Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising Auto-Encoder
Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common...
Uložené v:
| Vydané v: | Entropy (Basel, Switzerland) Ročník 24; číslo 1; s. 36 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
24.12.2021
MDPI |
| Predmet: | |
| ISSN: | 1099-4300, 1099-4300 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods. |
|---|---|
| AbstractList | Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods. Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods.Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods. |
| Author | Zhang, Wan She, Daoming Xu, Yadong Yan, Xiaoan |
| AuthorAffiliation | 3 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China; 1000005461@ujs.edu.cn 1 School of Mechatronics Engineering, Nanjing Forestry University, Nanjing 210037, China 2 School of Mechanical Engineering, Southeast University, Nanjing 211189, China; ydxu@seu.edu.cn 4 Department of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China; zhangwan@nuist.edu.cn |
| AuthorAffiliation_xml | – name: 3 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China; 1000005461@ujs.edu.cn – name: 2 School of Mechanical Engineering, Southeast University, Nanjing 211189, China; ydxu@seu.edu.cn – name: 4 Department of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China; zhangwan@nuist.edu.cn – name: 1 School of Mechatronics Engineering, Nanjing Forestry University, Nanjing 210037, China |
| Author_xml | – sequence: 1 givenname: Xiaoan orcidid: 0000-0001-6986-6943 surname: Yan fullname: Yan, Xiaoan – sequence: 2 givenname: Yadong orcidid: 0000-0003-0713-4434 surname: Xu fullname: Xu, Yadong – sequence: 3 givenname: Daoming surname: She fullname: She, Daoming – sequence: 4 givenname: Wan orcidid: 0000-0003-2767-8949 surname: Zhang fullname: Zhang, Wan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35052062$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkl1vFCEUhiemxn7ohX_ATOKNXqzlY2DhxqT2Q5s0aaLVW3KGObOysrAFxkR_vXS3bdp6dQg8PHnhnP1mJ8SATfOakg-ca3KIrCOUEC6fNXuUaD3rOCE7D9a7zX7OS0IYZ1S-aHa5IIIRyfaa_it6B73H9gwmX9oTB4sQs8ttHNtPCMmFRW6_51paCO3luriV-4tD-62A_VXrj4pAcTGAb08wRLdBj6YSZ6fBxgHTy-b5CD7jq9t60FydnV4df5ldXH4-Pz66mNlO6jKTSIVWoAQIougoJaUa2HwueD-XDEk3wKCZGAdLLRu0YB2qkfMeCOfC9vygOd9qhwhLs05uBemPieDMZiOmhYFUnPVoNAqOoHRvRdd1QinFJRGdYnOOA7W2uj5uXeupX-FgMZQE_pH08UlwP80i_jbqJi9XVfDuVpDi9YS5mJXLFr2HgHHKhknGmKpvEBV9-wRdxinV79xQlCnClazUm4eJ7qPcdbICh1vApphzwtFYVzaNqQGdN5SYm1kx97NSb7x_cuNO-j_7D4GjvBc |
| CitedBy_id | crossref_primary_10_3390_info14010029 crossref_primary_10_1016_j_aei_2024_103032 crossref_primary_10_1109_ACCESS_2024_3434708 crossref_primary_10_1177_10775463251342614 crossref_primary_10_1016_j_measurement_2022_111875 crossref_primary_10_1007_s11063_022_11143_7 crossref_primary_10_1016_j_isatra_2023_06_008 crossref_primary_10_1088_1361_6501_acfe31 crossref_primary_10_1155_2024_2235272 crossref_primary_10_32604_cmc_2023_045718 crossref_primary_10_3390_e24050573 crossref_primary_10_1016_j_engappai_2025_110689 crossref_primary_10_3390_app12189076 crossref_primary_10_1007_s42401_024_00290_5 crossref_primary_10_1177_14759217231221214 crossref_primary_10_1016_j_apacoust_2022_109143 crossref_primary_10_1016_j_aei_2025_103620 crossref_primary_10_3390_app12042158 crossref_primary_10_3390_s24102992 crossref_primary_10_1007_s00170_025_15087_9 crossref_primary_10_1109_TIM_2025_3579822 crossref_primary_10_1088_1361_6501_ada4c7 crossref_primary_10_1016_j_ymssp_2024_111761 crossref_primary_10_1016_j_eswa_2022_117408 crossref_primary_10_1177_09544062251356104 crossref_primary_10_3390_electronics11091504 crossref_primary_10_1016_j_eswa_2025_127267 crossref_primary_10_3390_informatics12020035 |
| Cites_doi | 10.1177/1475921719893594 10.3390/s19235300 10.1016/j.isatra.2021.01.002 10.3390/s20154352 10.1007/s12065-020-00424-6 10.1016/j.neucom.2020.05.021 10.3233/JIFS-169524 10.3390/s19194069 10.1007/s13748-020-00211-5 10.1109/ACCESS.2021.3064854 10.3390/s20236993 10.1007/s00500-018-3256-0 10.3390/s20010223 10.2991/ijcis.2017.10.1.72 10.1016/j.jprocont.2020.01.004 10.1016/j.renene.2021.02.011 10.1109/JSEN.2020.3040696 10.1109/TII.2018.2793246 10.1016/j.asoc.2020.106333 10.1177/1475921718788299 10.1088/1361-6501/ab55f8 10.1016/j.dajour.2021.100007 10.1016/j.isatra.2017.03.017 10.1007/s10845-021-01810-2 10.1016/j.neucom.2021.04.122 10.1016/j.micpro.2020.103063 10.3390/s21010119 10.3390/app7101004 10.3390/e23070816 10.1007/s12206-018-1012-0 10.1016/j.knosys.2018.11.024 10.1016/j.knosys.2020.105764 10.1016/j.knosys.2021.107142 10.1109/ACCESS.2019.2940769 10.1109/TASE.2020.2969485 10.1109/ACCESS.2017.2728010 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
| DOI | 10.3390/e24010036 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_9e53ea89bc54445888360548273ed1cc PMC8775338 35052062 10_3390_e24010036 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Macau Young Scholars Program grantid: AM2021002 – fundername: Natural Science Fund for Colleges and Universities in Jiangsu Province grantid: 20KJB460002 – fundername: National Natural Science Foundation of China grantid: 52005265 and 52105517 – fundername: Scientific Research Foundation of Nanjing Forestry University grantid: 163040095 and 163040117 – fundername: Jiangsu Provincial Key Research and Development Program grantid: BE2019030637 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC COVID DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-6e1598a85a5081f66119a27753b762e04dad925fdc1c2d9524e8f33ba0335cb3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746260000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Tue Oct 14 18:58:46 EDT 2025 Tue Nov 04 01:56:23 EST 2025 Fri Sep 05 10:29:43 EDT 2025 Fri Jul 25 12:05:23 EDT 2025 Thu Jan 02 22:56:12 EST 2025 Sat Nov 29 07:12:55 EST 2025 Tue Nov 18 22:16:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | rolling bearing fault diagnosis seagull optimization algorithm stacked variational denoising auto-encoder |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-6e1598a85a5081f66119a27753b762e04dad925fdc1c2d9524e8f33ba0335cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2767-8949 0000-0001-6986-6943 0000-0003-0713-4434 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2621280386?pq-origsite=%requestingapplication% |
| PMID | 35052062 |
| PQID | 2621280386 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9e53ea89bc54445888360548273ed1cc pubmedcentral_primary_oai_pubmedcentral_nih_gov_8775338 proquest_miscellaneous_2622285245 proquest_journals_2621280386 pubmed_primary_35052062 crossref_citationtrail_10_3390_e24010036 crossref_primary_10_3390_e24010036 |
| PublicationCentury | 2000 |
| PublicationDate | 20211224 |
| PublicationDateYYYYMMDD | 2021-12-24 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211224 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Huang (ref_20) 2019; 7 Kuvvetli (ref_4) 2021; 1 Zhang (ref_14) 2020; 196 ref_13 ref_10 Tang (ref_25) 2021; 114 Chao (ref_29) 2021; 454 Chen (ref_31) 2018; 34 Che (ref_30) 2020; 76 ref_19 Yan (ref_11) 2020; 19 Qi (ref_34) 2017; 5 ref_15 Wang (ref_23) 2020; 92 Farajian (ref_38) 2020; 9 Appana (ref_33) 2018; 22 Shao (ref_37) 2017; 140 Shao (ref_12) 2017; 69 ref_24 Ma (ref_39) 2018; 14 Gunerkar (ref_5) 2019; 33 Aamir (ref_35) 2021; 14 Yan (ref_16) 2021; 226 Shang (ref_32) 2018; 32 Zhao (ref_22) 2020; 31 Costa (ref_26) 2021; 9 ref_3 Yan (ref_1) 2021; 170 Zhang (ref_28) 2021; 21 Chen (ref_36) 2020; 87 ref_27 Dhiman (ref_17) 2019; 165 ref_9 ref_8 Li (ref_2) 2020; 409 Martin (ref_21) 2019; 18 Demirel (ref_18) 2017; 10 ref_7 ref_6 |
| References_xml | – volume: 19 start-page: 1602 year: 2020 ident: ref_11 article-title: Health condition identification for rolling bearing using a multi-domain indicator-based optimized stacked denoising autoencoder publication-title: Struct. Health Monit. doi: 10.1177/1475921719893594 – ident: ref_13 doi: 10.3390/s19235300 – volume: 114 start-page: 444 year: 2021 ident: ref_25 article-title: Nonlinear quality-related fault detection using combined deep variational information bottleneck and variational autoencoder publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.01.002 – ident: ref_3 doi: 10.3390/s20154352 – volume: 14 start-page: 1619 year: 2021 ident: ref_35 article-title: A deep contractive autoencoder for solving multiclass classification problems publication-title: Evol. Intel. doi: 10.1007/s12065-020-00424-6 – volume: 409 start-page: 275 year: 2020 ident: ref_2 article-title: Learning local discriminative representations via extreme learning machine for machine fault diagnosis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.021 – volume: 34 start-page: 3443 year: 2018 ident: ref_31 article-title: Fault diagnosis method of rotating machinery based on stacked denoising autoencoder publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169524 – ident: ref_6 doi: 10.3390/s19194069 – volume: 9 start-page: 263 year: 2020 ident: ref_38 article-title: DMRAE: Discriminative manifold regularized auto-encoder for sparse and robust feature learning publication-title: Progress Artif. Intell. doi: 10.1007/s13748-020-00211-5 – volume: 9 start-page: 40227 year: 2021 ident: ref_26 article-title: Semi-supervised recurrent variational autoencoder approach for visual diagnosis of atrial fibrillation publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064854 – ident: ref_10 doi: 10.3390/s20236993 – volume: 22 start-page: 6719 year: 2018 ident: ref_33 article-title: Reliable fault diagnosis of bearings with varying rotational speeds using envelope spectrum and convolution neural networks publication-title: Soft Comput. doi: 10.1007/s00500-018-3256-0 – ident: ref_19 doi: 10.3390/s20010223 – volume: 10 start-page: 1082 year: 2017 ident: ref_18 article-title: Novel search space updating heuristics-based genetic algorithm for optimizing medium-scale airline crew pairing problems publication-title: Int. J. Comput. Int. Syst. doi: 10.2991/ijcis.2017.10.1.72 – volume: 87 start-page: 54 year: 2020 ident: ref_36 article-title: One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes publication-title: J. Process Contr. doi: 10.1016/j.jprocont.2020.01.004 – volume: 170 start-page: 724 year: 2021 ident: ref_1 article-title: Multichannel fault diagnosis of wind turbine driving system using multivariate singular spectrum decomposition and improved Kolmogorov complexity publication-title: Renew. Energy doi: 10.1016/j.renene.2021.02.011 – volume: 33 start-page: 505 year: 2019 ident: ref_5 article-title: Fault diagnosis of rolling element bearing based on artificial neural network publication-title: J. Meas. Sci. Technol. – volume: 21 start-page: 6476 year: 2021 ident: ref_28 article-title: Semi-Supervised Bearing fault diagnosis and classification using variational autoencoder-based deep generative models publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3040696 – volume: 14 start-page: 1137 year: 2018 ident: ref_39 article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2793246 – volume: 92 start-page: 106333 year: 2020 ident: ref_23 article-title: Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106333 – volume: 18 start-page: 1092 year: 2019 ident: ref_21 article-title: Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis publication-title: Struct. Health Monit. doi: 10.1177/1475921718788299 – volume: 31 start-page: 35004 year: 2020 ident: ref_22 article-title: Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab55f8 – volume: 1 start-page: 100007 year: 2021 ident: ref_4 article-title: A predictive analytics model for COVID-19 pandemic using artificial neural networks publication-title: Decis. Anal. J. doi: 10.1016/j.dajour.2021.100007 – volume: 69 start-page: 187 year: 2017 ident: ref_12 article-title: Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.03.017 – ident: ref_27 doi: 10.1007/s10845-021-01810-2 – volume: 454 start-page: 324 year: 2021 ident: ref_29 article-title: Implicit supervision for fault detection and segmentation of emerging fault types with deep variational autoencoders publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.04.122 – volume: 76 start-page: 103063 year: 2020 ident: ref_30 article-title: Text feature extraction based on stacked variational autoencoder publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103063 – ident: ref_8 doi: 10.3390/s21010119 – ident: ref_15 – ident: ref_7 doi: 10.3390/app7101004 – ident: ref_9 doi: 10.3390/e23070816 – volume: 32 start-page: 5139 year: 2018 ident: ref_32 article-title: Fault diagnosis method of rolling bearing based on deep belief network publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-018-1012-0 – volume: 165 start-page: 169 year: 2019 ident: ref_17 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.024 – volume: 140 start-page: 1 year: 2017 ident: ref_37 article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine publication-title: Knowl.-Based Syst. – volume: 196 start-page: 105764 year: 2020 ident: ref_14 article-title: Ensemble deep contractive auto-encoders for intelligent fault diagnosis of machines under noisy environment publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105764 – volume: 226 start-page: 107142 year: 2021 ident: ref_16 article-title: Deep regularized variational autoencoder for intelligent fault diagnosis of rotor-bearing system within entire life-cycle process publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107142 – volume: 7 start-page: 139086 year: 2019 ident: ref_20 article-title: Motor fault detection and feature extraction using rnn-based variational autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940769 – ident: ref_24 doi: 10.1109/TASE.2020.2969485 – volume: 5 start-page: 15066 year: 2017 ident: ref_34 article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2728010 |
| SSID | ssj0023216 |
| Score | 2.4160728 |
| Snippet | Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 36 |
| SubjectTerms | Accuracy Algorithms Background noise Bearings Coders Deep learning Fault diagnosis Feature extraction Heuristic methods Machine learning Mathematical models Neural networks Noise Noise reduction Optimization Optimization algorithms Parameters Robustness Roller bearings rolling bearing seagull optimization algorithm stacked variational denoising auto-encoder Support vector machines Teaching methods Vibration analysis Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMX1Apo0xZkEAcuVmM7Tpxjl3bFaeFQod4iPyYiUknQbpYDv74zSTbqVpW4cI1HymQ8nocz8w1jn5SulSu8FMHWTmTWR-Fy40QdgtXo4GJt_DBsolit7N1d-f3RqC-qCRvhgUfBXZZgNDhb-mCyjNoqqevAEHilhihDIOubFuUumZpSLa1kPuIIaUzqLwH9liTolT3vM4D0PxdZPi2QfORxlkfs1RQq8quRxWP2AtrXzFMNMbU78aXb3vf8eiyVaza8q_kC1ZZuvvlQCMBdy7-hRfjV_IXIMarEAxv5DySZLgD5NbRdM5BebftO3LTU4L5-w26XN7dfvoppToIImNz2IgeMSayzxmG0JWv0uLJ0qsBExKOpgzSLLpbK1DHIoGJpVAa21tq7VGsTvH7LDtquhVPGgzROR5A-DzErVGZDCTKaFEBRoCcT9nknvipMGOI0yuK-wlyCJF3Nkk7Yx5n09wic8RzRgvZgJiCs6-EBakA1aUD1Lw1I2MVuB6vpAG4qlaNPtqm2-I4P8zIeHfof4lrotgONUhbFYRJ2Mm74zImmAX9prhJW7KnCHqv7K23zc4DntiR5bc_-x7eds5eKimikEiq7YAf9egvv2GH40zeb9ftB5x8AUN0GgQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising Auto-Encoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35052062 https://www.proquest.com/docview/2621280386 https://www.proquest.com/docview/2622285245 https://pubmed.ncbi.nlm.nih.gov/PMC8775338 https://doaj.org/article/9e53ea89bc54445888360548273ed1cc |
| Volume | 24 |
| WOSCitedRecordID | wos000746260000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29j9MwFH_iWgYWPsRXjqMyiIHFamzHiTOhK9cKBkoFJ1SmyLEdiHQkR5vewMDfjl-SBopOTCwZ4jc4ed_2e78H8IKLguskZ9SoQtNI5ZbqWGpaGKOEd3C2kHk7bCJZLtV6na769uhtX1a5t4mtoe7QnrFu2xvhqa0NnphPeexNrgqFil9dfqc4QwrvWvuBGkcwRuCtcATj1dt3q89DAiY4izt0IeFT_anz3owhIMuBT2qh-6-LN_8um_zDDy3u_N8vuAu3-3iUnHYCdA9uuOo-5FiojD1VZKF3Fw056-rxyi2pCzLzuoHH66StNiC6Iu-92flW_nCW-NDVWwVLPnmS_pSRnLmqLlvS011T03mFXfSbB3C-mJ-_fkP7YQzU-Ay6obHzgY_SSmof0rHCu3WWap74bCf39tSFkdU25bKwhhluU8kjpwohch0KIU0uHsKoqiv3GIhhUgvrWB4bGyU8UiZ1zMrQOY7RJAvg5Z4bmemBynFexkXmExZkXDYwLoDnA-llh85xHdEMWToQIKB2-6LefMl6_cxSJ4XTKs2Nlxzs3sXmFokYqcJZZkwAJ3umZr2Wb7PfPAzg2bDs9RMvXXTl6l1Lw7nyv0MG8KiTn2EnAqcIhjEPIDmQrIOtHq5U5dcWA1zhnxfq-N_begK3ONbgME55dAKjZrNzT-GmuWrK7WYCR8laTWA8my9XHybtacQEa18_4vPnfNKrzy8yJCfx |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceIhXoIBBIHGJGttx1jkg1LJdddV22cMKlVPk2A6sVJKyDxD8J_4jM0k2sKji1gPXeBRN7M_fjON5ALwQshCmn_PQ6sKEsc5daBJlwsJaLdHAuULldbOJ_nisT0_TyRb8XOfCUFjlmhNronaVpX_kuyJBktWR1Mmb8y8hdY2i29V1C40GFkf--zc8si1ejwa4vi-FGB5M3x6GbVeB0OJRcBkmHi24NloZ9E14gfaJp0b00W3PkRh8FDvjUqEKZ7kVLlUi9rqQMjeRlMrmEl97BbZjxHrUg-3J6GTyoTvhScGTpnyRlGm069Fccqr4smH06t4AFzm0f8dl_mHohjf_sym6BTdaj5rtNVvgNmz58g7kFGpNWWFsaFZnSzZoIgpnC1YVbB91pAsCVsdLMFOyd0icn2c_vGPofCOvOfYeRdr_pGzgy2pWi-6tllV4UFIdgPldmF7GV92DXlmV_gEwy5WRzvM8sS7ui1jb1HOnIu8F-cM8gFfr5c5sW2qdOn6cZXjkImRkHTICeN6Jnjf1RS4S2ifMdAJUErx-UM0_Zi3DZKlX0hud5lbFMeUfU3qOoiqv0jtubQA7a9RkLU8tst-QCeBZN4wMQ9dGpvTVqpYRQuN0qADuNwDtNJHUBzFKRAD9DehuqLo5Us4-1VXMNc281A__rdZTuHY4PTnOjkfjo0dwXVBEERehiHegt5yv_GO4ar8uZ4v5k3YvMsguGdq_AKS4cTw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceIhXoIBBIHGJNrbjxDkg1GV3RVW0VKhCvUWO7cBKJSn7AME_498xk2QDiypuPXCNR5Fjf_5mJp4HwDMhS2HSgodWlyaMdeFCkygTltZqiQrOlapomk2ks5k-OcmOduDnJheGwio3nNgQtast_SMfigRJVkdSJ8OyC4s4Gk9fnX0JqYMU3bRu2mm0EDn037-h-7Z8eTDGvX4uxHRy_PpN2HUYCC26hasw8ajNtdHKoJ3CS9RVPDMiRRO-QJLwUeyMy4QqneVWuEyJ2OtSysJEUipbSHztJdhNJfo8A9gdTWZH73tvTwqetKWMpMyioUfVyan6y5YCbPoEnGfc_h2j-YfSm17_j5frBlzrLG223x6Nm7Djq1tQUAg2ZYuxqVmfrti4jTScL1ldshHOkS4OWBNHwUzF3iGhfp7_8I6hUY5859gHFOn-n7Kxr-p5I7q_XtXhpKL6AIvbcHwRX3UHBlVd-XvALFdGOs-LxLo4FbG2medORd4LspN5AC82W5_brgQ7dQI5zdEVI5TkPUoCeNqLnrV1R84TGhF-egEqFd48qBcf84558swr6Y3OCqvimPKSKW1HUfVX6R23NoC9DYLyjr-W-W_4BPCkH0bmoeskU_l63cgIoXE5VAB3W7D2M5HUHzFKRADpFoy3pro9Us0_NdXNNa281Pf_Pa3HcAXxnL89mB0-gKuCAo24CEW8B4PVYu0fwmX7dTVfLh51x5JBfsHI_gWWJnnW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+Fault+Diagnosis+of+Bearings+Using+an+Optimized+Stacked+Variational+Denoising+Auto-Encoder&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Xiaoan+Yan&rft.au=Xu%2C+Yadong&rft.au=She%2C+Daoming&rft.au=Zhang%2C+Wan&rft.date=2021-12-24&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=1&rft.spage=36&rft_id=info:doi/10.3390%2Fe24010036&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |