Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation

In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 18; H. 1; S. 109
Hauptverfasser: Kim, Ju-Won, Park, Seunghee
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 02.01.2018
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.
AbstractList In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.
In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.
Author Kim, Ju-Won
Park, Seunghee
AuthorAffiliation School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Korea; malsi@nate.com
AuthorAffiliation_xml – name: School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Korea; malsi@nate.com
Author_xml – sequence: 1
  givenname: Ju-Won
  orcidid: 0000-0001-5491-7103
  surname: Kim
  fullname: Kim, Ju-Won
– sequence: 2
  givenname: Seunghee
  surname: Park
  fullname: Park, Seunghee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29301294$$D View this record in MEDLINE/PubMed
BookMark eNplkstu1TAQhiPUil5gwQsgS2xgkTa2c7E3SG1PC0iHAgXE0nKccXCb2AfbOcA78ZD4pBeVIi9mZH__rxnP7GVb1lnIsme4OKCUF4cBswKnwx9lu7gkZc4IKbbu5TvZXgiXRUEopexxtkM4LTDh5W72573sLUSj0Nkw_UJLkFeyB_QZbDC2R9J26MhHo40yckDnMPk5xJ_OX6GPMkbwFl2Acr010TibH8sASTNFN8qYsoUcN4YLiKA2wGz5aZJ2NpXzlXYefTMe0IVbATpPLgsI0U9JsAZ0upbDNINPsm0thwBPb-J-9vXs9MvJ23z54c27k6Nlrsqax5yB7ogqS2irtq401VwyShjjuAOti7opadeShrBGalZpVeKWsoo2iaRN1TZ0P3t97bua2hE6BTamtsXKm1H638JJI_59sea76N1aVA2veIWTwcsbA-9-TKkXMZqgYBikBTcFgTnjVVk3NU_oiwfopZu8Te0JkgbGMGakSNTz-xXdlXI7yAQcXgPKuxA8aKFMnD8tFWgGgQuxWRVxtypJ8eqB4tb0f_YvL9XAzQ
CitedBy_id crossref_primary_10_3390_s22103654
crossref_primary_10_3390_s19214797
crossref_primary_10_1177_16878132221116998
crossref_primary_10_1007_s11668_020_01067_6
crossref_primary_10_1080_09349847_2022_2105458
crossref_primary_10_1109_TIM_2023_3284023
crossref_primary_10_1080_10589759_2025_2495356
crossref_primary_10_1109_LSENS_2024_3446698
crossref_primary_10_1109_MIM_2022_9908257
crossref_primary_10_1109_LSENS_2024_3451405
crossref_primary_10_1109_JSEN_2024_3372597
crossref_primary_10_1007_s11668_022_01456_z
crossref_primary_10_1080_10589759_2025_2543513
crossref_primary_10_3390_s23073366
crossref_primary_10_3390_s19173763
crossref_primary_10_1134_S106183092111005X
crossref_primary_10_1080_10589759_2024_2351141
crossref_primary_10_3390_jmse13081462
crossref_primary_10_1109_TIE_2020_2973874
crossref_primary_10_1016_j_ymssp_2022_109568
crossref_primary_10_1109_JSEN_2020_2979497
crossref_primary_10_1016_j_measurement_2020_108343
crossref_primary_10_1109_TIE_2023_3273250
crossref_primary_10_1016_j_measurement_2022_110939
crossref_primary_10_3390_su152216125
crossref_primary_10_1155_2019_9828536
crossref_primary_10_1177_14759217251360644
crossref_primary_10_1109_TIM_2021_3112792
crossref_primary_10_1109_TIM_2020_2983232
crossref_primary_10_3390_app9132771
crossref_primary_10_1088_1742_6596_2638_1_012014
crossref_primary_10_1080_10589759_2025_2534182
crossref_primary_10_1002_adem_202501217
crossref_primary_10_59440_ceer_205939
crossref_primary_10_1109_TIM_2021_3054695
crossref_primary_10_3390_s20144043
crossref_primary_10_1007_s11668_023_01682_z
crossref_primary_10_1016_j_heliyon_2022_e11623
crossref_primary_10_1016_j_conbuildmat_2023_132460
crossref_primary_10_3390_s23239298
crossref_primary_10_1088_2053_1591_abb69b
crossref_primary_10_3390_app142411852
crossref_primary_10_1007_s11668_024_01971_1
crossref_primary_10_1016_j_jmmm_2023_170395
crossref_primary_10_1016_j_cscm_2024_e04048
crossref_primary_10_1007_s00707_019_02578_6
crossref_primary_10_1016_j_measurement_2019_106954
crossref_primary_10_3390_app12146969
crossref_primary_10_3390_s22208081
crossref_primary_10_1134_S1061830922070117
crossref_primary_10_3390_cmd6030037
crossref_primary_10_3390_ma12132154
crossref_primary_10_3390_ma12182894
crossref_primary_10_1007_s10921_020_00732_y
crossref_primary_10_3390_machines12050317
crossref_primary_10_3390_s23167059
crossref_primary_10_1016_j_comcom_2022_08_001
crossref_primary_10_1109_JSEN_2025_3564297
crossref_primary_10_1155_2019_8014102
Cites_doi 10.1016/S0963-8695(99)00011-0
10.3390/s151229845
10.4043/2926-MS
10.1109/5.56910
10.1109/JSEN.2006.874493
10.1016/j.jsv.2005.12.058
10.1007/978-1-4471-3675-0
10.3390/s17091989
10.3390/s16091366
10.1016/B978-075067934-3/50002-8
10.36001/phmap.2017.v1i1.1985
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/s18010109
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID PMC5795951
29301294
10_3390_s18010109
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-8efd2c44eb5b65f3f9a8328891deff06743db27287af85fc41b38537f3f375b73
IEDL.DBID 7X7
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423286300108&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Nov 04 02:01:26 EST 2025
Sun Nov 09 13:50:28 EST 2025
Tue Oct 07 06:56:46 EDT 2025
Wed Feb 19 02:43:30 EST 2025
Sat Nov 29 07:11:16 EST 2025
Tue Nov 18 21:25:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords magnetic flux leakage
artificial neural network
damage quantification
signal processing
steel wire rope inspection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-8efd2c44eb5b65f3f9a8328891deff06743db27287af85fc41b38537f3f375b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5491-7103
OpenAccessLink https://www.proquest.com/docview/2002811820?pq-origsite=%requestingapplication%
PMID 29301294
PQID 2002811820
PQPubID 2032333
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5795951
proquest_miscellaneous_1989546769
proquest_journals_2002811820
pubmed_primary_29301294
crossref_citationtrail_10_3390_s18010109
crossref_primary_10_3390_s18010109
PublicationCentury 2000
PublicationDate 2018-01-02
PublicationDateYYYYMMDD 2018-01-02
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Shi (ref_12) 2015; 15
Kang (ref_13) 2014; 14
Feldman (ref_15) 2006; 295
Mukhopadhyay (ref_6) 2000; 33
ref_14
ref_22
ref_21
ref_20
Lenz (ref_5) 2006; 6
Weischedel (ref_1) 1985; 43
ref_3
ref_2
Lenz (ref_10) 1990; 78
ref_19
Park (ref_11) 2014; 2014
ref_18
ref_17
ref_16
ref_9
Mandal (ref_8) 1998; 31
ref_4
ref_7
26690435 - Sensors (Basel). 2015 Dec 10;15(12):31036-55
28867790 - Sensors (Basel). 2017 Aug 30;17 (9)
27571077 - Sensors (Basel). 2016 Aug 25;16(9)
References_xml – volume: 33
  start-page: 57
  year: 2000
  ident: ref_6
  article-title: Characterisation of metal loss defects from magnetic flux leakage signals with discrete wavelet transform
  publication-title: NDT&E Int.
  doi: 10.1016/S0963-8695(99)00011-0
– volume: 14
  start-page: 275
  year: 2014
  ident: ref_13
  article-title: Non-contact Local Fault Detection of Railroad Track using MFL Technology
  publication-title: J. KOSHAM
– ident: ref_4
– volume: 31
  start-page: 3211
  year: 1998
  ident: ref_8
  article-title: A study of magnetic flux-leakage signals
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 31036
  year: 2015
  ident: ref_12
  article-title: Theory and application of magnetic flux leakage pipeline detection
  publication-title: Sensors
  doi: 10.3390/s151229845
– ident: ref_2
  doi: 10.4043/2926-MS
– volume: 78
  start-page: 973
  year: 1990
  ident: ref_10
  article-title: A review of magnetic sensors
  publication-title: Proc. IEEE
  doi: 10.1109/5.56910
– volume: 43
  start-page: 1592
  year: 1985
  ident: ref_1
  article-title: The inspection of wire ropes in service: A critical review
  publication-title: Mater. Eval.
– volume: 6
  start-page: 631
  year: 2006
  ident: ref_5
  article-title: Magnetic sensors and their applications
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2006.874493
– volume: 295
  start-page: 518
  year: 2006
  ident: ref_15
  article-title: Time-varying decomposition and analysis based on the Hilbert transform
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.12.058
– ident: ref_16
  doi: 10.1007/978-1-4471-3675-0
– ident: ref_3
  doi: 10.3390/s17091989
– volume: 2014
  start-page: 929341
  year: 2014
  ident: ref_11
  article-title: Magnetic flux leakage sensing-based steel cable NDE technique
  publication-title: Shock Vib.
– ident: ref_17
– ident: ref_7
  doi: 10.3390/s16091366
– ident: ref_14
  doi: 10.1016/B978-075067934-3/50002-8
– ident: ref_18
– ident: ref_19
– ident: ref_9
  doi: 10.36001/phmap.2017.v1i1.1985
– ident: ref_22
– ident: ref_21
– ident: ref_20
– reference: 27571077 - Sensors (Basel). 2016 Aug 25;16(9):
– reference: 28867790 - Sensors (Basel). 2017 Aug 30;17 (9):
– reference: 26690435 - Sensors (Basel). 2015 Dec 10;15(12):31036-55
SSID ssj0023338
Score 2.4957983
Snippet In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 109
SubjectTerms Automation
Neural networks
Pattern recognition
Sensors
Signal processing
Title Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation
URI https://www.ncbi.nlm.nih.gov/pubmed/29301294
https://www.proquest.com/docview/2002811820
https://www.proquest.com/docview/1989546769
https://pubmed.ncbi.nlm.nih.gov/PMC5795951
Volume 18
WOSCitedRecordID wos000423286300108&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB1R6KE9AP0A3NJoW_XQi0USe72bU1VKIiqRyE0_lJ6s9XoNqLAOdYJ64hfxI5lZOybQqpdenChebyzNfrw3fn4D8DbUba2Fkr4h7SDi_7af9iLj486VISUSEXe1CL4fidFITia9uE64lbWscrEmuoU6KzTlyPdITCAJDbffTy98qhpFT1frEhoPYI3KZtM4F5NbwhUg_6rchAKk9ntlR5KjGmkPl_egP4DlfX3k0oYz2PjfW92E9Rpqsg_V2HgCK8Y-hcdLBoTP4Hqoji29xsgGZ_Pf7Mion7i-sC-karfHTNnMXV65TDAy8nAfTjnOYmfNadl4oUEqrL-PmyJeM58ViITx24E6pw4PzMxJvqzr8vNcVRIlNyoYwmZGIlw2LqaGjbAXIsPO1vbSsH5jR_4cvg36Xz8e-nX9Bl8j6Z750uRZV4ehSXka8TzIewrXDyl7nczkeZtef8jSrkDOpnLJcx120gDRg8CWgeCpCLZg1RbW7ABDHqq04lwhQESKJWQUZCqTRpOjXs4jD94tIpro2tycamycJUhyKPhJE3wP3jRNp5Wjx98a7S5Cm9STukxu4-rB6-Y0Tkd6xqKsKeZlQhI0HpJu2IPtahQ1_4LIitJ-oQfizvhqGpDV990z9vTEWX5zKgnPOy_-fVsv4RHiOekyRN1dWMVQmVfwUF_OTstfLTc33FG2YG2_P4rHLZeCwOPwqo-_xZ-G8Y8bZtUjEA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFIly4JsSKLAgkLhYdWyvvT4gBKRRoyZRKC0qJ7Ner0tFWQecFPhPiN_IzPqDFBC3Hjg5ktdry36Zmbd-fgPwKFCuUpEUjibtINb_rpPGoXYwc2VIiaKQ214Eb0bRZCIODuLpCvxovoUhWWUTE22gzgpFa-SbJCYQVA27z2afHOoaRW9XmxYaFSx29LcvSNnKp8M-Pt_HnjfY2nu57dRdBRyFVHDuCJ1nngoCnfI05LmfxxJRLUTcy3SeuyTKz1IvQiYhc8FzFfRSH3NahCP9iKeRj_Oeg9UAwe52YHU6HE_fthTPR8ZX-Rf5fuxulj1BHm6kdlzOen-Usr8rMpdS3ODy_3ZzrsCluphmzyv0X4UVba7BxSWLxevwfSwPDX2oyQbHi69spOUHjKDsNen2zSGTJrOHVz4ajKxK7MZq49nUmo8attuorArjvMC0j8cs5gXW-virLz_ShH09t6I2Y6d8tZCVCMviniExYCQzZrvFTLMJzkJ03xr3nmi21Rqu34D9M7ldN6FjCqNvAUOmLZXkXGIJjCQyEqGfyUxoRZ6BOQ-78KRBUKJq-3bqInKcII0jsCUt2LrwsB06qzxL_jZoo4FSUoetMvmFoy48aHdjwKG3SNLoYlEmJLLjASmju7BeobY9C9aOtLAZdCE6hed2AJmZn95jjt5bU3NOTe957_a_L-s-XNjeG4-S0XCycwfWsHoVdj3M24AOPjZ9F86rk_lR-fle_c9k8O6s8f4TAAp7Zw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU4RgwfsRKGAQSGyieSSOnQVCwHTEqNPRUCgqq-A4TqkozkBmCvwTX8DXca_zYAqIXResEimOEyXH1_c4J-cCPAh1T2uhpG9IO4j5f89P48j4OHNlSIlExF0tgjcTMZ3Kvb14tgY_mn9hSFbZxEQXqLNC0xp5l8QEkrLhXjevZRGz4ejJ_JNPFaToS2tTTqOCyJb59gXpW_l4PMR3_XAwGG2-fv7CrysM-Bpp4cKXJs8GOgxNytOI50EeK0S4lHE_M3neI4F-lg4EsgqVS57rsJ8GOL8JbBkInooA-z0F64Lq93ZgfTbenr1t6V6A7K_yMgqCuNct-5L83Ej5uDoD_pHW_q7OXJnuRhf-5wd1Ec7XSTZ7Wo2KS7Bm7GU4t2K9eAW-b6t9Sz9wstHh8iubGPUBIyt7RXp-u8-Uzdzplb8GIwsTt3GaeTZzpqSW7TTqq8L6zzAdwHOWiwI5AO4N1UfqcGgWTuxmXZcvl6oSZ7nxwJAwMJIfs51ibtgUe6FlAGfoe2TYZmvEfhV2T-RxXYOOLay5AQwZuNKKc4WpMZJLIaMgU5k0mrwEcx558KhBU6JrW3eqLnKYIL0j4CUt8Dy43zadV14mf2u00cAqqcNZmfzClAf32sMYiOjrkrKmWJYJie94SIppD65XCG6vgjklLXiGHohj2G4bkMn58SP24L0zO-ci5sgCbv77tu7CGQR5MhlPt27BWUxqpVsmG2xAB9-auQ2n9dHioPx8px6kDN6dNNx_AsxohDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Flux+Leakage+Sensing+and+Artificial+Neural+Network+Pattern+Recognition-Based+Automated+Damage+Detection+and+Quantification+for+Wire+Rope+Non-Destructive+Evaluation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kim%2C+Ju-Won&rft.au=Park%2C+Seunghee&rft.date=2018-01-02&rft.eissn=1424-8220&rft.volume=18&rft.issue=1&rft_id=info:doi/10.3390%2Fs18010109&rft_id=info%3Apmid%2F29301294&rft.externalDocID=29301294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon