Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System

Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 1; s. 140
Hlavní autoři: Fatani, Abdulaziz, Dahou, Abdelghani, Al-qaness, Mohammed A. A., Lu, Songfeng, Abd Elaziz, Mohamed Abd
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 26.12.2021
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators.
AbstractList Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators.
Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators.Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators.
Author Fatani, Abdulaziz
Al-qaness, Mohammed A. A.
Dahou, Abdelghani
Abd Elaziz, Mohamed Abd
Lu, Songfeng
AuthorAffiliation 2 Computer Science Department, Umm Al-Qura University, Makkah 24381, Saudi Arabia
7 Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
10 Faculty of Computer Science & Engineering, Galala University, Suze 435611, Egypt
5 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
3 LDDI Laboratory, Faculty of Science and Technology, University of Ahmed DRAIA, Adrar 01000, Algeria; dahou.abdghani@univ-adrar.edu.dz
4 Faculty of Engineering, Sana’a University, Sana’a 12544, Yemen
8 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; abd_el_aziz_m@yahoo.com
6 School of Cyber Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
9 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates
1 School of Computer Science and Technology, Huazhong University of Science and Technolo
AuthorAffiliation_xml – name: 1 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; aafatani@uqu.edu.sa
– name: 5 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
– name: 9 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates
– name: 6 School of Cyber Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– name: 10 Faculty of Computer Science & Engineering, Galala University, Suze 435611, Egypt
– name: 2 Computer Science Department, Umm Al-Qura University, Makkah 24381, Saudi Arabia
– name: 8 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; abd_el_aziz_m@yahoo.com
– name: 3 LDDI Laboratory, Faculty of Science and Technology, University of Ahmed DRAIA, Adrar 01000, Algeria; dahou.abdghani@univ-adrar.edu.dz
– name: 4 Faculty of Engineering, Sana’a University, Sana’a 12544, Yemen
– name: 7 Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
Author_xml – sequence: 1
  givenname: Abdulaziz
  orcidid: 0000-0002-9097-0945
  surname: Fatani
  fullname: Fatani, Abdulaziz
– sequence: 2
  givenname: Abdelghani
  surname: Dahou
  fullname: Dahou, Abdelghani
– sequence: 3
  givenname: Mohammed A. A.
  orcidid: 0000-0002-6956-7641
  surname: Al-qaness
  fullname: Al-qaness, Mohammed A. A.
– sequence: 4
  givenname: Songfeng
  orcidid: 0000-0003-4489-2488
  surname: Lu
  fullname: Lu, Songfeng
– sequence: 5
  givenname: Mohamed Abd
  orcidid: 0000-0002-7682-6269
  surname: Abd Elaziz
  fullname: Abd Elaziz, Mohamed Abd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35009682$$D View this record in MEDLINE/PubMed
BookMark eNplkktv3CAQgK0qVfNoD_0DFVIv7WEbHjbgS6VVHu1KK-WQ5IxYPN6wssEBHCU99LcXZzdRkp6A4ZtPAzOHxZ7zDoriM8E_GKvxcaQUE0xK_K44ICUtZzIH9l7s94vDGDcYU8aY_FDsswrjmkt6UPydN3faGWjQOeg0BkBn9ylok6x3SLsGXUIH29N8GILX5gZdR-vW6BRgQEvQwU2nCZ3fjrbT6GJItrd_IKDWB7TwV2jhUhjj5DiFtLNdPsQE_cfifau7CJ9261FxfX52dfJ7trz4tTiZL2em5HWaydpQrCvMV7IkvJIVa1aCa1Y2RmiJsQSojdQCV0yWuDKSGFGKSgPhpAFo2VGx2HobrzdqCLbX4UF5bdVjwIe10iFZ04GSouUt44Ix05Y5VXJqxEo0QAVpRFtn18-taxhXPTQG8ut090r6-sbZG7X2d9lc1lWFs-DbThD87Qgxqd5GA12nHfgxKsqJrHEtKM3o1zfoxo_B5a96pCgXsmaZ-vKyoudSntqcgeMtYIKPMUCrjE166kMu0HaKYDUNknoepJzx_U3Gk_R_9h-N98eZ
CitedBy_id crossref_primary_10_3390_math10101749
crossref_primary_10_3233_MGS_230065
crossref_primary_10_1016_j_jnca_2024_103925
crossref_primary_10_3390_math10214154
crossref_primary_10_55969_paradigmplus_v4n2a1
crossref_primary_10_1016_j_eswa_2025_128621
crossref_primary_10_1002_cpe_7971
crossref_primary_10_1007_s11831_024_10095_6
crossref_primary_10_3390_pr10122703
crossref_primary_10_1016_j_phycom_2022_101685
crossref_primary_10_1109_ACCESS_2024_3442157
crossref_primary_10_1007_s11227_024_06409_x
crossref_primary_10_1111_exsy_13263
crossref_primary_10_48084_etasr_9490
crossref_primary_10_1142_S0219649224500333
crossref_primary_10_1007_s10836_024_06129_3
crossref_primary_10_3390_s25144309
crossref_primary_10_3390_fi15090297
crossref_primary_10_1080_23742917_2025_2542995
crossref_primary_10_1007_s10586_024_05003_3
crossref_primary_10_1155_int_8884584
crossref_primary_10_1016_j_jocs_2022_101867
crossref_primary_10_1016_j_knosys_2022_109762
crossref_primary_10_1038_s41598_024_67488_7
crossref_primary_10_1016_j_knosys_2025_113156
crossref_primary_10_1155_2023_3939895
crossref_primary_10_3390_drones6110363
crossref_primary_10_1007_s00500_023_08569_z
crossref_primary_10_3390_bios12100821
crossref_primary_10_1007_s11356_022_24326_5
crossref_primary_10_1038_s41467_024_53431_x
crossref_primary_10_3390_sym14040791
crossref_primary_10_1371_journal_pone_0290694
crossref_primary_10_1016_j_energy_2024_131910
crossref_primary_10_1080_19393555_2024_2408256
crossref_primary_10_1007_s11042_024_19962_7
crossref_primary_10_1371_journal_pone_0291788
crossref_primary_10_1016_j_cose_2025_104367
crossref_primary_10_1109_JIOT_2023_3328795
crossref_primary_10_3390_s23239583
crossref_primary_10_1155_2022_6473507
crossref_primary_10_3390_s22155690
crossref_primary_10_1016_j_neunet_2022_12_011
crossref_primary_10_1155_2022_6131463
crossref_primary_10_1016_j_swevo_2025_101984
crossref_primary_10_1002_dac_5473
crossref_primary_10_3390_math10081273
crossref_primary_10_3390_su15108076
crossref_primary_10_3390_s22197297
crossref_primary_10_1016_j_cose_2023_103661
crossref_primary_10_1007_s10489_022_04446_8
crossref_primary_10_1007_s11831_023_09945_6
crossref_primary_10_1016_j_measen_2023_100791
crossref_primary_10_3390_s23218724
crossref_primary_10_1016_j_compeleceng_2022_108461
crossref_primary_10_3390_systems11100518
crossref_primary_10_1016_j_tcs_2022_08_019
crossref_primary_10_1007_s11276_025_03956_w
crossref_primary_10_1109_COMST_2024_3382470
crossref_primary_10_1016_j_procs_2025_01_008
crossref_primary_10_32604_cmes_2024_051221
crossref_primary_10_1016_j_procs_2024_03_256
crossref_primary_10_1016_j_phycom_2025_102712
crossref_primary_10_1002_ett_70202
crossref_primary_10_1007_s11831_025_10281_0
crossref_primary_10_3390_electronics11121919
crossref_primary_10_3390_app13053206
crossref_primary_10_3390_su15086902
crossref_primary_10_1016_j_neucom_2024_127427
crossref_primary_10_1109_ACCESS_2023_3299031
crossref_primary_10_1080_01431161_2024_2388857
crossref_primary_10_1109_TCE_2023_3283704
crossref_primary_10_1007_s11227_025_07626_8
crossref_primary_10_3390_s22207726
crossref_primary_10_3390_app12178601
crossref_primary_10_1109_JIOT_2023_3292209
crossref_primary_10_1007_s13042_022_01758_6
crossref_primary_10_1038_s41598_024_51154_z
crossref_primary_10_1016_j_asoc_2023_110894
crossref_primary_10_3389_fdata_2023_1081466
crossref_primary_10_1016_j_snb_2023_133965
crossref_primary_10_1016_j_cirpj_2023_08_003
crossref_primary_10_1016_j_iswa_2023_200256
crossref_primary_10_3390_biomimetics8060499
crossref_primary_10_3390_en15249261
crossref_primary_10_1016_j_compbiolchem_2022_107767
crossref_primary_10_1038_s41598_022_22933_3
crossref_primary_10_1038_s41598_023_44764_6
crossref_primary_10_3390_app15031552
crossref_primary_10_3390_s22103607
crossref_primary_10_3390_app14093554
crossref_primary_10_1109_ACCESS_2022_3171660
crossref_primary_10_1186_s40537_024_00892_y
crossref_primary_10_1016_j_eswa_2022_118439
crossref_primary_10_1109_ACCESS_2024_3405934
crossref_primary_10_1080_00051144_2023_2288486
crossref_primary_10_3390_s23094430
Cites_doi 10.1109/JIOT.2020.3026660
10.3390/pr9071194
10.1016/j.asoc.2020.106997
10.1109/TASLP.2018.2858559
10.1145/2832987.2833082
10.1007/s00500-021-05889-w
10.1007/978-3-030-74575-2_11
10.1002/cpe.5922
10.1016/j.knosys.2015.07.006
10.1016/j.cie.2021.107250
10.1016/j.advengsoft.2013.12.007
10.1007/s10586-020-03229-5
10.1007/s42452-021-04579-4
10.1109/AFRICON51333.2021.9570951
10.1214/aoms/1177731944
10.1109/JBHI.2021.3101686
10.1109/IMCCC.2016.108
10.1109/JIOT.2020.3002255
10.1080/10095020.2020.1812445
10.1109/ACCESS.2018.2868993
10.1109/CONFLUENCE.2017.7943121
10.3390/rs11212525
10.1016/j.comnet.2020.107247
10.1016/j.knosys.2017.07.005
10.1038/s41598-020-71294-2
10.1155/2018/4680867
10.1016/j.ins.2021.03.060
10.1080/10095020.2020.1847002
10.1016/j.advengsoft.2016.01.008
10.1016/j.cose.2020.101863
10.1145/2388576.2388585
10.1109/ATNAC.2018.8615255
10.1080/10095020.2019.1612600
10.1007/s12652-019-01611-9
10.1109/ISNCC.2016.7746067
10.1007/978-3-642-12538-6_6
10.3390/electronics10111332
10.1007/s13198-014-0277-7
10.1088/1742-6596/1752/1/012021
10.1016/j.future.2020.07.042
10.3390/e23111383
10.1007/s00521-015-1870-7
10.1016/j.future.2019.05.041
10.1016/j.simpat.2019.102031
10.1007/978-81-322-2250-7_10
10.1007/s00607-020-00869-8
10.1016/j.comcom.2020.05.048
10.3390/pr9091551
10.1016/j.future.2020.05.020
10.1007/978-981-13-1951-8_24
10.18653/v1/2020.semeval-1.123
10.3390/su9101857
10.1080/10095020.2020.1718003
10.1007/978-981-13-1810-8_41
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22010140
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_87f6f36733cf4ef3862c7b7de271d7f9
PMC8749550
35009682
10_3390_s22010140
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-89c20a506b84165853db76a34dc7a8008ee9c8a70538405c81c7475ae161deef3
IEDL.DBID DOA
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741846200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 18:57:22 EDT 2025
Tue Nov 04 01:43:43 EST 2025
Thu Sep 04 18:49:55 EDT 2025
Tue Oct 07 07:18:00 EDT 2025
Mon Jul 21 05:13:44 EDT 2025
Sat Nov 29 07:12:27 EST 2025
Tue Nov 18 20:45:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords intrusion detection system
swarm Intelligence
internet of things (IoT)
Aquila optimizer
sustainable computing
cybersecurity
feature selection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-89c20a506b84165853db76a34dc7a8008ee9c8a70538405c81c7475ae161deef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6956-7641
0000-0002-7682-6269
0000-0003-4489-2488
0000-0002-9097-0945
OpenAccessLink https://doaj.org/article/87f6f36733cf4ef3862c7b7de271d7f9
PMID 35009682
PQID 2618267893
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_87f6f36733cf4ef3862c7b7de271d7f9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8749550
proquest_miscellaneous_2618909722
proquest_journals_2618267893
pubmed_primary_35009682
crossref_citationtrail_10_3390_s22010140
crossref_primary_10_3390_s22010140
PublicationCentury 2000
PublicationDate 20211226
PublicationDateYYYYMMDD 2021-12-26
PublicationDate_xml – month: 12
  year: 2021
  text: 20211226
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
ref_14
ref_58
Nguyen (ref_17) 2020; 113
ref_10
Abbasi (ref_48) 2021; 103
ref_54
Mirjalili (ref_55) 2016; 95
Wu (ref_11) 2018; 6
ref_52
ref_19
Xu (ref_41) 2021; 24
Sahlol (ref_43) 2020; 10
Shafiq (ref_29) 2020; 8
McFee (ref_51) 2018; 26
Sekhar (ref_32) 2021; 3
Mirjalili (ref_57) 2016; 27
Heipke (ref_46) 2020; 23
ref_25
Dwivedi (ref_33) 2021; 24
ref_24
Qi (ref_47) 2020; 23
Peng (ref_5) 2018; 2018
ref_22
Mirjalili (ref_59) 2014; 69
ref_26
Davahli (ref_30) 2020; 7
RM (ref_15) 2020; 160
Raman (ref_18) 2017; 134
Talita (ref_38) 2021; 1752
Almiani (ref_12) 2020; 101
Abualigah (ref_23) 2021; 157
ref_36
(ref_13) 2019; 22
ref_35
Mirjalili (ref_56) 2015; 89
Okewu (ref_45) 2019; 14
SaiSindhuTheja (ref_16) 2021; 100
Haddadpajouh (ref_28) 2020; 8
ref_39
ref_37
Sharafaldin (ref_61) 2018; 1
Mayuranathan (ref_21) 2019; 12
Wei (ref_8) 2020; 32
Zhou (ref_1) 2020; 174
Koroniotis (ref_60) 2019; 100
Yang (ref_53) 2013; 1
ref_44
Deshpande (ref_7) 2018; 9
Shafiq (ref_27) 2020; 94
ref_42
ref_40
Friedman (ref_62) 1940; 11
ref_3
ref_2
Mafarja (ref_31) 2020; 112
Ewees (ref_20) 2021; 25
ref_49
ref_9
Kan (ref_34) 2021; 568
ref_4
ref_6
References_xml – volume: 1
  start-page: 108
  year: 2018
  ident: ref_61
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: ICISSp
– volume: 8
  start-page: 4540
  year: 2020
  ident: ref_28
  article-title: A Multikernel and Metaheuristic Feature Selection Approach for IoT Malware Threat Hunting in the Edge Layer
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3026660
– ident: ref_26
  doi: 10.3390/pr9071194
– volume: 100
  start-page: 106997
  year: 2021
  ident: ref_16
  article-title: An efficient metaheuristic algorithm based feature selection and recurrent neural network for DoS attack detection in cloud computing environment
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106997
– ident: ref_49
– volume: 26
  start-page: 2180
  year: 2018
  ident: ref_51
  article-title: Adaptive pooling operators for weakly labeled sound event detection
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2858559
– ident: ref_3
  doi: 10.1145/2832987.2833082
– volume: 25
  start-page: 9545
  year: 2021
  ident: ref_20
  article-title: Modified whale optimization algorithm for solving unrelated parallel machine scheduling problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05889-w
– ident: ref_36
  doi: 10.1007/978-3-030-74575-2_11
– volume: 32
  start-page: e5922
  year: 2020
  ident: ref_8
  article-title: An intrusion detection algorithm based on bag representation with ensemble support vector machine in cloud computing
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5922
– volume: 89
  start-page: 228
  year: 2015
  ident: ref_56
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 157
  start-page: 107250
  year: 2021
  ident: ref_23
  article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_59
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 24
  start-page: 1881
  year: 2021
  ident: ref_33
  article-title: Building an efficient intrusion detection system using grasshopper optimization algorithm for anomaly detection
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-020-03229-5
– volume: 3
  start-page: 1
  year: 2021
  ident: ref_32
  article-title: A novel GPU based intrusion detection system using deep autoencoder with Fruitfly optimization
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-021-04579-4
– ident: ref_35
  doi: 10.1109/AFRICON51333.2021.9570951
– volume: 11
  start-page: 86
  year: 1940
  ident: ref_62
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– ident: ref_37
  doi: 10.1109/JBHI.2021.3101686
– ident: ref_2
  doi: 10.1109/IMCCC.2016.108
– volume: 8
  start-page: 3242
  year: 2020
  ident: ref_29
  article-title: CorrAUC: A malicious bot-IoT traffic detection method in IoT network using machine-learning techniques
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3002255
– volume: 24
  start-page: 279
  year: 2021
  ident: ref_41
  article-title: Coarse-to-fine waterlogging probability assessment based on remote sensing image and social media data
  publication-title: Geo-Spat. Inf. Sci.
  doi: 10.1080/10095020.2020.1812445
– volume: 6
  start-page: 50850
  year: 2018
  ident: ref_11
  article-title: A novel intrusion detection model for a massive network using convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868993
– ident: ref_19
  doi: 10.1109/CONFLUENCE.2017.7943121
– ident: ref_42
  doi: 10.3390/rs11212525
– volume: 174
  start-page: 107247
  year: 2020
  ident: ref_1
  article-title: Building an efficient intrusion detection system based on feature selection and ensemble classifier
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107247
– volume: 134
  start-page: 1
  year: 2017
  ident: ref_18
  article-title: An efficient intrusion detection system based on hypergraph-Genetic algorithm for parameter optimization and feature selection in support vector machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.005
– volume: 10
  start-page: 15364
  year: 2020
  ident: ref_43
  article-title: COVID-19 image classification using deep features and fractional-order marine predators algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71294-2
– ident: ref_52
– volume: 2018
  start-page: 4680867
  year: 2018
  ident: ref_5
  article-title: Intrusion detection system based on decision tree over big data in fog environment
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2018/4680867
– volume: 568
  start-page: 147
  year: 2021
  ident: ref_34
  article-title: A novel IoT network intrusion detection approach based on Adaptive Particle Swarm Optimization Convolutional Neural Network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.03.060
– volume: 23
  start-page: 341
  year: 2020
  ident: ref_47
  article-title: An investigation of the visual features of urban street vitality using a convolutional neural network
  publication-title: Geo-Spat. Inf. Sci.
  doi: 10.1080/10095020.2020.1847002
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_55
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 94
  start-page: 101863
  year: 2020
  ident: ref_27
  article-title: IoT malicious traffic identification using wrapper-based feature selection mechanisms
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.101863
– ident: ref_4
  doi: 10.1145/2388576.2388585
– ident: ref_9
  doi: 10.1109/ATNAC.2018.8615255
– volume: 22
  start-page: 128
  year: 2019
  ident: ref_13
  article-title: Device-free human micro-activity recognition method using WiFi signals
  publication-title: Geo-Spat. Inf. Sci.
  doi: 10.1080/10095020.2019.1612600
– volume: 12
  start-page: 3609
  year: 2019
  ident: ref_21
  article-title: Best features based intrusion detection system by RBM model for detecting DDoS in cloud environment
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-019-01611-9
– ident: ref_10
  doi: 10.1109/ISNCC.2016.7746067
– ident: ref_58
  doi: 10.1007/978-3-642-12538-6_6
– ident: ref_40
  doi: 10.3390/electronics10111332
– volume: 1
  start-page: 36
  year: 2013
  ident: ref_53
  article-title: Firefly algorithm: Recent advances and applications
  publication-title: Int. J. Swarm Intell.
– volume: 9
  start-page: 567
  year: 2018
  ident: ref_7
  article-title: HIDS: A host based intrusion detection system for cloud computing environment
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-014-0277-7
– volume: 1752
  start-page: 012021
  year: 2021
  ident: ref_38
  article-title: Naïve Bayes Classifier and Particle Swarm Optimization Feature Selection Method for Classifying Intrusion Detection System Dataset
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1752/1/012021
– volume: 113
  start-page: 418
  year: 2020
  ident: ref_17
  article-title: Genetic convolutional neural network for intrusion detection systems
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.07.042
– ident: ref_25
  doi: 10.3390/e23111383
– volume: 27
  start-page: 495
  year: 2016
  ident: ref_57
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 100
  start-page: 779
  year: 2019
  ident: ref_60
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.05.041
– volume: 101
  start-page: 102031
  year: 2020
  ident: ref_12
  article-title: Deep recurrent neural network for IoT intrusion detection system
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2019.102031
– ident: ref_6
  doi: 10.1007/978-81-322-2250-7_10
– volume: 103
  start-page: 211
  year: 2021
  ident: ref_48
  article-title: An improved YOLO-based road traffic monitoring system
  publication-title: Computing
  doi: 10.1007/s00607-020-00869-8
– volume: 160
  start-page: 139
  year: 2020
  ident: ref_15
  article-title: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.05.048
– ident: ref_50
– ident: ref_54
– ident: ref_24
  doi: 10.3390/pr9091551
– volume: 14
  start-page: 143
  year: 2019
  ident: ref_45
  article-title: Deep neural networks for curbing climate change-induced farmers-herdsmen clashes in a sustainable social inclusion initiative
  publication-title: Probl. Ekorozwoju
– volume: 112
  start-page: 18
  year: 2020
  ident: ref_31
  article-title: Augmented whale feature selection for IoT attacks: Structure, analysis and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.05.020
– ident: ref_22
  doi: 10.1007/978-981-13-1951-8_24
– volume: 7
  start-page: 63
  year: 2020
  ident: ref_30
  article-title: A lightweight Anomaly detection model using SVM for WSNs in IoT through a hybrid feature selection algorithm based on GA and GWO
  publication-title: J. Comput. Secur.
– ident: ref_39
  doi: 10.18653/v1/2020.semeval-1.123
– ident: ref_44
  doi: 10.3390/su9101857
– volume: 23
  start-page: 10
  year: 2020
  ident: ref_46
  article-title: Deep learning for geometric and semantic tasks in photogrammetry and remote sensing
  publication-title: Geo-Spat. Inf. Sci.
  doi: 10.1080/10095020.2020.1718003
– ident: ref_14
  doi: 10.1007/978-981-13-1810-8_41
SSID ssj0023338
Score 2.6608582
Snippet Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 140
SubjectTerms Accuracy
Aquila optimizer
Classification
Cybersecurity
Datasets
Deep learning
Exploitation
Feature selection
Internet of Things
intrusion detection system
Intrusion detection systems
Machine learning
Neural networks
Optimization algorithms
Optimization techniques
Support vector machines
sustainable computing
swarm Intelligence
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BlgMcKN-EFmQQBy5WEzuJ41O1pVtRCS0VFKm3yF8pK5Vkm91FiAO_vePEG7qo4sIx8Ww02vHY78WTNwBvdW6VsiahWqeKpnmiqRZCUpZprpLESdnrzH4U02lxdiZPwgu3RSirXK-J3UJtG-Pfke8h0kckLHB73Z9fUt81yp-uhhYat2HLK5WlI9g6mExPPg-UiyMD6_WEOJL7vQVjXXPaeGMX6sT6b0KYfxdKXtt5jrb_1-cHcD9gTjLuJ8lDuOXqR3DvmhLhY_g9DrUAxGPCVevI5Oey7T96IKq25EvXL8dfjYMKOemqDcihc3MSVFrPO9Px5Wp2ocgnXIy-z365liAuJsfNKTmu_Rce_hmHbhme1iumP4GvR5PT9x9oaM1ADfLpJS2kYbHK4lz7Y0ukHF6mOVc8tUYoxKCFc9IUSmCKI4PMTJEY5C2ZcggwrXMVfwqjuqndcyDIhA2XSqQms6nWsURQxBzSHClNjD-O4N06VKUJuuW-fcZFifzFR7UcohrBm8F03ot13GR04OM9GHh97e5G056XIV3LQlR5xXPBualSdBd5nxFaWMdEYkUlI9hdR7wMSb8o_4Q7gtfDMKarP4NRtWtWvY30kkksgmf95Bo84ZknlAWOiI1pt-Hq5kg9-9ZJghf4dyHXfPFvt3bgLvMlOQmjLN-FEQbdvYQ75sdytmhfhdy5At4WJdA
  priority: 102
  providerName: ProQuest
Title Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System
URI https://www.ncbi.nlm.nih.gov/pubmed/35009682
https://www.proquest.com/docview/2618267893
https://www.proquest.com/docview/2618909722
https://pubmed.ncbi.nlm.nih.gov/PMC8749550
https://doaj.org/article/87f6f36733cf4ef3862c7b7de271d7f9
Volume 22
WOSCitedRecordID wos000741846200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CwYEdEN8ERmUQBy7REjuJ42O3dVolVioYUjlFtuOMSiPd-oEQh_3te_5o1E6TuHCxFPvFcuzn-PeT7d8D-KiKWspap7FSmYyzIlWx4lzENFdMpqkRwuvMfuajUTmZiPFGqC97JszLA_uO2y95UzSs4IzpJjMNQwSuueK1oTyteeOu7iHqWZOpQLUYMi-vI8SQ1O8vKHVBaZOt1ceJ9N-FLG8fkNxYcY6fwOMAFUnfN_Ep3DPtM9jdEBB8Dtf9sIVPLJRbzQ0Z_FnO_V0FItuafHNhbuxTP4iHE3dIgBwZc0mCuOq5M-1fraYXknzBf8iv6V8zJwhnyXB2RoatvZhh6zgyy1CbFzp_Ad-PB2eHJ3GIqBBrpMHLuBSaJjJPCmV3G5EpWHXlQrKs1lwidCyNEbqUHGcmEr9cl6lGupFLg7iwNtj7L2GnnbXmNRAksJoJyTOd15lSiUAsQw2yEyF0gi9H8Gnd05UOcuM26sVFhbTDDkrVDUoEHzrTS6-xcZfRgR2uzsDKYrsMdJYqOEv1L2eJYG892FWYq4sKOSRyLI7ALYL3XTHOMrt1IlszW3kbYZWOaASvvG90LWG55YEllvAtr9lq6nZJO_3plLxL7C6kiG_-x7e9hUfUnrdJaUyLPdhB1zDv4KH-vZwu5j24zyfcpWUPHhwMRuOvPTdlMD29HmDeeHg6_nEDnuUc7g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwGP00OiTggfslMMAgkHiJlthJHD8gVOimVetKJYo0noLtOKPSSLq05fbAT-I38jk3VjTxtgceE7uW5R5_Pie2zwfwTEWplKn2XaUC6QaRr1zFuXBpqJj0fSNE7TM74uNxfHgoJhvwq70LY49VtjGxCtRpoe038m1k-siEOS6vr-Ynrs0aZXdX2xQaNSz2zfevKNkWL4cD_H-fU7q7M32z5zZZBVyNUnDpxkJTT4ZepOyOG7Jl6zAcSRakmkukT7ExQseSIzpR_IQ69jVS7lAa5EapMRnDdi_AZoBgj3uwORkeTD50Eo-h4qv9ixgT3vaC0ioZrre26lXJAc5itH8fzDy10u1e-9_G6DpcbTg16deT4AZsmPwmXDnltHgLfvabsw7Ect5VacjOt2VZX-ogMk_JuyofkH3qNy7rpDpNQQbGzEnjQntUVe2frGbHkrzFYPt59sOUBHk_GRZTMsztDRbbxsAsm9ZqR_jb8P5cBuAO9PIiN_eAoNLXTEge6DANlPIEkj5qUMYJoT38sQMvWmgkuvFlt-lBjhPUZxZFSYciB552Vee1GclZlV5bfHUVrH949aIoj5ImHCUxz6KMRZwxnQXYXdS1miueGsr9lGfCga0WYUkT1BbJH3g58KQrxnBk95hkbopVXUdYSyjqwN0azF1PWGgFc4wlfA3ma11dL8lnnyrL8xiHC7X0_X936zFc2psejJLRcLz_AC5Te_zIpy6NtqCHADAP4aL-spwtykfNvCXw8bynwW9oB4Ec
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE48H4EChgEEpdoEzuJ4wNCC9sVUcuyEkUqp-A4TlmpJNvsLq8DP4xfxzhxQhdV3HrguPGsZTmfx_PF428AnmRRLmWufDfLAukGkZ-5GefCpWHGpO9rIVqd2T0-mcQHB2K6Ab-6uzAmrbLziY2jzitlvpEPMNLHSJjj9joobFrEdDR-MT92TQUpc9LaldNoIbKrv39F-rZ4nozwXT-ldLyz_-q1aysMuApp4dKNhaKeDL0oM6dvGDkbteFIsiBXXGIoFWstVCw5IhWJUKhiX2H4HUqNcVKudcGw33Owhc8CXGNb0-TN9ENP9xiyv1bLiDHhDRaUNoVxvbUdsCkUcFp0-3eS5oldb3zlf56vq3DZxtpk2C6Oa7Chy-tw6YQC4w34ObQ5EMTEwqtak51vy7q97EFkmZN3TZ0g82to1ddJk2VBRlrPiVWnPWxMh8er2ZEkb9EJf5790DVBPkCSap8kpbnZYvoY6aXtrVWKvwnvz2QCbsFmWZX6DpCQMsWE5IEK8yDLPIHBINVI74RQHv7ZgWcdTFJl9dpN2ZCjFHmbQVTaI8qBx73pvBUpOc3opcFab2B0xZsHVX2YWjeVxryIChZxxlQR4HCR7yqe8VxT7ue8EA5sd2hLrbNbpH-g5sCjvhndlDl7kqWuVq2NMFJR1IHbLbD7kbDQEOkYW_ga5NeGut5Szj41UugxThdy7Lv_HtZDuIDYT_eSye49uEhNVpJPXRptwya-f30fzqsvy9mifmCXMIGPZ70KfgMlM4nc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Feature+Extraction+and+Selection+Approach+Using+Deep+Learning+and+Aquila+Optimizer+for+IoT+Intrusion+Detection+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Fatani%2C+Abdulaziz&rft.au=Dahou%2C+Abdelghani&rft.au=Al-Qaness%2C+Mohammed+A+A&rft.au=Lu%2C+Songfeng&rft.date=2021-12-26&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=1&rft_id=info:doi/10.3390%2Fs22010140&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon