18 21:27:28 EST 2025 Fri Feb 23 02:49:07 EST 2024 Tue Oct 14 19:36:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | AI CD t-SNE CE CNN AUC |
| Language | English |
| License | Copyright © 2020 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c469t-8f64b98d79eab32fcdc190a4554e00bcb997342a7096966ccd0c632094def7a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-7853-2029 |
| PMID | 31743689 |
| PQID | 2316429556 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2316429556 pubmed_primary_31743689 crossref_primary_10_1016_j_gie_2019_11_012 crossref_citationtrail_10_1016_j_gie_2019_11_012 elsevier_sciencedirect_doi_10_1016_j_gie_2019_11_012 elsevier_clinicalkey_doi_10_1016_j_gie_2019_11_012 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Gastrointestinal endoscopy |
| PublicationTitleAlternate | Gastrointest Endosc |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Tham, Yung, Fay (bib42) 2018; 11 Zhou, Han, Li (bib22) 2017; 85 Jia, Meng (bib24) 2017; 2017 Shah, Colombel, Sands (bib36) 2016; 43 Eliakim, Spada, Lapidus (bib45) 2018; 6 Aoki, Yamada, Aoyama (bib46) 2019; 89 De Vos, Cuvelier, Mielants (bib13) 1989; 96 Kopylov, Ben-Horin, Seidman (bib35) 2015; 21 Waterman, Eliakim (bib4) 2009; 34 Carvalho, Rosa, Cotter (bib39) 2014; 8 Arora, Hu, Kothari (bib28) Price (bib50) 2003; 56 Melmed, Dubinsky, Rubin (bib6) 2018; 88 Greener, Klang, Yablecovitch (bib37) 2016; 10 Khanna, Nelson, Feagan (bib44) 2016 Kopylov, Koulaouzidis, Klang (bib2) 2017; 11 Leenhardt, Vasseur, Li (bib32) 2019; 89 Maaser, Sturm, Vavricka (bib48) 2019; 13 Chollet (bib29) Jolliffe, Cadima (bib27) 2016; 374 Maaser, Sturm, Vavricka (bib8) 2018; 13 Soffer, Ben-Cohen, Shimon (bib18) 2019; 290 Pennazio, Spada, Eliakim (bib1) 2015; 47 Gralnek, Defranchis, Seidman (bib12) 2008; 27 Hwang, Park, Lim (bib21) 2018; 51 Yuan, Meng (bib23) 2017; 44 Kopylov, Yablecovitch, Lahat (bib9) 2015; 110 Yablecovitch, Lahat, Neuman (bib15) 2018; 11 Kopylov, Yung, Engel (bib11) 2017; 49 Min, Kwak, Cha (bib25) 2019; 13 Sidhu, Sanders, Morris (bib47) 2008; 57 Russakovsky, Deng, Su (bib30) 2015; 115 Cotter, de Castro, Magalhães (bib16) 2015; 47 Ben-Horin, Lahat, Amitai (bib40) 2019; 4 Niv, Ilani, Levi (bib14) 2012; 44 Klang (bib17) 2018; 10 Eliakim (bib5) 2008; 24 Dionisio, Gurudu, Leighton (bib49) 2010; 105 Kopylov, Klang, Yablecovitch (bib41) 2016; 9 Cao, Liu, Tan (bib31) 2018; 16 Flamant, Trang, Maillard (bib38) 2013; 19 Sturm, Maaser, Calabrese (bib7) 2018; 13 Kopylov, Starr, Watts (bib34) 2018; 45 Eliakim (bib3) 2010; 26 Yung, Har-Noy, Tham (bib10) 2017; 24 Hosoe, Takabayashi, Ogata (bib26) 2019; 31 Iakovidis, Georgakopoulos, Vasilakakis (bib33) 2018; 37 Blanes-Vidal, Baatrup, Nadimi (bib20) 2019; 58 Vieira, Silva, Costa (bib19) 2019; 47 Koulaouzidis, Sipponen, Nemeth (bib43) 2016; 61 Vieira (10.1016/j.gie.2019.11.012_bib19) 2019; 47 Melmed (10.1016/j.gie.2019.11.012_bib6) 2018; 88 Niv (10.1016/j.gie.2019.11.012_bib14) 2012; 44 Sturm (10.1016/j.gie.2019.11.012_bib7) 2018; 13 Koulaouzidis (10.1016/j.gie.2019.11.012_bib43) 2016; 61 Dionisio (10.1016/j.gie.2019.11.012_bib49) 2010; 105 Chollet (10.1016/j.gie.2019.11.012_bib29) Kopylov (10.1016/j.gie.2019.11.012_bib34) 2018; 45 Yablecovitch (10.1016/j.gie.2019.11.012_bib15) 2018; 11 Shah (10.1016/j.gie.2019.11.012_bib36) 2016; 43 Hwang (10.1016/j.gie.2019.11.012_bib21) 2018; 51 Aoki (10.1016/j.gie.2019.11.012_bib46) 2019; 89 Iakovidis (10.1016/j.gie.2019.11.012_bib33) 2018; 37 Leenhardt (10.1016/j.gie.2019.11.012_bib32) 2019; 89 Maaser (10.1016/j.gie.2019.11.012_bib48) 2019; 13 Eliakim (10.1016/j.gie.2019.11.012_bib5) 2008; 24 Yung (10.1016/j.gie.2019.11.012_bib10) 2017; 24 Kopylov (10.1016/j.gie.2019.11.012_bib11) 2017; 49 Cotter (10.1016/j.gie.2019.11.012_bib16) 2015; 47 Jia (10.1016/j.gie.2019.11.012_bib24) 2017; 2017 Min (10.1016/j.gie.2019.11.012_bib25) 2019; 13 Yuan (10.1016/j.gie.2019.11.012_bib23) 2017; 44 Pennazio (10.1016/j.gie.2019.11.012_bib1) 2015; 47 Sidhu (10.1016/j.gie.2019.11.012_bib47) 2008; 57 Khanna (10.1016/j.gie.2019.11.012_bib44) 2016 Arora (10.1016/j.gie.2019.11.012_bib28) Cao (10.1016/j.gie.2019.11.012_bib31) 2018; 16 Jolliffe (10.1016/j.gie.2019.11.012_bib27) 2016; 374 Tham (10.1016/j.gie.2019.11.012_bib42) 2018; 11 Maaser (10.1016/j.gie.2019.11.012_bib8) 2018; 13 Kopylov (10.1016/j.gie.2019.11.012_bib35) 2015; 21 Greener (10.1016/j.gie.2019.11.012_bib37) 2016; 10 Eliakim (10.1016/j.gie.2019.11.012_bib3) 2010; 26 Blanes-Vidal (10.1016/j.gie.2019.11.012_bib20) 2019; 58 Gralnek (10.1016/j.gie.2019.11.012_bib12) 2008; 27 Kopylov (10.1016/j.gie.2019.11.012_bib9) 2015; 110 Price (10.1016/j.gie.2019.11.012_bib50) 2003; 56 Zhou (10.1016/j.gie.2019.11.012_bib22) 2017; 85 Russakovsky (10.1016/j.gie.2019.11.012_bib30) 2015; 115 Klang (10.1016/j.gie.2019.11.012_bib17) 2018; 10 Flamant (10.1016/j.gie.2019.11.012_bib38) 2013; 19 Ben-Horin (10.1016/j.gie.2019.11.012_bib40) 2019; 4 Waterman (10.1016/j.gie.2019.11.012_bib4) 2009; 34 Soffer (10.1016/j.gie.2019.11.012_bib18) 2019; 290 Kopylov (10.1016/j.gie.2019.11.012_bib41) 2016; 9 Eliakim (10.1016/j.gie.2019.11.012_bib45) 2018; 6 Kopylov (10.1016/j.gie.2019.11.012_bib2) 2017; 11 Carvalho (10.1016/j.gie.2019.11.012_bib39) 2014; 8 De Vos (10.1016/j.gie.2019.11.012_bib13) 1989; 96 Hosoe (10.1016/j.gie.2019.11.012_bib26) 2019; 31 |
| References_xml | – volume: 6 start-page: E1235 year: 2018 end-page: E1246 ident: bib45 article-title: Evaluation of a new pan-enteric video capsule endoscopy system in patients with suspected or established inflammatory bowel disease—feasibility study publication-title: Endosc Int Open – volume: 24 start-page: 93 year: 2017 end-page: 100 ident: bib10 article-title: Capsule endoscopy, magnetic resonance enterography, and small bowel ultrasound for evaluation of postoperative recurrence in crohn’s disease: systematic review and meta-analysis publication-title: Inflamm Bowel Dis – volume: 37 start-page: 2196 year: 2018 end-page: 2210 ident: bib33 article-title: Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification publication-title: IEEE Trans Med Imag – volume: 47 start-page: 352 year: 2015 end-page: 386 ident: bib1 article-title: Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline publication-title: Endoscopy – volume: 96 start-page: 339 year: 1989 end-page: 344 ident: bib13 article-title: Ileocolonoscopy in seronegative spondylarthropathy publication-title: Gastroenterology – volume: 10 start-page: 525 year: 2016 end-page: 531 ident: bib37 article-title: The impact of magnetic resonance enterography and capsule endoscopy on the re-classification of disease in patients with known Crohn’s disease: a prospective Israeli IBD Research Nucleus (IIRN) study publication-title: J Crohn's Colitis – volume: 88 start-page: 947 year: 2018 end-page: 955 ident: bib6 article-title: Utility of video capsule endoscopy for longitudinal monitoring of Crohn’s disease activity in the small bowel: a prospective study publication-title: Gastrointest Endosc – volume: 85 start-page: 1 year: 2017 end-page: 6 ident: bib22 article-title: Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning method publication-title: Comput Biol Med – volume: 19 start-page: 1390 year: 2013 end-page: 1396 ident: bib38 article-title: The prevalence and outcome of jejunal lesions visualized by small bowel capsule endoscopy in Crohn’s disease publication-title: Inflamm Bowel Dis – volume: 58 start-page: S29 year: 2019 end-page: S36 ident: bib20 article-title: Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning publication-title: Acta Oncol – volume: 11 start-page: 1047 year: 2017 end-page: 1058 ident: bib2 article-title: Monitoring of small bowel Crohn's disease publication-title: Exp Rev Gastroenterol Hepatol – volume: 105 start-page: 1240 year: 2010 end-page: 1248 ident: bib49 article-title: Capsule endoscopy has a significantly higher diagnostic yield in patients with suspected and established small-bowel Crohn's disease: a meta-analysis publication-title: Am J Gastroenterol – volume: 61 start-page: 2033 year: 2016 end-page: 2040 ident: bib43 article-title: Association between fecal calprotectin levels and small-bowel inflammation score in capsule endoscopy: a multicenter retrospective study publication-title: Dig Dis Sci – volume: 43 start-page: 317 year: 2016 end-page: 333 ident: bib36 article-title: Systematic review with meta-analysis: mucosal healing is associated with improved long-term outcomes in Crohn's disease publication-title: Aliment Pharmacol Ther – volume: 110 start-page: 1316 year: 2015 ident: bib9 article-title: Detection of small bowel mucosal healing and deep remission in patients with known small bowel Crohn’s disease using biomarkers, capsule endoscopy, and imaging publication-title: Am J Gastroenterol – volume: 290 start-page: 590 year: 2019 end-page: 606 ident: bib18 article-title: Convolutional neural networks for radiologic images: a radiologist’s guide publication-title: Radiology – volume: 13 start-page: 144 year: 2018 end-page: 164 ident: bib8 article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD part 1: initial diagnosis, monitoring of known IBD, detection of complications publication-title: J Crohn's Colitis – volume: 56 start-page: 477 year: 2003 end-page: 482 ident: bib50 article-title: Pathology of drug-associated gastrointestinal disease publication-title: Br J Clin Pharmacol – volume: 11 year: 2018 ident: bib42 article-title: Fecal calprotectin for detection of postoperative endoscopic recurrence in Crohn’s disease: systematic review and meta-analysis publication-title: Therap Adv Gastroenterol – volume: 21 start-page: 2726 year: 2015 end-page: 2735 ident: bib35 article-title: Video capsule endoscopy of the small bowel for monitoring of Crohn's disease publication-title: Inflamm Bowel Dis – volume: 374 year: 2016 ident: bib27 article-title: Principal component analysis: a review and recent developments publication-title: Phil Trans R Soc A Math Phys Eng Sci – volume: 34 start-page: 452 year: 2009 end-page: 458 ident: bib4 article-title: Capsule enteroscopy of the small intestine publication-title: Abdom Imag – volume: 89 start-page: 189 year: 2019 end-page: 194 ident: bib32 article-title: A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy publication-title: Gastrointest Endosc – volume: 13 start-page: 273 year: 2018 end-page: 284 ident: bib7 article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD part 2: IBD scores and general principles and technical aspects publication-title: J Crohn's Colitis – volume: 44 start-page: 21 year: 2012 end-page: 26 ident: bib14 article-title: Validation of the Capsule Endoscopy Crohn’s Disease Activity Index (CECDAI or Niv score): a multicenter prospective study publication-title: Endoscopy – volume: 51 start-page: 547 year: 2018 ident: bib21 article-title: Application of artificial intelligence in capsule endoscopy: Where are we now? publication-title: Clin Endosc – volume: 4 start-page: 519 year: 2019 end-page: 528 ident: bib40 article-title: Assessment of small bowel mucosal healing by video capsule endoscopy for the prediction of short-term and long-term risk of Crohn's disease flare: a prospective cohort study publication-title: Lancet Gastroenterol Hepatol – volume: 31 start-page: 498 year: 2019 end-page: 507 ident: bib26 article-title: Capsule endoscopy for small-intestinal disorders: current status publication-title: Dig Endosc – volume: 10 start-page: 1325 year: 2018 end-page: 1328 ident: bib17 article-title: Deep learning and medical imaging publication-title: J Thorac Dis – volume: 16 start-page: 17 year: 2018 end-page: 32 ident: bib31 article-title: Deep learning and its applications in biomedicine publication-title: Genom Proteom Bioinform – volume: 24 start-page: 159 year: 2008 end-page: 163 ident: bib5 article-title: Video capsule endoscopy of the small bowel publication-title: Curr Opin Gastroenterol – volume: 11 year: 2018 ident: bib15 article-title: The Lewis score or the Capsule Endoscopy Crohn’s Disease Activity Index: Which one is better for the assessment of small bowel inflammation in established Crohn’s disease? publication-title: Therap Adv Gastroenterol – ident: bib29 article-title: Xception: deep learning with depthwise separable convolutions. arXiv e-prints – volume: 8 start-page: 1566 year: 2014 end-page: 1567 ident: bib39 article-title: Mucosal healing in Crohn’s disease—Are we reaching as far as possible with capsule endoscopy? publication-title: J Crohn's Colitis – volume: 26 start-page: 129 year: 2010 end-page: 133 ident: bib3 article-title: Video capsule endoscopy of the small bowel publication-title: Curr Opin Gastroenterol – volume: 89 start-page: 357 year: 2019 end-page: 363 ident: bib46 article-title: Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network publication-title: Gastrointest Endosc – volume: 47 start-page: 330 year: 2015 end-page: 335 ident: bib16 article-title: Validation of the Lewis score for the evaluation of small-bowel Crohn’s disease activity publication-title: Endoscopy – volume: 13 start-page: 144 year: 2019 end-page: 164 ident: bib48 article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications publication-title: J Crohn's Colitis – volume: 9 start-page: 655 year: 2016 end-page: 663 ident: bib41 article-title: Magnetic resonance enterography versus capsule endoscopy activity indices for quantification of small bowel inflammation in Crohn’s disease publication-title: Therap Adv Gastroenterol – volume: 47 start-page: 1446 year: 2019 end-page: 1462 ident: bib19 article-title: Automatic segmentation and detection of small bowel angioectasias in WCE images publication-title: Ann Biomed Eng – volume: 13 start-page: 388 year: 2019 ident: bib25 article-title: Overview of deep learning in gastrointestinal endoscopy publication-title: Gut Liver – volume: 49 start-page: 854 year: 2017 end-page: 863 ident: bib11 article-title: Diagnostic yield of capsule endoscopy versus magnetic resonance enterography and small bowel contrast ultrasound in the evaluation of small bowel Crohn’s disease: systematic review and meta-analysis publication-title: Dig Liver Dis – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib30 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis – ident: bib28 article-title: An analysis of the t-SNE algorithm for data visualization. arXiv e-prints – start-page: Cd010642 year: 2016 ident: bib44 article-title: Endoscopic scoring indices for evaluation of disease activity in Crohn's disease publication-title: Cochrane Database System Rev – volume: 57 start-page: 125 year: 2008 end-page: 136 ident: bib47 article-title: Guidelines on small bowel enteroscopy and capsule endoscopy in adults publication-title: Gut – volume: 2017 start-page: 3154 year: 2017 end-page: 3157 ident: bib24 article-title: Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 44 start-page: 1379 year: 2017 end-page: 1389 ident: bib23 article-title: Deep learning for polyp recognition in wireless capsule endoscopy images publication-title: Med Phys – volume: 45 start-page: 498 year: 2018 end-page: 505 ident: bib34 article-title: Detection of Crohn disease in patients with spondyloarthropathy: the SpACE capsule study publication-title: J Rheumatol – volume: 27 start-page: 146 year: 2008 end-page: 154 ident: bib12 article-title: Development of a capsule endoscopy scoring index for small bowel mucosal inflammatory change publication-title: Aliment Pharmacol Therap – volume: 44 start-page: 21 year: 2012 ident: 10.1016/j.gie.2019.11.012_bib14 article-title: Validation of the Capsule Endoscopy Crohn’s Disease Activity Index (CECDAI or Niv score): a multicenter prospective study publication-title: Endoscopy doi: 10.1055/s-0031-1291385 – volume: 11 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib42 article-title: Fecal calprotectin for detection of postoperative endoscopic recurrence in Crohn’s disease: systematic review and meta-analysis publication-title: Therap Adv Gastroenterol doi: 10.1177/1756284818785571 – start-page: Cd010642 year: 2016 ident: 10.1016/j.gie.2019.11.012_bib44 article-title: Endoscopic scoring indices for evaluation of disease activity in Crohn's disease publication-title: Cochrane Database System Rev – volume: 37 start-page: 2196 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib33 article-title: Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2018.2837002 – volume: 6 start-page: E1235 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib45 article-title: Evaluation of a new pan-enteric video capsule endoscopy system in patients with suspected or established inflammatory bowel disease—feasibility study publication-title: Endosc Int Open doi: 10.1055/a-0677-170 – ident: 10.1016/j.gie.2019.11.012_bib28 – volume: 89 start-page: 357 year: 2019 ident: 10.1016/j.gie.2019.11.012_bib46 article-title: Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2018.10.027 – volume: 115 start-page: 211 year: 2015 ident: 10.1016/j.gie.2019.11.012_bib30 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – volume: 290 start-page: 590 year: 2019 ident: 10.1016/j.gie.2019.11.012_bib18 article-title: Convolutional neural networks for radiologic images: a radiologist’s guide publication-title: Radiology doi: 10.1148/radiol.2018180547 – volume: 10 start-page: 525 year: 2016 ident: 10.1016/j.gie.2019.11.012_bib37 article-title: The impact of magnetic resonance enterography and capsule endoscopy on the re-classification of disease in patients with known Crohn’s disease: a prospective Israeli IBD Research Nucleus (IIRN) study publication-title: J Crohn's Colitis doi: 10.1093/ecco-jcc/jjw006 – volume: 13 start-page: 144 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib8 article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD part 1: initial diagnosis, monitoring of known IBD, detection of complications publication-title: J Crohn's Colitis doi: 10.1093/ecco-jcc/jjy113 – volume: 47 start-page: 1446 year: 2019 ident: 10.1016/j.gie.2019.11.012_bib19 article-title: Automatic segmentation and detection of small bowel angioectasias in WCE images publication-title: Ann Biomed Eng doi: 10.1007/s10439-019-02248-7 – volume: 2017 start-page: 3154 year: 2017 ident: 10.1016/j.gie.2019.11.012_bib24 article-title: Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 44 start-page: 1379 year: 2017 ident: 10.1016/j.gie.2019.11.012_bib23 article-title: Deep learning for polyp recognition in wireless capsule endoscopy images publication-title: Med Phys doi: 10.1002/mp.12147 – volume: 51 start-page: 547 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib21 article-title: Application of artificial intelligence in capsule endoscopy: Where are we now? publication-title: Clin Endosc doi: 10.5946/ce.2018.173 – volume: 34 start-page: 452 year: 2009 ident: 10.1016/j.gie.2019.11.012_bib4 article-title: Capsule enteroscopy of the small intestine publication-title: Abdom Imag doi: 10.1007/s00261-008-9431-5 – volume: 11 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib15 article-title: The Lewis score or the Capsule Endoscopy Crohn’s Disease Activity Index: Which one is better for the assessment of small bowel inflammation in established Crohn’s disease? publication-title: Therap Adv Gastroenterol doi: 10.1177/1756283X17747780 – volume: 56 start-page: 477 year: 2003 ident: 10.1016/j.gie.2019.11.012_bib50 article-title: Pathology of drug-associated gastrointestinal disease publication-title: Br J Clin Pharmacol doi: 10.1046/j.1365-2125.2003.01980.x – volume: 61 start-page: 2033 year: 2016 ident: 10.1016/j.gie.2019.11.012_bib43 article-title: Association between fecal calprotectin levels and small-bowel inflammation score in capsule endoscopy: a multicenter retrospective study publication-title: Dig Dis Sci doi: 10.1007/s10620-016-4104-7 – volume: 11 start-page: 1047 year: 2017 ident: 10.1016/j.gie.2019.11.012_bib2 article-title: Monitoring of small bowel Crohn's disease publication-title: Exp Rev Gastroenterol Hepatol doi: 10.1080/17474124.2017.1359541 – volume: 27 start-page: 146 year: 2008 ident: 10.1016/j.gie.2019.11.012_bib12 article-title: Development of a capsule endoscopy scoring index for small bowel mucosal inflammatory change publication-title: Aliment Pharmacol Therap doi: 10.1111/j.1365-2036.2007.03556.x – volume: 57 start-page: 125 year: 2008 ident: 10.1016/j.gie.2019.11.012_bib47 article-title: Guidelines on small bowel enteroscopy and capsule endoscopy in adults publication-title: Gut doi: 10.1136/gut.2007.129999 – volume: 13 start-page: 144 year: 2019 ident: 10.1016/j.gie.2019.11.012_bib48 article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications publication-title: J Crohn's Colitis doi: 10.1093/ecco-jcc/jjy113 – volume: 43 start-page: 317 year: 2016 ident: 10.1016/j.gie.2019.11.012_bib36 article-title: Systematic review with meta-analysis: mucosal healing is associated with improved long-term outcomes in Crohn's disease publication-title: Aliment Pharmacol Ther doi: 10.1111/apt.13475 – volume: 19 start-page: 1390 year: 2013 ident: 10.1016/j.gie.2019.11.012_bib38 article-title: The prevalence and outcome of jejunal lesions visualized by small bowel capsule endoscopy in Crohn’s disease publication-title: Inflamm Bowel Dis doi: 10.1097/MIB.0b013e31828133c1 – volume: 47 start-page: 330 year: 2015 ident: 10.1016/j.gie.2019.11.012_bib16 article-title: Validation of the Lewis score for the evaluation of small-bowel Crohn’s disease activity publication-title: Endoscopy – volume: 10 start-page: 1325 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib17 article-title: Deep learning and medical imaging publication-title: J Thorac Dis doi: 10.21037/jtd.2018.02.76 – volume: 16 start-page: 17 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib31 article-title: Deep learning and its applications in biomedicine publication-title: Genom Proteom Bioinform doi: 10.1016/j.gpb.2017.07.003 – volume: 8 start-page: 1566 year: 2014 ident: 10.1016/j.gie.2019.11.012_bib39 article-title: Mucosal healing in Crohn’s disease—Are we reaching as far as possible with capsule endoscopy? publication-title: J Crohn's Colitis doi: 10.1016/j.crohns.2014.06.008 – volume: 4 start-page: 519 year: 2019 ident: 10.1016/j.gie.2019.11.012_bib40 article-title: Assessment of small bowel mucosal healing by video capsule endoscopy for the prediction of short-term and long-term risk of Crohn's disease flare: a prospective cohort study publication-title: Lancet Gastroenterol Hepatol doi: 10.1016/S2468-1253(19)30088-3 – volume: 9 start-page: 655 year: 2016 ident: 10.1016/j.gie.2019.11.012_bib41 article-title: Magnetic resonance enterography versus capsule endoscopy activity indices for quantification of small bowel inflammation in Crohn’s disease publication-title: Therap Adv Gastroenterol doi: 10.1177/1756283X16649143 – volume: 110 start-page: 1316 year: 2015 ident: 10.1016/j.gie.2019.11.012_bib9 article-title: Detection of small bowel mucosal healing and deep remission in patients with known small bowel Crohn’s disease using biomarkers, capsule endoscopy, and imaging publication-title: Am J Gastroenterol doi: 10.1038/ajg.2015.221 – volume: 24 start-page: 93 year: 2017 ident: 10.1016/j.gie.2019.11.012_bib10 article-title: Capsule endoscopy, magnetic resonance enterography, and small bowel ultrasound for evaluation of postoperative recurrence in crohn’s disease: systematic review and meta-analysis publication-title: Inflamm Bowel Dis doi: 10.1093/ibd/izx027 – volume: 13 start-page: 273 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib7 article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD part 2: IBD scores and general principles and technical aspects publication-title: J Crohn's Colitis doi: 10.1093/ecco-jcc/jjy114 – ident: 10.1016/j.gie.2019.11.012_bib29 – volume: 13 start-page: 388 year: 2019 ident: 10.1016/j.gie.2019.11.012_bib25 article-title: Overview of deep learning in gastrointestinal endoscopy publication-title: Gut Liver doi: 10.5009/gnl18384 – volume: 374 year: 2016 ident: 10.1016/j.gie.2019.11.012_bib27 article-title: Principal component analysis: a review and recent developments publication-title: Phil Trans R Soc A Math Phys Eng Sci – volume: 21 start-page: 2726 year: 2015 ident: 10.1016/j.gie.2019.11.012_bib35 article-title: Video capsule endoscopy of the small bowel for monitoring of Crohn's disease publication-title: Inflamm Bowel Dis doi: 10.1097/MIB.0000000000000497 – volume: 47 start-page: 352 year: 2015 ident: 10.1016/j.gie.2019.11.012_bib1 article-title: Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline publication-title: Endoscopy doi: 10.1055/s-0034-1391855 – volume: 58 start-page: S29 issue: suppl 1 year: 2019 ident: 10.1016/j.gie.2019.11.012_bib20 article-title: Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning publication-title: Acta Oncol doi: 10.1080/0284186X.2019.1584404 – volume: 45 start-page: 498 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib34 article-title: Detection of Crohn disease in patients with spondyloarthropathy: the SpACE capsule study publication-title: J Rheumatol doi: 10.3899/jrheum.161216 – volume: 49 start-page: 854 year: 2017 ident: 10.1016/j.gie.2019.11.012_bib11 article-title: Diagnostic yield of capsule endoscopy versus magnetic resonance enterography and small bowel contrast ultrasound in the evaluation of small bowel Crohn’s disease: systematic review and meta-analysis publication-title: Dig Liver Dis doi: 10.1016/j.dld.2017.04.013 – volume: 31 start-page: 498 year: 2019 ident: 10.1016/j.gie.2019.11.012_bib26 article-title: Capsule endoscopy for small-intestinal disorders: current status publication-title: Dig Endosc doi: 10.1111/den.13346 – volume: 89 start-page: 189 year: 2019 ident: 10.1016/j.gie.2019.11.012_bib32 article-title: A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2018.06.036 – volume: 105 start-page: 1240 year: 2010 ident: 10.1016/j.gie.2019.11.012_bib49 article-title: Capsule endoscopy has a significantly higher diagnostic yield in patients with suspected and established small-bowel Crohn's disease: a meta-analysis publication-title: Am J Gastroenterol doi: 10.1038/ajg.2009.713 – volume: 24 start-page: 159 year: 2008 ident: 10.1016/j.gie.2019.11.012_bib5 article-title: Video capsule endoscopy of the small bowel publication-title: Curr Opin Gastroenterol doi: 10.1097/MOG.0b013e3282f3d946 – volume: 85 start-page: 1 year: 2017 ident: 10.1016/j.gie.2019.11.012_bib22 article-title: Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning method publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.03.031 – volume: 26 start-page: 129 year: 2010 ident: 10.1016/j.gie.2019.11.012_bib3 article-title: Video capsule endoscopy of the small bowel publication-title: Curr Opin Gastroenterol doi: 10.1097/MOG.0b013e328334df17 – volume: 88 start-page: 947 year: 2018 ident: 10.1016/j.gie.2019.11.012_bib6 article-title: Utility of video capsule endoscopy for longitudinal monitoring of Crohn’s disease activity in the small bowel: a prospective study publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2018.07.035 – volume: 96 start-page: 339 year: 1989 ident: 10.1016/j.gie.2019.11.012_bib13 article-title: Ileocolonoscopy in seronegative spondylarthropathy publication-title: Gastroenterology doi: 10.1016/0016-5085(89)91557-6 |
| SSID | ssj0008231 |
| Score | 2.6502094 |
| Snippet | The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn’s disease (CD) on capsule... The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn's disease (CD) on capsule... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 606 |
| SubjectTerms | Algorithms Automation Capsule Endoscopy - methods Crohn Disease - complications Crohn Disease - diagnostic imaging Deep Learning Humans Intestinal Mucosa - diagnostic imaging Intestine, Small - diagnostic imaging Neural Networks, Computer Random Allocation Reproducibility of Results Retrospective Studies Ulcer - diagnostic imaging Ulcer - etiology |
| Title | Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0016510719324289 https://dx.doi.org/10.1016/j.gie.2019.11.012 https://www.ncbi.nlm.nih.gov/pubmed/31743689 https://www.proquest.com/docview/2316429556 |
| Volume | 91 |
| WOSCitedRecordID | wos000514847000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1097-6779 dateEnd: 20200430 omitProxy: false ssIdentifier: ssj0008231 issn: 0016-5107 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpO0pfxu7LLkWDwWDGxbdI1mPXZTe2Mlg30icjy3KS4tohsUvzH_ajd2RJTtqRbnvYiwm25ASdL0ffOToXhF6SSIShn_vuQHrUjfLYV44m6QbhIGWS-kHQxub8-EyPj-PRiH3t9X7aXJiLgpZlfHnJZv9V1HAPhK1SZ_9B3N1L4QZ8BqHDFcQO178S_FspZ7YZxNjhxbgC-3-i6y44vKkr4KjAMjNZS2Hp4tG8mujeKubAxmkKoVJ7gZyqRL3KERzM6UI6sswqlcly5TT4PV_U80pVngCFoejt1VFKnxfGLz1c8i6m4w2f80Xr1jmd5jUXnWe67b4L9oGWf3POnVM5aVa-g2-V6urSOm5VHOty3XUBdmoXu3Ugtbr1GHUJ1e1krD7W3bsM7sI15Ura2gS_K33tfzg7GE9V3VOfHaiyrDo4e03es_NW4KEywYhuW3St0rZ9tIV2AjpgoCN3Dj8OR5-6nV0dmdqT8TZG8No37qFd-45NNGeTGdPSmZM76LaxQ_Chxs9d1JPlPbT7xURa3EdSwQhbGOEVjDDACHcwwh2McJXjFkavFtiACGsQ4XSJWxBhAyLcweMB-v5ueHL0wTUtOVwREVa7cU6ilMUZZZKnYZCLTACj5BGQUul5qUgZo2EUcOqpqktEiMwTJAw8FmUypzwKH6LtsirlY4QZ4TJNmSfBoI1g24WNg_oUhouAMF_yPvLsCibC1KtXbVOKxAYmniWw_olaf7BjE1j_PnrdTZnpYi03DQ6sWBKbhQz7ZgKoumlS1E0yFFVTzz9Ne2HlnoD6VmdyvJRVs0gAUQQo4WBA-uiRBkT30y2Wnmx88hTtrf5Xz9B2PW_kc3RLXNTTxXwfbdFRvG9A_AuifsGV |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+algorithms+for+automated+detection+of+Crohn%27s+disease+ulcers+by+video+capsule+endoscopy&rft.jtitle=Gastrointestinal+endoscopy&rft.au=Klang%2C+Eyal&rft.au=Barash%2C+Yiftach&rft.au=Margalit%2C+Reuma+Yehuda&rft.au=Soffer%2C+Shelly&rft.date=2020-03-01&rft.eissn=1097-6779&rft.volume=91&rft.issue=3&rft.spage=606&rft_id=info:doi/10.1016%2Fj.gie.2019.11.012&rft_id=info%3Apmid%2F31743689&rft.externalDocID=31743689 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5107&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5107&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5107&client=summon |