Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System
Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 22; číslo 1; s. 140 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
26.12.2021
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators. |
|---|---|
| AbstractList | Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators. Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators.Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators. |
| Author | Fatani, Abdulaziz Al-qaness, Mohammed A. A. Dahou, Abdelghani Abd Elaziz, Mohamed Abd Lu, Songfeng |
| AuthorAffiliation | 2 Computer Science Department, Umm Al-Qura University, Makkah 24381, Saudi Arabia 7 Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China 10 Faculty of Computer Science & Engineering, Galala University, Suze 435611, Egypt 5 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China 3 LDDI Laboratory, Faculty of Science and Technology, University of Ahmed DRAIA, Adrar 01000, Algeria; dahou.abdghani@univ-adrar.edu.dz 4 Faculty of Engineering, Sana’a University, Sana’a 12544, Yemen 8 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; abd_el_aziz_m@yahoo.com 6 School of Cyber Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 9 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates 1 School of Computer Science and Technology, Huazhong University of Science and Technolo |
| AuthorAffiliation_xml | – name: 1 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; aafatani@uqu.edu.sa – name: 5 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China – name: 9 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates – name: 6 School of Cyber Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – name: 10 Faculty of Computer Science & Engineering, Galala University, Suze 435611, Egypt – name: 2 Computer Science Department, Umm Al-Qura University, Makkah 24381, Saudi Arabia – name: 8 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; abd_el_aziz_m@yahoo.com – name: 3 LDDI Laboratory, Faculty of Science and Technology, University of Ahmed DRAIA, Adrar 01000, Algeria; dahou.abdghani@univ-adrar.edu.dz – name: 4 Faculty of Engineering, Sana’a University, Sana’a 12544, Yemen – name: 7 Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China |
| Author_xml | – sequence: 1 givenname: Abdulaziz orcidid: 0000-0002-9097-0945 surname: Fatani fullname: Fatani, Abdulaziz – sequence: 2 givenname: Abdelghani surname: Dahou fullname: Dahou, Abdelghani – sequence: 3 givenname: Mohammed A. A. orcidid: 0000-0002-6956-7641 surname: Al-qaness fullname: Al-qaness, Mohammed A. A. – sequence: 4 givenname: Songfeng orcidid: 0000-0003-4489-2488 surname: Lu fullname: Lu, Songfeng – sequence: 5 givenname: Mohamed Abd orcidid: 0000-0002-7682-6269 surname: Abd Elaziz fullname: Abd Elaziz, Mohamed Abd |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35009682$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkktv3CAQgK0qVfNoD_0DFVIv7WEbHjbgS6VVHu1KK-WQ5IxYPN6wssEBHCU99LcXZzdRkp6A4ZtPAzOHxZ7zDoriM8E_GKvxcaQUE0xK_K44ICUtZzIH9l7s94vDGDcYU8aY_FDsswrjmkt6UPydN3faGWjQOeg0BkBn9ylok6x3SLsGXUIH29N8GILX5gZdR-vW6BRgQEvQwU2nCZ3fjrbT6GJItrd_IKDWB7TwV2jhUhjj5DiFtLNdPsQE_cfifau7CJ9261FxfX52dfJ7trz4tTiZL2em5HWaydpQrCvMV7IkvJIVa1aCa1Y2RmiJsQSojdQCV0yWuDKSGFGKSgPhpAFo2VGx2HobrzdqCLbX4UF5bdVjwIe10iFZ04GSouUt44Ix05Y5VXJqxEo0QAVpRFtn18-taxhXPTQG8ut090r6-sbZG7X2d9lc1lWFs-DbThD87Qgxqd5GA12nHfgxKsqJrHEtKM3o1zfoxo_B5a96pCgXsmaZ-vKyoudSntqcgeMtYIKPMUCrjE166kMu0HaKYDUNknoepJzx_U3Gk_R_9h-N98eZ |
| CitedBy_id | crossref_primary_10_3390_math10101749 crossref_primary_10_3233_MGS_230065 crossref_primary_10_1016_j_jnca_2024_103925 crossref_primary_10_3390_math10214154 crossref_primary_10_55969_paradigmplus_v4n2a1 crossref_primary_10_1016_j_eswa_2025_128621 crossref_primary_10_1002_cpe_7971 crossref_primary_10_1007_s11831_024_10095_6 crossref_primary_10_3390_pr10122703 crossref_primary_10_1016_j_phycom_2022_101685 crossref_primary_10_1109_ACCESS_2024_3442157 crossref_primary_10_1007_s11227_024_06409_x crossref_primary_10_1111_exsy_13263 crossref_primary_10_48084_etasr_9490 crossref_primary_10_1142_S0219649224500333 crossref_primary_10_1007_s10836_024_06129_3 crossref_primary_10_3390_s25144309 crossref_primary_10_3390_fi15090297 crossref_primary_10_1080_23742917_2025_2542995 crossref_primary_10_1007_s10586_024_05003_3 crossref_primary_10_1155_int_8884584 crossref_primary_10_1016_j_jocs_2022_101867 crossref_primary_10_1016_j_knosys_2022_109762 crossref_primary_10_1038_s41598_024_67488_7 crossref_primary_10_1016_j_knosys_2025_113156 crossref_primary_10_1155_2023_3939895 crossref_primary_10_3390_drones6110363 crossref_primary_10_1007_s00500_023_08569_z crossref_primary_10_3390_bios12100821 crossref_primary_10_1007_s11356_022_24326_5 crossref_primary_10_1038_s41467_024_53431_x crossref_primary_10_3390_sym14040791 crossref_primary_10_1371_journal_pone_0290694 crossref_primary_10_1016_j_energy_2024_131910 crossref_primary_10_1080_19393555_2024_2408256 crossref_primary_10_1007_s11042_024_19962_7 crossref_primary_10_1371_journal_pone_0291788 crossref_primary_10_1016_j_cose_2025_104367 crossref_primary_10_1109_JIOT_2023_3328795 crossref_primary_10_3390_s23239583 crossref_primary_10_1155_2022_6473507 crossref_primary_10_3390_s22155690 crossref_primary_10_1016_j_neunet_2022_12_011 crossref_primary_10_1155_2022_6131463 crossref_primary_10_1016_j_swevo_2025_101984 crossref_primary_10_1002_dac_5473 crossref_primary_10_3390_math10081273 crossref_primary_10_3390_su15108076 crossref_primary_10_3390_s22197297 crossref_primary_10_1016_j_cose_2023_103661 crossref_primary_10_1007_s10489_022_04446_8 crossref_primary_10_1007_s11831_023_09945_6 crossref_primary_10_1016_j_measen_2023_100791 crossref_primary_10_3390_s23218724 crossref_primary_10_1016_j_compeleceng_2022_108461 crossref_primary_10_3390_systems11100518 crossref_primary_10_1016_j_tcs_2022_08_019 crossref_primary_10_1007_s11276_025_03956_w crossref_primary_10_1109_COMST_2024_3382470 crossref_primary_10_1016_j_procs_2025_01_008 crossref_primary_10_32604_cmes_2024_051221 crossref_primary_10_1016_j_procs_2024_03_256 crossref_primary_10_1016_j_phycom_2025_102712 crossref_primary_10_1002_ett_70202 crossref_primary_10_1007_s11831_025_10281_0 crossref_primary_10_3390_electronics11121919 crossref_primary_10_3390_app13053206 crossref_primary_10_3390_su15086902 crossref_primary_10_1016_j_neucom_2024_127427 crossref_primary_10_1109_ACCESS_2023_3299031 crossref_primary_10_1080_01431161_2024_2388857 crossref_primary_10_1109_TCE_2023_3283704 crossref_primary_10_1007_s11227_025_07626_8 crossref_primary_10_3390_s22207726 crossref_primary_10_3390_app12178601 crossref_primary_10_1109_JIOT_2023_3292209 crossref_primary_10_1007_s13042_022_01758_6 crossref_primary_10_1038_s41598_024_51154_z crossref_primary_10_1016_j_asoc_2023_110894 crossref_primary_10_3389_fdata_2023_1081466 crossref_primary_10_1016_j_snb_2023_133965 crossref_primary_10_1016_j_cirpj_2023_08_003 crossref_primary_10_1016_j_iswa_2023_200256 crossref_primary_10_3390_biomimetics8060499 crossref_primary_10_3390_en15249261 crossref_primary_10_1016_j_compbiolchem_2022_107767 crossref_primary_10_1038_s41598_022_22933_3 crossref_primary_10_1038_s41598_023_44764_6 crossref_primary_10_3390_app15031552 crossref_primary_10_3390_s22103607 crossref_primary_10_3390_app14093554 crossref_primary_10_1109_ACCESS_2022_3171660 crossref_primary_10_1186_s40537_024_00892_y crossref_primary_10_1016_j_eswa_2022_118439 crossref_primary_10_1109_ACCESS_2024_3405934 crossref_primary_10_1080_00051144_2023_2288486 crossref_primary_10_3390_s23094430 |
| Cites_doi | 10.1109/JIOT.2020.3026660 10.3390/pr9071194 10.1016/j.asoc.2020.106997 10.1109/TASLP.2018.2858559 10.1145/2832987.2833082 10.1007/s00500-021-05889-w 10.1007/978-3-030-74575-2_11 10.1002/cpe.5922 10.1016/j.knosys.2015.07.006 10.1016/j.cie.2021.107250 10.1016/j.advengsoft.2013.12.007 10.1007/s10586-020-03229-5 10.1007/s42452-021-04579-4 10.1109/AFRICON51333.2021.9570951 10.1214/aoms/1177731944 10.1109/JBHI.2021.3101686 10.1109/IMCCC.2016.108 10.1109/JIOT.2020.3002255 10.1080/10095020.2020.1812445 10.1109/ACCESS.2018.2868993 10.1109/CONFLUENCE.2017.7943121 10.3390/rs11212525 10.1016/j.comnet.2020.107247 10.1016/j.knosys.2017.07.005 10.1038/s41598-020-71294-2 10.1155/2018/4680867 10.1016/j.ins.2021.03.060 10.1080/10095020.2020.1847002 10.1016/j.advengsoft.2016.01.008 10.1016/j.cose.2020.101863 10.1145/2388576.2388585 10.1109/ATNAC.2018.8615255 10.1080/10095020.2019.1612600 10.1007/s12652-019-01611-9 10.1109/ISNCC.2016.7746067 10.1007/978-3-642-12538-6_6 10.3390/electronics10111332 10.1007/s13198-014-0277-7 10.1088/1742-6596/1752/1/012021 10.1016/j.future.2020.07.042 10.3390/e23111383 10.1007/s00521-015-1870-7 10.1016/j.future.2019.05.041 10.1016/j.simpat.2019.102031 10.1007/978-81-322-2250-7_10 10.1007/s00607-020-00869-8 10.1016/j.comcom.2020.05.048 10.3390/pr9091551 10.1016/j.future.2020.05.020 10.1007/978-981-13-1951-8_24 10.18653/v1/2020.semeval-1.123 10.3390/su9101857 10.1080/10095020.2020.1718003 10.1007/978-981-13-1810-8_41 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22010140 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_87f6f36733cf4ef3862c7b7de271d7f9 PMC8749550 35009682 10_3390_s22010140 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-89c20a506b84165853db76a34dc7a8008ee9c8a70538405c81c7475ae161deef3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741846200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:57:22 EDT 2025 Tue Nov 04 01:43:43 EST 2025 Thu Sep 04 18:49:55 EDT 2025 Tue Oct 07 07:18:00 EDT 2025 Mon Jul 21 05:13:44 EDT 2025 Sat Nov 29 07:12:27 EST 2025 Tue Nov 18 20:45:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | intrusion detection system swarm Intelligence internet of things (IoT) Aquila optimizer sustainable computing cybersecurity feature selection |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-89c20a506b84165853db76a34dc7a8008ee9c8a70538405c81c7475ae161deef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6956-7641 0000-0002-7682-6269 0000-0003-4489-2488 0000-0002-9097-0945 |
| OpenAccessLink | https://doaj.org/article/87f6f36733cf4ef3862c7b7de271d7f9 |
| PMID | 35009682 |
| PQID | 2618267893 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_87f6f36733cf4ef3862c7b7de271d7f9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8749550 proquest_miscellaneous_2618909722 proquest_journals_2618267893 pubmed_primary_35009682 crossref_citationtrail_10_3390_s22010140 crossref_primary_10_3390_s22010140 |
| PublicationCentury | 2000 |
| PublicationDate | 20211226 |
| PublicationDateYYYYMMDD | 2021-12-26 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211226 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 ref_14 ref_58 Nguyen (ref_17) 2020; 113 ref_10 Abbasi (ref_48) 2021; 103 ref_54 Mirjalili (ref_55) 2016; 95 Wu (ref_11) 2018; 6 ref_52 ref_19 Xu (ref_41) 2021; 24 Sahlol (ref_43) 2020; 10 Shafiq (ref_29) 2020; 8 McFee (ref_51) 2018; 26 Sekhar (ref_32) 2021; 3 Mirjalili (ref_57) 2016; 27 Heipke (ref_46) 2020; 23 ref_25 Dwivedi (ref_33) 2021; 24 ref_24 Qi (ref_47) 2020; 23 Peng (ref_5) 2018; 2018 ref_22 Mirjalili (ref_59) 2014; 69 ref_26 Davahli (ref_30) 2020; 7 RM (ref_15) 2020; 160 Raman (ref_18) 2017; 134 Talita (ref_38) 2021; 1752 Almiani (ref_12) 2020; 101 Abualigah (ref_23) 2021; 157 ref_36 (ref_13) 2019; 22 ref_35 Mirjalili (ref_56) 2015; 89 Okewu (ref_45) 2019; 14 SaiSindhuTheja (ref_16) 2021; 100 Haddadpajouh (ref_28) 2020; 8 ref_39 ref_37 Sharafaldin (ref_61) 2018; 1 Mayuranathan (ref_21) 2019; 12 Wei (ref_8) 2020; 32 Zhou (ref_1) 2020; 174 Koroniotis (ref_60) 2019; 100 Yang (ref_53) 2013; 1 ref_44 Deshpande (ref_7) 2018; 9 Shafiq (ref_27) 2020; 94 ref_42 ref_40 Friedman (ref_62) 1940; 11 ref_3 ref_2 Mafarja (ref_31) 2020; 112 Ewees (ref_20) 2021; 25 ref_49 ref_9 Kan (ref_34) 2021; 568 ref_4 ref_6 |
| References_xml | – volume: 1 start-page: 108 year: 2018 ident: ref_61 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization publication-title: ICISSp – volume: 8 start-page: 4540 year: 2020 ident: ref_28 article-title: A Multikernel and Metaheuristic Feature Selection Approach for IoT Malware Threat Hunting in the Edge Layer publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3026660 – ident: ref_26 doi: 10.3390/pr9071194 – volume: 100 start-page: 106997 year: 2021 ident: ref_16 article-title: An efficient metaheuristic algorithm based feature selection and recurrent neural network for DoS attack detection in cloud computing environment publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106997 – ident: ref_49 – volume: 26 start-page: 2180 year: 2018 ident: ref_51 article-title: Adaptive pooling operators for weakly labeled sound event detection publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2018.2858559 – ident: ref_3 doi: 10.1145/2832987.2833082 – volume: 25 start-page: 9545 year: 2021 ident: ref_20 article-title: Modified whale optimization algorithm for solving unrelated parallel machine scheduling problems publication-title: Soft Comput. doi: 10.1007/s00500-021-05889-w – ident: ref_36 doi: 10.1007/978-3-030-74575-2_11 – volume: 32 start-page: e5922 year: 2020 ident: ref_8 article-title: An intrusion detection algorithm based on bag representation with ensemble support vector machine in cloud computing publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.5922 – volume: 89 start-page: 228 year: 2015 ident: ref_56 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 157 start-page: 107250 year: 2021 ident: ref_23 article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 69 start-page: 46 year: 2014 ident: ref_59 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 24 start-page: 1881 year: 2021 ident: ref_33 article-title: Building an efficient intrusion detection system using grasshopper optimization algorithm for anomaly detection publication-title: Clust. Comput. doi: 10.1007/s10586-020-03229-5 – volume: 3 start-page: 1 year: 2021 ident: ref_32 article-title: A novel GPU based intrusion detection system using deep autoencoder with Fruitfly optimization publication-title: SN Appl. Sci. doi: 10.1007/s42452-021-04579-4 – ident: ref_35 doi: 10.1109/AFRICON51333.2021.9570951 – volume: 11 start-page: 86 year: 1940 ident: ref_62 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – ident: ref_37 doi: 10.1109/JBHI.2021.3101686 – ident: ref_2 doi: 10.1109/IMCCC.2016.108 – volume: 8 start-page: 3242 year: 2020 ident: ref_29 article-title: CorrAUC: A malicious bot-IoT traffic detection method in IoT network using machine-learning techniques publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3002255 – volume: 24 start-page: 279 year: 2021 ident: ref_41 article-title: Coarse-to-fine waterlogging probability assessment based on remote sensing image and social media data publication-title: Geo-Spat. Inf. Sci. doi: 10.1080/10095020.2020.1812445 – volume: 6 start-page: 50850 year: 2018 ident: ref_11 article-title: A novel intrusion detection model for a massive network using convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868993 – ident: ref_19 doi: 10.1109/CONFLUENCE.2017.7943121 – ident: ref_42 doi: 10.3390/rs11212525 – volume: 174 start-page: 107247 year: 2020 ident: ref_1 article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107247 – volume: 134 start-page: 1 year: 2017 ident: ref_18 article-title: An efficient intrusion detection system based on hypergraph-Genetic algorithm for parameter optimization and feature selection in support vector machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.07.005 – volume: 10 start-page: 15364 year: 2020 ident: ref_43 article-title: COVID-19 image classification using deep features and fractional-order marine predators algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-020-71294-2 – ident: ref_52 – volume: 2018 start-page: 4680867 year: 2018 ident: ref_5 article-title: Intrusion detection system based on decision tree over big data in fog environment publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2018/4680867 – volume: 568 start-page: 147 year: 2021 ident: ref_34 article-title: A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.03.060 – volume: 23 start-page: 341 year: 2020 ident: ref_47 article-title: An investigation of the visual features of urban street vitality using a convolutional neural network publication-title: Geo-Spat. Inf. Sci. doi: 10.1080/10095020.2020.1847002 – volume: 95 start-page: 51 year: 2016 ident: ref_55 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 94 start-page: 101863 year: 2020 ident: ref_27 article-title: IoT malicious traffic identification using wrapper-based feature selection mechanisms publication-title: Comput. Secur. doi: 10.1016/j.cose.2020.101863 – ident: ref_4 doi: 10.1145/2388576.2388585 – ident: ref_9 doi: 10.1109/ATNAC.2018.8615255 – volume: 22 start-page: 128 year: 2019 ident: ref_13 article-title: Device-free human micro-activity recognition method using WiFi signals publication-title: Geo-Spat. Inf. Sci. doi: 10.1080/10095020.2019.1612600 – volume: 12 start-page: 3609 year: 2019 ident: ref_21 article-title: Best features based intrusion detection system by RBM model for detecting DDoS in cloud environment publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-019-01611-9 – ident: ref_10 doi: 10.1109/ISNCC.2016.7746067 – ident: ref_58 doi: 10.1007/978-3-642-12538-6_6 – ident: ref_40 doi: 10.3390/electronics10111332 – volume: 1 start-page: 36 year: 2013 ident: ref_53 article-title: Firefly algorithm: Recent advances and applications publication-title: Int. J. Swarm Intell. – volume: 9 start-page: 567 year: 2018 ident: ref_7 article-title: HIDS: A host based intrusion detection system for cloud computing environment publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-014-0277-7 – volume: 1752 start-page: 012021 year: 2021 ident: ref_38 article-title: Naïve Bayes Classifier and Particle Swarm Optimization Feature Selection Method for Classifying Intrusion Detection System Dataset publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1752/1/012021 – volume: 113 start-page: 418 year: 2020 ident: ref_17 article-title: Genetic convolutional neural network for intrusion detection systems publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.07.042 – ident: ref_25 doi: 10.3390/e23111383 – volume: 27 start-page: 495 year: 2016 ident: ref_57 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 100 start-page: 779 year: 2019 ident: ref_60 article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.05.041 – volume: 101 start-page: 102031 year: 2020 ident: ref_12 article-title: Deep recurrent neural network for IoT intrusion detection system publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.102031 – ident: ref_6 doi: 10.1007/978-81-322-2250-7_10 – volume: 103 start-page: 211 year: 2021 ident: ref_48 article-title: An improved YOLO-based road traffic monitoring system publication-title: Computing doi: 10.1007/s00607-020-00869-8 – volume: 160 start-page: 139 year: 2020 ident: ref_15 article-title: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.05.048 – ident: ref_50 – ident: ref_54 – ident: ref_24 doi: 10.3390/pr9091551 – volume: 14 start-page: 143 year: 2019 ident: ref_45 article-title: Deep neural networks for curbing climate change-induced farmers-herdsmen clashes in a sustainable social inclusion initiative publication-title: Probl. Ekorozwoju – volume: 112 start-page: 18 year: 2020 ident: ref_31 article-title: Augmented whale feature selection for IoT attacks: Structure, analysis and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.05.020 – ident: ref_22 doi: 10.1007/978-981-13-1951-8_24 – volume: 7 start-page: 63 year: 2020 ident: ref_30 article-title: A lightweight Anomaly detection model using SVM for WSNs in IoT through a hybrid feature selection algorithm based on GA and GWO publication-title: J. Comput. Secur. – ident: ref_39 doi: 10.18653/v1/2020.semeval-1.123 – ident: ref_44 doi: 10.3390/su9101857 – volume: 23 start-page: 10 year: 2020 ident: ref_46 article-title: Deep learning for geometric and semantic tasks in photogrammetry and remote sensing publication-title: Geo-Spat. Inf. Sci. doi: 10.1080/10095020.2020.1718003 – ident: ref_14 doi: 10.1007/978-981-13-1810-8_41 |
| SSID | ssj0023338 |
| Score | 2.6608582 |
| Snippet | Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 140 |
| SubjectTerms | Accuracy Aquila optimizer Classification Cybersecurity Datasets Deep learning Exploitation Feature selection Internet of Things intrusion detection system Intrusion detection systems Machine learning Neural networks Optimization algorithms Optimization techniques Support vector machines sustainable computing swarm Intelligence |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BlgMcKN-EFmQQBy5WEzuJ41O1pVtRCS0VFKm3yF8pK5Vkm91FiAO_vePEG7qo4sIx8Ww02vHY78WTNwBvdW6VsiahWqeKpnmiqRZCUpZprpLESdnrzH4U02lxdiZPwgu3RSirXK-J3UJtG-Pfke8h0kckLHB73Z9fUt81yp-uhhYat2HLK5WlI9g6mExPPg-UiyMD6_WEOJL7vQVjXXPaeGMX6sT6b0KYfxdKXtt5jrb_1-cHcD9gTjLuJ8lDuOXqR3DvmhLhY_g9DrUAxGPCVevI5Oey7T96IKq25EvXL8dfjYMKOemqDcihc3MSVFrPO9Px5Wp2ocgnXIy-z365liAuJsfNKTmu_Rce_hmHbhme1iumP4GvR5PT9x9oaM1ADfLpJS2kYbHK4lz7Y0ukHF6mOVc8tUYoxKCFc9IUSmCKI4PMTJEY5C2ZcggwrXMVfwqjuqndcyDIhA2XSqQms6nWsURQxBzSHClNjD-O4N06VKUJuuW-fcZFifzFR7UcohrBm8F03ot13GR04OM9GHh97e5G056XIV3LQlR5xXPBualSdBd5nxFaWMdEYkUlI9hdR7wMSb8o_4Q7gtfDMKarP4NRtWtWvY30kkksgmf95Bo84ZknlAWOiI1pt-Hq5kg9-9ZJghf4dyHXfPFvt3bgLvMlOQmjLN-FEQbdvYQ75sdytmhfhdy5At4WJdA priority: 102 providerName: ProQuest |
| Title | Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35009682 https://www.proquest.com/docview/2618267893 https://www.proquest.com/docview/2618909722 https://pubmed.ncbi.nlm.nih.gov/PMC8749550 https://doaj.org/article/87f6f36733cf4ef3862c7b7de271d7f9 |
| Volume | 22 |
| WOSCitedRecordID | wos000741846200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CwYEdEN8ERmUQBy7REjuJ42O3dVolVioYUjlFtuOMSiPd-oEQh_3te_5o1E6TuHCxFPvFcuzn-PeT7d8D-KiKWspap7FSmYyzIlWx4lzENFdMpqkRwuvMfuajUTmZiPFGqC97JszLA_uO2y95UzSs4IzpJjMNQwSuueK1oTyteeOu7iHqWZOpQLUYMi-vI8SQ1O8vKHVBaZOt1ceJ9N-FLG8fkNxYcY6fwOMAFUnfN_Ep3DPtM9jdEBB8Dtf9sIVPLJRbzQ0Z_FnO_V0FItuafHNhbuxTP4iHE3dIgBwZc0mCuOq5M-1fraYXknzBf8iv6V8zJwhnyXB2RoatvZhh6zgyy1CbFzp_Ad-PB2eHJ3GIqBBrpMHLuBSaJjJPCmV3G5EpWHXlQrKs1lwidCyNEbqUHGcmEr9cl6lGupFLg7iwNtj7L2GnnbXmNRAksJoJyTOd15lSiUAsQw2yEyF0gi9H8Gnd05UOcuM26sVFhbTDDkrVDUoEHzrTS6-xcZfRgR2uzsDKYrsMdJYqOEv1L2eJYG892FWYq4sKOSRyLI7ALYL3XTHOMrt1IlszW3kbYZWOaASvvG90LWG55YEllvAtr9lq6nZJO_3plLxL7C6kiG_-x7e9hUfUnrdJaUyLPdhB1zDv4KH-vZwu5j24zyfcpWUPHhwMRuOvPTdlMD29HmDeeHg6_nEDnuUc7g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwGP00OiTggfslMMAgkHiJlthJHD8gVOimVetKJYo0noLtOKPSSLq05fbAT-I38jk3VjTxtgceE7uW5R5_Pie2zwfwTEWplKn2XaUC6QaRr1zFuXBpqJj0fSNE7TM74uNxfHgoJhvwq70LY49VtjGxCtRpoe038m1k-siEOS6vr-Ynrs0aZXdX2xQaNSz2zfevKNkWL4cD_H-fU7q7M32z5zZZBVyNUnDpxkJTT4ZepOyOG7Jl6zAcSRakmkukT7ExQseSIzpR_IQ69jVS7lAa5EapMRnDdi_AZoBgj3uwORkeTD50Eo-h4qv9ixgT3vaC0ioZrre26lXJAc5itH8fzDy10u1e-9_G6DpcbTg16deT4AZsmPwmXDnltHgLfvabsw7Ect5VacjOt2VZX-ogMk_JuyofkH3qNy7rpDpNQQbGzEnjQntUVe2frGbHkrzFYPt59sOUBHk_GRZTMsztDRbbxsAsm9ZqR_jb8P5cBuAO9PIiN_eAoNLXTEge6DANlPIEkj5qUMYJoT38sQMvWmgkuvFlt-lBjhPUZxZFSYciB552Vee1GclZlV5bfHUVrH949aIoj5ImHCUxz6KMRZwxnQXYXdS1miueGsr9lGfCga0WYUkT1BbJH3g58KQrxnBk95hkbopVXUdYSyjqwN0azF1PWGgFc4wlfA3ma11dL8lnnyrL8xiHC7X0_X936zFc2psejJLRcLz_AC5Te_zIpy6NtqCHADAP4aL-spwtykfNvCXw8bynwW9oB4Ec |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE48H4EChgEEpdoEzuJ4wNCC9sVUcuyEkUqp-A4TlmpJNvsLq8DP4xfxzhxQhdV3HrguPGsZTmfx_PF428AnmRRLmWufDfLAukGkZ-5GefCpWHGpO9rIVqd2T0-mcQHB2K6Ab-6uzAmrbLziY2jzitlvpEPMNLHSJjj9joobFrEdDR-MT92TQUpc9LaldNoIbKrv39F-rZ4nozwXT-ldLyz_-q1aysMuApp4dKNhaKeDL0oM6dvGDkbteFIsiBXXGIoFWstVCw5IhWJUKhiX2H4HUqNcVKudcGw33Owhc8CXGNb0-TN9ENP9xiyv1bLiDHhDRaUNoVxvbUdsCkUcFp0-3eS5oldb3zlf56vq3DZxtpk2C6Oa7Chy-tw6YQC4w34ObQ5EMTEwqtak51vy7q97EFkmZN3TZ0g82to1ddJk2VBRlrPiVWnPWxMh8er2ZEkb9EJf5790DVBPkCSap8kpbnZYvoY6aXtrVWKvwnvz2QCbsFmWZX6DpCQMsWE5IEK8yDLPIHBINVI74RQHv7ZgWcdTFJl9dpN2ZCjFHmbQVTaI8qBx73pvBUpOc3opcFab2B0xZsHVX2YWjeVxryIChZxxlQR4HCR7yqe8VxT7ue8EA5sd2hLrbNbpH-g5sCjvhndlDl7kqWuVq2NMFJR1IHbLbD7kbDQEOkYW_ga5NeGut5Szj41UugxThdy7Lv_HtZDuIDYT_eSye49uEhNVpJPXRptwya-f30fzqsvy9mifmCXMIGPZ70KfgMlM4nc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Feature+Extraction+and+Selection+Approach+Using+Deep+Learning+and+Aquila+Optimizer+for+IoT+Intrusion+Detection+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Fatani%2C+Abdulaziz&rft.au=Dahou%2C+Abdelghani&rft.au=Al-Qaness%2C+Mohammed+A+A&rft.au=Lu%2C+Songfeng&rft.date=2021-12-26&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=1&rft_id=info:doi/10.3390%2Fs22010140&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |