Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy

The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn’s disease (CD) on capsule endoscopy (CE) images of individual patients. We retrospectively collected CE images of known CD patients and control subjects. Each image w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gastrointestinal endoscopy Jg. 91; H. 3; S. 606 - 613.e2
Hauptverfasser: Klang, Eyal, Barash, Yiftach, Margalit, Reuma Yehuda, Soffer, Shelly, Shimon, Orit, Albshesh, Ahmad, Ben-Horin, Shomron, Amitai, Marianne Michal, Eliakim, Rami, Kopylov, Uri
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.03.2020
Schlagworte:
ISSN:0016-5107, 1097-6779, 1097-6779
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn’s disease (CD) on capsule endoscopy (CE) images of individual patients. We retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n – 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network. Overall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99). Deep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading. [Display omitted]
AbstractList The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn’s disease (CD) on capsule endoscopy (CE) images of individual patients. We retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n – 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network. Overall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99). Deep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading. [Display omitted]
The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn's disease (CD) on capsule endoscopy (CE) images of individual patients. We retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n - 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network. Overall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99). Deep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading.
The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn's disease (CD) on capsule endoscopy (CE) images of individual patients.BACKGROUND AND AIMSThe aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn's disease (CD) on capsule endoscopy (CE) images of individual patients.We retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n - 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network.METHODSWe retrospectively collected CE images of known CD patients and control subjects. Each image was labeled by an expert gastroenterologist as either normal mucosa or containing mucosal ulcers. A convolutional neural network was trained to classify images into either normal mucosa or mucosal ulcers. First, we trained the network on 5-fold randomly split images (each fold with 80% training images and 20% images testing). We then conducted 10 experiments in which images from n - 1 patients were used to train a network and images from a different individual patient were used to test the network. Results of the networks were compared for randomly split images and for individual patients. Area under the curves (AUCs) and accuracies were computed for each individual network.Overall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99).RESULTSOverall, our dataset included 17,640 CE images from 49 patients: 7391 images with mucosal ulcers and 10,249 images of normal mucosa. For randomly split images results were excellent, with AUCs of .99 and accuracies ranging from 95.4% to 96.7%. For individual patient-level experiments, the AUCs were also excellent (.94-.99).Deep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading.CONCLUSIONSDeep learning technology provides accurate and fast automated detection of mucosal ulcers on CE images. Individual patient-level analysis provided high and consistent diagnostic accuracy with shortened reading time; in the future, deep learning algorithms may augment and facilitate CE reading.
Author Eliakim, Rami
Ben-Horin, Shomron
Barash, Yiftach
Margalit, Reuma Yehuda
Amitai, Marianne Michal
Klang, Eyal
Shimon, Orit
Kopylov, Uri
Soffer, Shelly
Albshesh, Ahmad
Author_xml – sequence: 1
  givenname: Eyal
  surname: Klang
  fullname: Klang, Eyal
  organization: Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
– sequence: 2
  givenname: Yiftach
  surname: Barash
  fullname: Barash, Yiftach
  organization: DeepVision Lab, Sheba Medical Center, Tel Hashomer, Israel
– sequence: 3
  givenname: Reuma Yehuda
  surname: Margalit
  fullname: Margalit, Reuma Yehuda
  organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel
– sequence: 4
  givenname: Shelly
  orcidid: 0000-0002-7853-2029
  surname: Soffer
  fullname: Soffer, Shelly
  organization: Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
– sequence: 5
  givenname: Orit
  surname: Shimon
  fullname: Shimon, Orit
  organization: Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
– sequence: 6
  givenname: Ahmad
  surname: Albshesh
  fullname: Albshesh, Ahmad
  organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel
– sequence: 7
  givenname: Shomron
  surname: Ben-Horin
  fullname: Ben-Horin, Shomron
  organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel
– sequence: 8
  givenname: Marianne Michal
  surname: Amitai
  fullname: Amitai, Marianne Michal
  organization: Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
– sequence: 9
  givenname: Rami
  surname: Eliakim
  fullname: Eliakim, Rami
  organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel
– sequence: 10
  givenname: Uri
  surname: Kopylov
  fullname: Kopylov, Uri
  organization: Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31743689$$D View this record in MEDLINE/PubMed
BookMark eNqFkbFu1DAchy1URK8tD8CCPLIk2Iljn8WErhSQKnWhs-XY_1x9OHawk0q38Rq8Hk9Sn64wdGgnL9_3l_z9ztBJiAEQekdJTQnlH3f11kHdECprSmtCm1doRYkUFRdCnqAVKVDVUSJO0VnOO0LIumnpG3TaUsFavpYrtL0EmLAHnYILW6z9NiY3340ZDzFhvcxx1DNYbGEGM7sYcBzwJsW78Pf3n4yty6Az4MUbSBn3e3zvLERs9JQXDxiCjdnEaX-BXg_aZ3j7-J6j26svPzbfquubr983n68rw7icq_XAWS_XVkjQfdsMxhoqiWZdx4CQ3vRSipY1WhDJJefGWGJ42xDJLAxCs_YcfTjenVL8tUCe1eiyAe91gLhkVf7PWSO7jhf0_SO69CNYNSU36rRX_-IUgB4Bk2LOCYb_CCXqMIDaqTKAOgygKFVlgOKIJ45xsz6Em5N2_lnz09GEkufeQVLZOAgGrEslvbLRPWvLJ7bxLjij_U_Yv-A-ALHvtIs
CitedBy_id crossref_primary_10_1016_j_tige_2021_06_003
crossref_primary_10_3390_diagnostics11091575
crossref_primary_10_1016_j_giec_2024_07_002
crossref_primary_10_3389_fimmu_2025_1637159
crossref_primary_10_1097_MCG_0000000000001423
crossref_primary_10_2147_CEG_S292857
crossref_primary_10_1097_MCG_0000000000002115
crossref_primary_10_1186_s12880_024_01480_5
crossref_primary_10_1186_s12938_023_01148_1
crossref_primary_10_1080_17474124_2020_1779058
crossref_primary_10_3390_gastroent12020021
crossref_primary_10_1053_j_gastro_2020_12_052
crossref_primary_10_1177_17562848221132683
crossref_primary_10_1093_ecco_jcc_jjad131
crossref_primary_10_1093_ecco_jcc_jjae187
crossref_primary_10_1016_j_gastha_2022_04_008
crossref_primary_10_20517_2574_1225_2023_102
crossref_primary_10_1111_jgh_16369
crossref_primary_10_1080_03007995_2021_1940910
crossref_primary_10_3390_diagnostics15091092
crossref_primary_10_3390_diagnostics11101737
crossref_primary_10_3390_diagnostics11112122
crossref_primary_10_1016_j_bpg_2020_101722
crossref_primary_10_1080_07853890_2023_2300670
crossref_primary_10_1093_ecco_jcc_jjab117
crossref_primary_10_3390_diagnostics13040735
crossref_primary_10_2196_33267
crossref_primary_10_1177_17562848231170945
crossref_primary_10_3389_fphar_2021_720694
crossref_primary_10_1007_s40747_023_01271_5
crossref_primary_10_3390_diagnostics12102490
crossref_primary_10_4103_sjg_sjg_286_23
crossref_primary_10_1016_j_cgh_2024_05_048
crossref_primary_10_1063_5_0235668
crossref_primary_10_1177_26317745211017809
crossref_primary_10_1016_j_namjnl_2025_100051
crossref_primary_10_3389_frobt_2022_896028
crossref_primary_10_3390_diagnostics14030291
crossref_primary_10_3390_jcm11030872
crossref_primary_10_1177_17562848231172556
crossref_primary_10_1093_ibd_izaa211
crossref_primary_10_3390_diagnostics11101765
crossref_primary_10_1145_3464423
crossref_primary_10_3390_bioengineering12040413
crossref_primary_10_1177_17562848211017730
crossref_primary_10_1053_j_gastro_2021_12_238
crossref_primary_10_3390_biomedicines11112991
crossref_primary_10_3390_biomimetics7010033
crossref_primary_10_1016_j_gie_2023_11_059
crossref_primary_10_1038_s41598_021_96748_z
crossref_primary_10_1016_j_gie_2020_05_066
crossref_primary_10_2196_18563
crossref_primary_10_1002_deo2_26
crossref_primary_10_3748_wjg_v27_i17_1920
crossref_primary_10_1155_2023_3228832
crossref_primary_10_3390_jcm12237328
crossref_primary_10_1016_j_bpg_2021_101742
crossref_primary_10_1055_a_1397_3005
crossref_primary_10_1111_den_14334
crossref_primary_10_1111_den_13888
crossref_primary_10_1016_j_gie_2020_04_039
crossref_primary_10_3390_diagnostics12040927
crossref_primary_10_3389_fmed_2022_1018937
crossref_primary_10_1177_17562848251350896
crossref_primary_10_1007_s11517_021_02486_9
crossref_primary_10_3748_wjg_v27_i25_3734
crossref_primary_10_1038_s41746_022_00733_3
crossref_primary_10_1016_j_autrev_2023_103496
crossref_primary_10_1007_s10044_023_01206_3
crossref_primary_10_3389_fmed_2021_656493
crossref_primary_10_3748_wjg_v27_i40_6794
crossref_primary_10_3389_frai_2025_1531362
crossref_primary_10_1109_ACCESS_2023_3290997
crossref_primary_10_1093_ibd_izae030
crossref_primary_10_1093_ecco_jcc_jjab155
crossref_primary_10_1016_j_jgeb_2025_100529
crossref_primary_10_3390_diagnostics13050960
crossref_primary_10_1007_s00330_023_10473_x
crossref_primary_10_1007_s00371_021_02322_z
crossref_primary_10_1007_s43154_020_00040_3
crossref_primary_10_3389_fmed_2022_1058875
crossref_primary_10_3390_jcm11133682
crossref_primary_10_1016_j_gie_2020_06_040
crossref_primary_10_3390_cancers15245861
crossref_primary_10_1097_MOG_0000000000000774
crossref_primary_10_3390_diagnostics15070905
crossref_primary_10_1016_j_artmed_2023_102606
crossref_primary_10_1016_j_giec_2022_12_001
crossref_primary_10_1136_egastro_2024_100090
crossref_primary_10_1007_s12664_024_01531_3
crossref_primary_10_1016_j_compbiomed_2020_104003
crossref_primary_10_1016_j_compbiomed_2023_107412
crossref_primary_10_1080_17474124_2022_2020646
crossref_primary_10_1136_gutjnl_2021_326376
crossref_primary_10_1016_j_gastha_2022_02_025
crossref_primary_10_3390_jcm14124291
crossref_primary_10_1093_ecco_jcc_jjaa234
crossref_primary_10_1111_jgh_15341
crossref_primary_10_1177_17562848241251569
crossref_primary_10_3748_wjg_v27_i27_4395
crossref_primary_10_1007_s10620_021_07086_z
crossref_primary_10_1016_j_giec_2024_04_012
crossref_primary_10_1093_ibd_izab187
crossref_primary_10_1016_j_gie_2020_07_038
crossref_primary_10_1016_j_giec_2020_12_009
crossref_primary_10_3390_diagnostics11112139
crossref_primary_10_1007_s00464_021_08689_3
crossref_primary_10_1016_j_giec_2024_10_004
crossref_primary_10_3390_diagnostics12010043
crossref_primary_10_3390_diagnostics13040662
crossref_primary_10_1109_JTEHM_2022_3198819
crossref_primary_10_3390_diagnostics11091719
crossref_primary_10_1016_j_imu_2024_101600
crossref_primary_10_1016_j_dld_2022_04_025
crossref_primary_10_3390_s22187065
crossref_primary_10_1055_a_1881_4209
crossref_primary_10_1016_j_compbiomed_2024_108093
crossref_primary_10_3390_diagnostics11071192
crossref_primary_10_1111_eci_13960
crossref_primary_10_1007_s10489_022_04146_3
crossref_primary_10_3390_jcm11030569
crossref_primary_10_3389_fmed_2025_1600291
crossref_primary_10_3390_diagnostics13193133
crossref_primary_10_3390_diagnostics11091722
crossref_primary_10_1016_j_future_2023_01_011
crossref_primary_10_3748_wjg_v26_i46_7287
crossref_primary_10_3390_diagnostics14131384
crossref_primary_10_3390_bioengineering12060613
crossref_primary_10_1177_17562848251357407
crossref_primary_10_3390_diagnostics13081507
crossref_primary_10_3748_wjg_v29_i3_508
crossref_primary_10_1186_s12876_023_03067_w
crossref_primary_10_1007_s00261_024_04326_4
crossref_primary_10_1016_j_gie_2020_04_080
crossref_primary_10_1016_j_imu_2024_101572
crossref_primary_10_1111_jgh_16931
crossref_primary_10_3390_diagnostics11071183
crossref_primary_10_1109_ACCESS_2024_3438799
crossref_primary_10_3748_wjg_v27_i38_6476
Cites_doi 10.1055/s-0031-1291385
10.1177/1756284818785571
10.1109/TMI.2018.2837002
10.1055/a-0677-170
10.1016/j.gie.2018.10.027
10.1007/s11263-015-0816-y
10.1148/radiol.2018180547
10.1093/ecco-jcc/jjw006
10.1093/ecco-jcc/jjy113
10.1007/s10439-019-02248-7
10.1002/mp.12147
10.5946/ce.2018.173
10.1007/s00261-008-9431-5
10.1177/1756283X17747780
10.1046/j.1365-2125.2003.01980.x
10.1007/s10620-016-4104-7
10.1080/17474124.2017.1359541
10.1111/j.1365-2036.2007.03556.x
10.1136/gut.2007.129999
10.1111/apt.13475
10.1097/MIB.0b013e31828133c1
10.21037/jtd.2018.02.76
10.1016/j.gpb.2017.07.003
10.1016/j.crohns.2014.06.008
10.1016/S2468-1253(19)30088-3
10.1177/1756283X16649143
10.1038/ajg.2015.221
10.1093/ibd/izx027
10.1093/ecco-jcc/jjy114
10.5009/gnl18384
10.1097/MIB.0000000000000497
10.1055/s-0034-1391855
10.1080/0284186X.2019.1584404
10.3899/jrheum.161216
10.1016/j.dld.2017.04.013
10.1111/den.13346
10.1016/j.gie.2018.06.036
10.1038/ajg.2009.713
10.1097/MOG.0b013e3282f3d946
10.1016/j.compbiomed.2017.03.031
10.1097/MOG.0b013e328334df17
10.1016/j.gie.2018.07.035
10.1016/0016-5085(89)91557-6
ContentType Journal Article
Copyright 2020 American Society for Gastrointestinal Endoscopy
Copyright © 2020 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 American Society for Gastrointestinal Endoscopy
– notice: Copyright © 2020 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.gie.2019.11.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6779
EndPage 613.e2
ExternalDocumentID 31743689
10_1016_j_gie_2019_11_012
S0016510719324289
Genre Journal Article
GrantInformation_xml – fundername: AbbVie
– fundername: Pfizer
– fundername: Takeda
– fundername: GSK
– fundername: CellTrion
– fundername: MSD
– fundername: Jansen
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FD8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ1
M28
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OC.
ON0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
UNMZH
UV1
WH7
WOW
X7M
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c469t-8f64b98d79eab32fcdc190a4554e00bcb997342a7096966ccd0c632094def7a43
ISICitedReferencesCount 161
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514847000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-5107
1097-6779
IngestDate Mon Sep 29 06:18:13 EDT 2025
Wed Feb 19 02:29:20 EST 2025
Sat Nov 29 07:28:35 EST 2025
Tue Nov 18 21:27:28 EST 2025
Fri Feb 23 02:49:07 EST 2024
Tue Oct 14 19:36:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords AI
CD
t-SNE
CE
CNN
AUC
Language English
License Copyright © 2020 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-8f64b98d79eab32fcdc190a4554e00bcb997342a7096966ccd0c632094def7a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7853-2029
PMID 31743689
PQID 2316429556
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2316429556
pubmed_primary_31743689
crossref_primary_10_1016_j_gie_2019_11_012
crossref_citationtrail_10_1016_j_gie_2019_11_012
elsevier_sciencedirect_doi_10_1016_j_gie_2019_11_012
elsevier_clinicalkey_doi_10_1016_j_gie_2019_11_012
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastrointestinal endoscopy
PublicationTitleAlternate Gastrointest Endosc
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tham, Yung, Fay (bib42) 2018; 11
Zhou, Han, Li (bib22) 2017; 85
Jia, Meng (bib24) 2017; 2017
Shah, Colombel, Sands (bib36) 2016; 43
Eliakim, Spada, Lapidus (bib45) 2018; 6
Aoki, Yamada, Aoyama (bib46) 2019; 89
De Vos, Cuvelier, Mielants (bib13) 1989; 96
Kopylov, Ben-Horin, Seidman (bib35) 2015; 21
Waterman, Eliakim (bib4) 2009; 34
Carvalho, Rosa, Cotter (bib39) 2014; 8
Arora, Hu, Kothari (bib28)
Price (bib50) 2003; 56
Melmed, Dubinsky, Rubin (bib6) 2018; 88
Greener, Klang, Yablecovitch (bib37) 2016; 10
Khanna, Nelson, Feagan (bib44) 2016
Kopylov, Koulaouzidis, Klang (bib2) 2017; 11
Leenhardt, Vasseur, Li (bib32) 2019; 89
Maaser, Sturm, Vavricka (bib48) 2019; 13
Chollet (bib29)
Jolliffe, Cadima (bib27) 2016; 374
Maaser, Sturm, Vavricka (bib8) 2018; 13
Soffer, Ben-Cohen, Shimon (bib18) 2019; 290
Pennazio, Spada, Eliakim (bib1) 2015; 47
Gralnek, Defranchis, Seidman (bib12) 2008; 27
Hwang, Park, Lim (bib21) 2018; 51
Yuan, Meng (bib23) 2017; 44
Kopylov, Yablecovitch, Lahat (bib9) 2015; 110
Yablecovitch, Lahat, Neuman (bib15) 2018; 11
Kopylov, Yung, Engel (bib11) 2017; 49
Min, Kwak, Cha (bib25) 2019; 13
Sidhu, Sanders, Morris (bib47) 2008; 57
Russakovsky, Deng, Su (bib30) 2015; 115
Cotter, de Castro, Magalhães (bib16) 2015; 47
Ben-Horin, Lahat, Amitai (bib40) 2019; 4
Niv, Ilani, Levi (bib14) 2012; 44
Klang (bib17) 2018; 10
Eliakim (bib5) 2008; 24
Dionisio, Gurudu, Leighton (bib49) 2010; 105
Kopylov, Klang, Yablecovitch (bib41) 2016; 9
Cao, Liu, Tan (bib31) 2018; 16
Flamant, Trang, Maillard (bib38) 2013; 19
Sturm, Maaser, Calabrese (bib7) 2018; 13
Kopylov, Starr, Watts (bib34) 2018; 45
Eliakim (bib3) 2010; 26
Yung, Har-Noy, Tham (bib10) 2017; 24
Hosoe, Takabayashi, Ogata (bib26) 2019; 31
Iakovidis, Georgakopoulos, Vasilakakis (bib33) 2018; 37
Blanes-Vidal, Baatrup, Nadimi (bib20) 2019; 58
Vieira, Silva, Costa (bib19) 2019; 47
Koulaouzidis, Sipponen, Nemeth (bib43) 2016; 61
Vieira (10.1016/j.gie.2019.11.012_bib19) 2019; 47
Melmed (10.1016/j.gie.2019.11.012_bib6) 2018; 88
Niv (10.1016/j.gie.2019.11.012_bib14) 2012; 44
Sturm (10.1016/j.gie.2019.11.012_bib7) 2018; 13
Koulaouzidis (10.1016/j.gie.2019.11.012_bib43) 2016; 61
Dionisio (10.1016/j.gie.2019.11.012_bib49) 2010; 105
Chollet (10.1016/j.gie.2019.11.012_bib29)
Kopylov (10.1016/j.gie.2019.11.012_bib34) 2018; 45
Yablecovitch (10.1016/j.gie.2019.11.012_bib15) 2018; 11
Shah (10.1016/j.gie.2019.11.012_bib36) 2016; 43
Hwang (10.1016/j.gie.2019.11.012_bib21) 2018; 51
Aoki (10.1016/j.gie.2019.11.012_bib46) 2019; 89
Iakovidis (10.1016/j.gie.2019.11.012_bib33) 2018; 37
Leenhardt (10.1016/j.gie.2019.11.012_bib32) 2019; 89
Maaser (10.1016/j.gie.2019.11.012_bib48) 2019; 13
Eliakim (10.1016/j.gie.2019.11.012_bib5) 2008; 24
Yung (10.1016/j.gie.2019.11.012_bib10) 2017; 24
Kopylov (10.1016/j.gie.2019.11.012_bib11) 2017; 49
Cotter (10.1016/j.gie.2019.11.012_bib16) 2015; 47
Jia (10.1016/j.gie.2019.11.012_bib24) 2017; 2017
Min (10.1016/j.gie.2019.11.012_bib25) 2019; 13
Yuan (10.1016/j.gie.2019.11.012_bib23) 2017; 44
Pennazio (10.1016/j.gie.2019.11.012_bib1) 2015; 47
Sidhu (10.1016/j.gie.2019.11.012_bib47) 2008; 57
Khanna (10.1016/j.gie.2019.11.012_bib44) 2016
Arora (10.1016/j.gie.2019.11.012_bib28)
Cao (10.1016/j.gie.2019.11.012_bib31) 2018; 16
Jolliffe (10.1016/j.gie.2019.11.012_bib27) 2016; 374
Tham (10.1016/j.gie.2019.11.012_bib42) 2018; 11
Maaser (10.1016/j.gie.2019.11.012_bib8) 2018; 13
Kopylov (10.1016/j.gie.2019.11.012_bib35) 2015; 21
Greener (10.1016/j.gie.2019.11.012_bib37) 2016; 10
Eliakim (10.1016/j.gie.2019.11.012_bib3) 2010; 26
Blanes-Vidal (10.1016/j.gie.2019.11.012_bib20) 2019; 58
Gralnek (10.1016/j.gie.2019.11.012_bib12) 2008; 27
Kopylov (10.1016/j.gie.2019.11.012_bib9) 2015; 110
Price (10.1016/j.gie.2019.11.012_bib50) 2003; 56
Zhou (10.1016/j.gie.2019.11.012_bib22) 2017; 85
Russakovsky (10.1016/j.gie.2019.11.012_bib30) 2015; 115
Klang (10.1016/j.gie.2019.11.012_bib17) 2018; 10
Flamant (10.1016/j.gie.2019.11.012_bib38) 2013; 19
Ben-Horin (10.1016/j.gie.2019.11.012_bib40) 2019; 4
Waterman (10.1016/j.gie.2019.11.012_bib4) 2009; 34
Soffer (10.1016/j.gie.2019.11.012_bib18) 2019; 290
Kopylov (10.1016/j.gie.2019.11.012_bib41) 2016; 9
Eliakim (10.1016/j.gie.2019.11.012_bib45) 2018; 6
Kopylov (10.1016/j.gie.2019.11.012_bib2) 2017; 11
Carvalho (10.1016/j.gie.2019.11.012_bib39) 2014; 8
De Vos (10.1016/j.gie.2019.11.012_bib13) 1989; 96
Hosoe (10.1016/j.gie.2019.11.012_bib26) 2019; 31
References_xml – volume: 6
  start-page: E1235
  year: 2018
  end-page: E1246
  ident: bib45
  article-title: Evaluation of a new pan-enteric video capsule endoscopy system in patients with suspected or established inflammatory bowel disease—feasibility study
  publication-title: Endosc Int Open
– volume: 24
  start-page: 93
  year: 2017
  end-page: 100
  ident: bib10
  article-title: Capsule endoscopy, magnetic resonance enterography, and small bowel ultrasound for evaluation of postoperative recurrence in crohn’s disease: systematic review and meta-analysis
  publication-title: Inflamm Bowel Dis
– volume: 37
  start-page: 2196
  year: 2018
  end-page: 2210
  ident: bib33
  article-title: Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification
  publication-title: IEEE Trans Med Imag
– volume: 47
  start-page: 352
  year: 2015
  end-page: 386
  ident: bib1
  article-title: Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline
  publication-title: Endoscopy
– volume: 96
  start-page: 339
  year: 1989
  end-page: 344
  ident: bib13
  article-title: Ileocolonoscopy in seronegative spondylarthropathy
  publication-title: Gastroenterology
– volume: 10
  start-page: 525
  year: 2016
  end-page: 531
  ident: bib37
  article-title: The impact of magnetic resonance enterography and capsule endoscopy on the re-classification of disease in patients with known Crohn’s disease: a prospective Israeli IBD Research Nucleus (IIRN) study
  publication-title: J Crohn's Colitis
– volume: 88
  start-page: 947
  year: 2018
  end-page: 955
  ident: bib6
  article-title: Utility of video capsule endoscopy for longitudinal monitoring of Crohn’s disease activity in the small bowel: a prospective study
  publication-title: Gastrointest Endosc
– volume: 85
  start-page: 1
  year: 2017
  end-page: 6
  ident: bib22
  article-title: Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning method
  publication-title: Comput Biol Med
– volume: 19
  start-page: 1390
  year: 2013
  end-page: 1396
  ident: bib38
  article-title: The prevalence and outcome of jejunal lesions visualized by small bowel capsule endoscopy in Crohn’s disease
  publication-title: Inflamm Bowel Dis
– volume: 58
  start-page: S29
  year: 2019
  end-page: S36
  ident: bib20
  article-title: Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning
  publication-title: Acta Oncol
– volume: 11
  start-page: 1047
  year: 2017
  end-page: 1058
  ident: bib2
  article-title: Monitoring of small bowel Crohn's disease
  publication-title: Exp Rev Gastroenterol Hepatol
– volume: 105
  start-page: 1240
  year: 2010
  end-page: 1248
  ident: bib49
  article-title: Capsule endoscopy has a significantly higher diagnostic yield in patients with suspected and established small-bowel Crohn's disease: a meta-analysis
  publication-title: Am J Gastroenterol
– volume: 61
  start-page: 2033
  year: 2016
  end-page: 2040
  ident: bib43
  article-title: Association between fecal calprotectin levels and small-bowel inflammation score in capsule endoscopy: a multicenter retrospective study
  publication-title: Dig Dis Sci
– volume: 43
  start-page: 317
  year: 2016
  end-page: 333
  ident: bib36
  article-title: Systematic review with meta-analysis: mucosal healing is associated with improved long-term outcomes in Crohn's disease
  publication-title: Aliment Pharmacol Ther
– volume: 110
  start-page: 1316
  year: 2015
  ident: bib9
  article-title: Detection of small bowel mucosal healing and deep remission in patients with known small bowel Crohn’s disease using biomarkers, capsule endoscopy, and imaging
  publication-title: Am J Gastroenterol
– volume: 290
  start-page: 590
  year: 2019
  end-page: 606
  ident: bib18
  article-title: Convolutional neural networks for radiologic images: a radiologist’s guide
  publication-title: Radiology
– volume: 13
  start-page: 144
  year: 2018
  end-page: 164
  ident: bib8
  article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD part 1: initial diagnosis, monitoring of known IBD, detection of complications
  publication-title: J Crohn's Colitis
– volume: 56
  start-page: 477
  year: 2003
  end-page: 482
  ident: bib50
  article-title: Pathology of drug-associated gastrointestinal disease
  publication-title: Br J Clin Pharmacol
– volume: 11
  year: 2018
  ident: bib42
  article-title: Fecal calprotectin for detection of postoperative endoscopic recurrence in Crohn’s disease: systematic review and meta-analysis
  publication-title: Therap Adv Gastroenterol
– volume: 21
  start-page: 2726
  year: 2015
  end-page: 2735
  ident: bib35
  article-title: Video capsule endoscopy of the small bowel for monitoring of Crohn's disease
  publication-title: Inflamm Bowel Dis
– volume: 374
  year: 2016
  ident: bib27
  article-title: Principal component analysis: a review and recent developments
  publication-title: Phil Trans R Soc A Math Phys Eng Sci
– volume: 34
  start-page: 452
  year: 2009
  end-page: 458
  ident: bib4
  article-title: Capsule enteroscopy of the small intestine
  publication-title: Abdom Imag
– volume: 89
  start-page: 189
  year: 2019
  end-page: 194
  ident: bib32
  article-title: A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy
  publication-title: Gastrointest Endosc
– volume: 13
  start-page: 273
  year: 2018
  end-page: 284
  ident: bib7
  article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD part 2: IBD scores and general principles and technical aspects
  publication-title: J Crohn's Colitis
– volume: 44
  start-page: 21
  year: 2012
  end-page: 26
  ident: bib14
  article-title: Validation of the Capsule Endoscopy Crohn’s Disease Activity Index (CECDAI or Niv score): a multicenter prospective study
  publication-title: Endoscopy
– volume: 51
  start-page: 547
  year: 2018
  ident: bib21
  article-title: Application of artificial intelligence in capsule endoscopy: Where are we now?
  publication-title: Clin Endosc
– volume: 4
  start-page: 519
  year: 2019
  end-page: 528
  ident: bib40
  article-title: Assessment of small bowel mucosal healing by video capsule endoscopy for the prediction of short-term and long-term risk of Crohn's disease flare: a prospective cohort study
  publication-title: Lancet Gastroenterol Hepatol
– volume: 31
  start-page: 498
  year: 2019
  end-page: 507
  ident: bib26
  article-title: Capsule endoscopy for small-intestinal disorders: current status
  publication-title: Dig Endosc
– volume: 10
  start-page: 1325
  year: 2018
  end-page: 1328
  ident: bib17
  article-title: Deep learning and medical imaging
  publication-title: J Thorac Dis
– volume: 16
  start-page: 17
  year: 2018
  end-page: 32
  ident: bib31
  article-title: Deep learning and its applications in biomedicine
  publication-title: Genom Proteom Bioinform
– volume: 24
  start-page: 159
  year: 2008
  end-page: 163
  ident: bib5
  article-title: Video capsule endoscopy of the small bowel
  publication-title: Curr Opin Gastroenterol
– volume: 11
  year: 2018
  ident: bib15
  article-title: The Lewis score or the Capsule Endoscopy Crohn’s Disease Activity Index: Which one is better for the assessment of small bowel inflammation in established Crohn’s disease?
  publication-title: Therap Adv Gastroenterol
– ident: bib29
  article-title: Xception: deep learning with depthwise separable convolutions. arXiv e-prints
– volume: 8
  start-page: 1566
  year: 2014
  end-page: 1567
  ident: bib39
  article-title: Mucosal healing in Crohn’s disease—Are we reaching as far as possible with capsule endoscopy?
  publication-title: J Crohn's Colitis
– volume: 26
  start-page: 129
  year: 2010
  end-page: 133
  ident: bib3
  article-title: Video capsule endoscopy of the small bowel
  publication-title: Curr Opin Gastroenterol
– volume: 89
  start-page: 357
  year: 2019
  end-page: 363
  ident: bib46
  article-title: Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network
  publication-title: Gastrointest Endosc
– volume: 47
  start-page: 330
  year: 2015
  end-page: 335
  ident: bib16
  article-title: Validation of the Lewis score for the evaluation of small-bowel Crohn’s disease activity
  publication-title: Endoscopy
– volume: 13
  start-page: 144
  year: 2019
  end-page: 164
  ident: bib48
  article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications
  publication-title: J Crohn's Colitis
– volume: 9
  start-page: 655
  year: 2016
  end-page: 663
  ident: bib41
  article-title: Magnetic resonance enterography versus capsule endoscopy activity indices for quantification of small bowel inflammation in Crohn’s disease
  publication-title: Therap Adv Gastroenterol
– volume: 47
  start-page: 1446
  year: 2019
  end-page: 1462
  ident: bib19
  article-title: Automatic segmentation and detection of small bowel angioectasias in WCE images
  publication-title: Ann Biomed Eng
– volume: 13
  start-page: 388
  year: 2019
  ident: bib25
  article-title: Overview of deep learning in gastrointestinal endoscopy
  publication-title: Gut Liver
– volume: 49
  start-page: 854
  year: 2017
  end-page: 863
  ident: bib11
  article-title: Diagnostic yield of capsule endoscopy versus magnetic resonance enterography and small bowel contrast ultrasound in the evaluation of small bowel Crohn’s disease: systematic review and meta-analysis
  publication-title: Dig Liver Dis
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib30
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
– ident: bib28
  article-title: An analysis of the t-SNE algorithm for data visualization. arXiv e-prints
– start-page: Cd010642
  year: 2016
  ident: bib44
  article-title: Endoscopic scoring indices for evaluation of disease activity in Crohn's disease
  publication-title: Cochrane Database System Rev
– volume: 57
  start-page: 125
  year: 2008
  end-page: 136
  ident: bib47
  article-title: Guidelines on small bowel enteroscopy and capsule endoscopy in adults
  publication-title: Gut
– volume: 2017
  start-page: 3154
  year: 2017
  end-page: 3157
  ident: bib24
  article-title: Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 44
  start-page: 1379
  year: 2017
  end-page: 1389
  ident: bib23
  article-title: Deep learning for polyp recognition in wireless capsule endoscopy images
  publication-title: Med Phys
– volume: 45
  start-page: 498
  year: 2018
  end-page: 505
  ident: bib34
  article-title: Detection of Crohn disease in patients with spondyloarthropathy: the SpACE capsule study
  publication-title: J Rheumatol
– volume: 27
  start-page: 146
  year: 2008
  end-page: 154
  ident: bib12
  article-title: Development of a capsule endoscopy scoring index for small bowel mucosal inflammatory change
  publication-title: Aliment Pharmacol Therap
– volume: 44
  start-page: 21
  year: 2012
  ident: 10.1016/j.gie.2019.11.012_bib14
  article-title: Validation of the Capsule Endoscopy Crohn’s Disease Activity Index (CECDAI or Niv score): a multicenter prospective study
  publication-title: Endoscopy
  doi: 10.1055/s-0031-1291385
– volume: 11
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib42
  article-title: Fecal calprotectin for detection of postoperative endoscopic recurrence in Crohn’s disease: systematic review and meta-analysis
  publication-title: Therap Adv Gastroenterol
  doi: 10.1177/1756284818785571
– start-page: Cd010642
  year: 2016
  ident: 10.1016/j.gie.2019.11.012_bib44
  article-title: Endoscopic scoring indices for evaluation of disease activity in Crohn's disease
  publication-title: Cochrane Database System Rev
– volume: 37
  start-page: 2196
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib33
  article-title: Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2018.2837002
– volume: 6
  start-page: E1235
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib45
  article-title: Evaluation of a new pan-enteric video capsule endoscopy system in patients with suspected or established inflammatory bowel disease—feasibility study
  publication-title: Endosc Int Open
  doi: 10.1055/a-0677-170
– ident: 10.1016/j.gie.2019.11.012_bib28
– volume: 89
  start-page: 357
  year: 2019
  ident: 10.1016/j.gie.2019.11.012_bib46
  article-title: Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.10.027
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.gie.2019.11.012_bib30
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– volume: 290
  start-page: 590
  year: 2019
  ident: 10.1016/j.gie.2019.11.012_bib18
  article-title: Convolutional neural networks for radiologic images: a radiologist’s guide
  publication-title: Radiology
  doi: 10.1148/radiol.2018180547
– volume: 10
  start-page: 525
  year: 2016
  ident: 10.1016/j.gie.2019.11.012_bib37
  article-title: The impact of magnetic resonance enterography and capsule endoscopy on the re-classification of disease in patients with known Crohn’s disease: a prospective Israeli IBD Research Nucleus (IIRN) study
  publication-title: J Crohn's Colitis
  doi: 10.1093/ecco-jcc/jjw006
– volume: 13
  start-page: 144
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib8
  article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD part 1: initial diagnosis, monitoring of known IBD, detection of complications
  publication-title: J Crohn's Colitis
  doi: 10.1093/ecco-jcc/jjy113
– volume: 47
  start-page: 1446
  year: 2019
  ident: 10.1016/j.gie.2019.11.012_bib19
  article-title: Automatic segmentation and detection of small bowel angioectasias in WCE images
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-019-02248-7
– volume: 2017
  start-page: 3154
  year: 2017
  ident: 10.1016/j.gie.2019.11.012_bib24
  article-title: Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 44
  start-page: 1379
  year: 2017
  ident: 10.1016/j.gie.2019.11.012_bib23
  article-title: Deep learning for polyp recognition in wireless capsule endoscopy images
  publication-title: Med Phys
  doi: 10.1002/mp.12147
– volume: 51
  start-page: 547
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib21
  article-title: Application of artificial intelligence in capsule endoscopy: Where are we now?
  publication-title: Clin Endosc
  doi: 10.5946/ce.2018.173
– volume: 34
  start-page: 452
  year: 2009
  ident: 10.1016/j.gie.2019.11.012_bib4
  article-title: Capsule enteroscopy of the small intestine
  publication-title: Abdom Imag
  doi: 10.1007/s00261-008-9431-5
– volume: 11
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib15
  article-title: The Lewis score or the Capsule Endoscopy Crohn’s Disease Activity Index: Which one is better for the assessment of small bowel inflammation in established Crohn’s disease?
  publication-title: Therap Adv Gastroenterol
  doi: 10.1177/1756283X17747780
– volume: 56
  start-page: 477
  year: 2003
  ident: 10.1016/j.gie.2019.11.012_bib50
  article-title: Pathology of drug-associated gastrointestinal disease
  publication-title: Br J Clin Pharmacol
  doi: 10.1046/j.1365-2125.2003.01980.x
– volume: 61
  start-page: 2033
  year: 2016
  ident: 10.1016/j.gie.2019.11.012_bib43
  article-title: Association between fecal calprotectin levels and small-bowel inflammation score in capsule endoscopy: a multicenter retrospective study
  publication-title: Dig Dis Sci
  doi: 10.1007/s10620-016-4104-7
– volume: 11
  start-page: 1047
  year: 2017
  ident: 10.1016/j.gie.2019.11.012_bib2
  article-title: Monitoring of small bowel Crohn's disease
  publication-title: Exp Rev Gastroenterol Hepatol
  doi: 10.1080/17474124.2017.1359541
– volume: 27
  start-page: 146
  year: 2008
  ident: 10.1016/j.gie.2019.11.012_bib12
  article-title: Development of a capsule endoscopy scoring index for small bowel mucosal inflammatory change
  publication-title: Aliment Pharmacol Therap
  doi: 10.1111/j.1365-2036.2007.03556.x
– volume: 57
  start-page: 125
  year: 2008
  ident: 10.1016/j.gie.2019.11.012_bib47
  article-title: Guidelines on small bowel enteroscopy and capsule endoscopy in adults
  publication-title: Gut
  doi: 10.1136/gut.2007.129999
– volume: 13
  start-page: 144
  year: 2019
  ident: 10.1016/j.gie.2019.11.012_bib48
  article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications
  publication-title: J Crohn's Colitis
  doi: 10.1093/ecco-jcc/jjy113
– volume: 43
  start-page: 317
  year: 2016
  ident: 10.1016/j.gie.2019.11.012_bib36
  article-title: Systematic review with meta-analysis: mucosal healing is associated with improved long-term outcomes in Crohn's disease
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/apt.13475
– volume: 19
  start-page: 1390
  year: 2013
  ident: 10.1016/j.gie.2019.11.012_bib38
  article-title: The prevalence and outcome of jejunal lesions visualized by small bowel capsule endoscopy in Crohn’s disease
  publication-title: Inflamm Bowel Dis
  doi: 10.1097/MIB.0b013e31828133c1
– volume: 47
  start-page: 330
  year: 2015
  ident: 10.1016/j.gie.2019.11.012_bib16
  article-title: Validation of the Lewis score for the evaluation of small-bowel Crohn’s disease activity
  publication-title: Endoscopy
– volume: 10
  start-page: 1325
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib17
  article-title: Deep learning and medical imaging
  publication-title: J Thorac Dis
  doi: 10.21037/jtd.2018.02.76
– volume: 16
  start-page: 17
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib31
  article-title: Deep learning and its applications in biomedicine
  publication-title: Genom Proteom Bioinform
  doi: 10.1016/j.gpb.2017.07.003
– volume: 8
  start-page: 1566
  year: 2014
  ident: 10.1016/j.gie.2019.11.012_bib39
  article-title: Mucosal healing in Crohn’s disease—Are we reaching as far as possible with capsule endoscopy?
  publication-title: J Crohn's Colitis
  doi: 10.1016/j.crohns.2014.06.008
– volume: 4
  start-page: 519
  year: 2019
  ident: 10.1016/j.gie.2019.11.012_bib40
  article-title: Assessment of small bowel mucosal healing by video capsule endoscopy for the prediction of short-term and long-term risk of Crohn's disease flare: a prospective cohort study
  publication-title: Lancet Gastroenterol Hepatol
  doi: 10.1016/S2468-1253(19)30088-3
– volume: 9
  start-page: 655
  year: 2016
  ident: 10.1016/j.gie.2019.11.012_bib41
  article-title: Magnetic resonance enterography versus capsule endoscopy activity indices for quantification of small bowel inflammation in Crohn’s disease
  publication-title: Therap Adv Gastroenterol
  doi: 10.1177/1756283X16649143
– volume: 110
  start-page: 1316
  year: 2015
  ident: 10.1016/j.gie.2019.11.012_bib9
  article-title: Detection of small bowel mucosal healing and deep remission in patients with known small bowel Crohn’s disease using biomarkers, capsule endoscopy, and imaging
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2015.221
– volume: 24
  start-page: 93
  year: 2017
  ident: 10.1016/j.gie.2019.11.012_bib10
  article-title: Capsule endoscopy, magnetic resonance enterography, and small bowel ultrasound for evaluation of postoperative recurrence in crohn’s disease: systematic review and meta-analysis
  publication-title: Inflamm Bowel Dis
  doi: 10.1093/ibd/izx027
– volume: 13
  start-page: 273
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib7
  article-title: ECCO-ESGAR guideline for diagnostic assessment in IBD part 2: IBD scores and general principles and technical aspects
  publication-title: J Crohn's Colitis
  doi: 10.1093/ecco-jcc/jjy114
– ident: 10.1016/j.gie.2019.11.012_bib29
– volume: 13
  start-page: 388
  year: 2019
  ident: 10.1016/j.gie.2019.11.012_bib25
  article-title: Overview of deep learning in gastrointestinal endoscopy
  publication-title: Gut Liver
  doi: 10.5009/gnl18384
– volume: 374
  year: 2016
  ident: 10.1016/j.gie.2019.11.012_bib27
  article-title: Principal component analysis: a review and recent developments
  publication-title: Phil Trans R Soc A Math Phys Eng Sci
– volume: 21
  start-page: 2726
  year: 2015
  ident: 10.1016/j.gie.2019.11.012_bib35
  article-title: Video capsule endoscopy of the small bowel for monitoring of Crohn's disease
  publication-title: Inflamm Bowel Dis
  doi: 10.1097/MIB.0000000000000497
– volume: 47
  start-page: 352
  year: 2015
  ident: 10.1016/j.gie.2019.11.012_bib1
  article-title: Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline
  publication-title: Endoscopy
  doi: 10.1055/s-0034-1391855
– volume: 58
  start-page: S29
  issue: suppl 1
  year: 2019
  ident: 10.1016/j.gie.2019.11.012_bib20
  article-title: Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning
  publication-title: Acta Oncol
  doi: 10.1080/0284186X.2019.1584404
– volume: 45
  start-page: 498
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib34
  article-title: Detection of Crohn disease in patients with spondyloarthropathy: the SpACE capsule study
  publication-title: J Rheumatol
  doi: 10.3899/jrheum.161216
– volume: 49
  start-page: 854
  year: 2017
  ident: 10.1016/j.gie.2019.11.012_bib11
  article-title: Diagnostic yield of capsule endoscopy versus magnetic resonance enterography and small bowel contrast ultrasound in the evaluation of small bowel Crohn’s disease: systematic review and meta-analysis
  publication-title: Dig Liver Dis
  doi: 10.1016/j.dld.2017.04.013
– volume: 31
  start-page: 498
  year: 2019
  ident: 10.1016/j.gie.2019.11.012_bib26
  article-title: Capsule endoscopy for small-intestinal disorders: current status
  publication-title: Dig Endosc
  doi: 10.1111/den.13346
– volume: 89
  start-page: 189
  year: 2019
  ident: 10.1016/j.gie.2019.11.012_bib32
  article-title: A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.06.036
– volume: 105
  start-page: 1240
  year: 2010
  ident: 10.1016/j.gie.2019.11.012_bib49
  article-title: Capsule endoscopy has a significantly higher diagnostic yield in patients with suspected and established small-bowel Crohn's disease: a meta-analysis
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2009.713
– volume: 24
  start-page: 159
  year: 2008
  ident: 10.1016/j.gie.2019.11.012_bib5
  article-title: Video capsule endoscopy of the small bowel
  publication-title: Curr Opin Gastroenterol
  doi: 10.1097/MOG.0b013e3282f3d946
– volume: 85
  start-page: 1
  year: 2017
  ident: 10.1016/j.gie.2019.11.012_bib22
  article-title: Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning method
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.03.031
– volume: 26
  start-page: 129
  year: 2010
  ident: 10.1016/j.gie.2019.11.012_bib3
  article-title: Video capsule endoscopy of the small bowel
  publication-title: Curr Opin Gastroenterol
  doi: 10.1097/MOG.0b013e328334df17
– volume: 88
  start-page: 947
  year: 2018
  ident: 10.1016/j.gie.2019.11.012_bib6
  article-title: Utility of video capsule endoscopy for longitudinal monitoring of Crohn’s disease activity in the small bowel: a prospective study
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.07.035
– volume: 96
  start-page: 339
  year: 1989
  ident: 10.1016/j.gie.2019.11.012_bib13
  article-title: Ileocolonoscopy in seronegative spondylarthropathy
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(89)91557-6
SSID ssj0008231
Score 2.6502094
Snippet The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn’s disease (CD) on capsule...
The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn's disease (CD) on capsule...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 606
SubjectTerms Algorithms
Automation
Capsule Endoscopy - methods
Crohn Disease - complications
Crohn Disease - diagnostic imaging
Deep Learning
Humans
Intestinal Mucosa - diagnostic imaging
Intestine, Small - diagnostic imaging
Neural Networks, Computer
Random Allocation
Reproducibility of Results
Retrospective Studies
Ulcer - diagnostic imaging
Ulcer - etiology
Title Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016510719324289
https://dx.doi.org/10.1016/j.gie.2019.11.012
https://www.ncbi.nlm.nih.gov/pubmed/31743689
https://www.proquest.com/docview/2316429556
Volume 91
WOSCitedRecordID wos000514847000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 20200430
  omitProxy: false
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpO0pfxu7LLkWDwWDGxbdI1mPXZTe2Mlg30icjy3KS4tohsUvzH_ajd2RJTtqRbnvYiwm25ASdL0ffOToXhF6SSIShn_vuQHrUjfLYV44m6QbhIGWS-kHQxub8-EyPj-PRiH3t9X7aXJiLgpZlfHnJZv9V1HAPhK1SZ_9B3N1L4QZ8BqHDFcQO178S_FspZ7YZxNjhxbgC-3-i6y44vKkr4KjAMjNZS2Hp4tG8mujeKubAxmkKoVJ7gZyqRL3KERzM6UI6sswqlcly5TT4PV_U80pVngCFoejt1VFKnxfGLz1c8i6m4w2f80Xr1jmd5jUXnWe67b4L9oGWf3POnVM5aVa-g2-V6urSOm5VHOty3XUBdmoXu3Ugtbr1GHUJ1e1krD7W3bsM7sI15Ura2gS_K33tfzg7GE9V3VOfHaiyrDo4e03es_NW4KEywYhuW3St0rZ9tIV2AjpgoCN3Dj8OR5-6nV0dmdqT8TZG8No37qFd-45NNGeTGdPSmZM76LaxQ_Chxs9d1JPlPbT7xURa3EdSwQhbGOEVjDDACHcwwh2McJXjFkavFtiACGsQ4XSJWxBhAyLcweMB-v5ueHL0wTUtOVwREVa7cU6ilMUZZZKnYZCLTACj5BGQUul5qUgZo2EUcOqpqktEiMwTJAw8FmUypzwKH6LtsirlY4QZ4TJNmSfBoI1g24WNg_oUhouAMF_yPvLsCibC1KtXbVOKxAYmniWw_olaf7BjE1j_PnrdTZnpYi03DQ6sWBKbhQz7ZgKoumlS1E0yFFVTzz9Ne2HlnoD6VmdyvJRVs0gAUQQo4WBA-uiRBkT30y2Wnmx88hTtrf5Xz9B2PW_kc3RLXNTTxXwfbdFRvG9A_AuifsGV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+algorithms+for+automated+detection+of+Crohn%27s+disease+ulcers+by+video+capsule+endoscopy&rft.jtitle=Gastrointestinal+endoscopy&rft.au=Klang%2C+Eyal&rft.au=Barash%2C+Yiftach&rft.au=Margalit%2C+Reuma+Yehuda&rft.au=Soffer%2C+Shelly&rft.date=2020-03-01&rft.eissn=1097-6779&rft.volume=91&rft.issue=3&rft.spage=606&rft_id=info:doi/10.1016%2Fj.gie.2019.11.012&rft_id=info%3Apmid%2F31743689&rft.externalDocID=31743689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5107&client=summon