Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising Auto-Encoder

Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Entropy (Basel, Switzerland) Ročník 24; číslo 1; s. 36
Hlavní autori: Yan, Xiaoan, Xu, Yadong, She, Daoming, Zhang, Wan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 24.12.2021
MDPI
Predmet:
ISSN:1099-4300, 1099-4300
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods.
AbstractList Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods.
Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods.Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability and robustness. However, the hyper-parameters of VAEs depend, to a significant extent, on artificial settings, which is regarded as a common and key problem in existing deep learning models. Additionally, its anti-noise capability may face a decline when VAE is used to analyze bearing vibration data under loud environmental noise. Therefore, in order to improve the anti-noise performance of the VAE model and adaptively select its parameters, this paper proposes an optimized stacked variational denoising autoencoder (OSVDAE) for the reliable fault diagnosis of bearings. Within the proposed method, a robust network, named variational denoising auto-encoder (VDAE), is, first, designed by integrating VAE and a denoising auto-encoder (DAE). Subsequently, a stacked variational denoising auto-encoder (SVDAE) architecture is constructed to extract the robust and discriminative latent fault features via stacking VDAE networks layer on layer, wherein the important parameters of the SVDAE model are automatically determined by employing a novel meta-heuristic intelligent optimizer known as the seagull optimization algorithm (SOA). Finally, the extracted latent features are imported into a softmax classifier to obtain the results of fault recognition in rolling bearings. Experiments are conducted to validate the effectiveness of the proposed method. The results of analysis indicate that the proposed method not only can achieve a high identification accuracy for different bearing health conditions, but also outperforms some representative deep learning methods.
Author Zhang, Wan
She, Daoming
Xu, Yadong
Yan, Xiaoan
AuthorAffiliation 3 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China; 1000005461@ujs.edu.cn
1 School of Mechatronics Engineering, Nanjing Forestry University, Nanjing 210037, China
2 School of Mechanical Engineering, Southeast University, Nanjing 211189, China; ydxu@seu.edu.cn
4 Department of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China; zhangwan@nuist.edu.cn
AuthorAffiliation_xml – name: 3 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China; 1000005461@ujs.edu.cn
– name: 2 School of Mechanical Engineering, Southeast University, Nanjing 211189, China; ydxu@seu.edu.cn
– name: 4 Department of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China; zhangwan@nuist.edu.cn
– name: 1 School of Mechatronics Engineering, Nanjing Forestry University, Nanjing 210037, China
Author_xml – sequence: 1
  givenname: Xiaoan
  orcidid: 0000-0001-6986-6943
  surname: Yan
  fullname: Yan, Xiaoan
– sequence: 2
  givenname: Yadong
  orcidid: 0000-0003-0713-4434
  surname: Xu
  fullname: Xu, Yadong
– sequence: 3
  givenname: Daoming
  surname: She
  fullname: She, Daoming
– sequence: 4
  givenname: Wan
  orcidid: 0000-0003-2767-8949
  surname: Zhang
  fullname: Zhang, Wan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35052062$$D View this record in MEDLINE/PubMed
BookMark eNplkl1vFCEUhiemxn7ohX_ATOKNXqzlY2DhxqT2Q5s0aaLVW3KGObOysrAFxkR_vXS3bdp6dQg8PHnhnP1mJ8SATfOakg-ca3KIrCOUEC6fNXuUaD3rOCE7D9a7zX7OS0IYZ1S-aHa5IIIRyfaa_it6B73H9gwmX9oTB4sQs8ttHNtPCMmFRW6_51paCO3luriV-4tD-62A_VXrj4pAcTGAb08wRLdBj6YSZ6fBxgHTy-b5CD7jq9t60FydnV4df5ldXH4-Pz66mNlO6jKTSIVWoAQIougoJaUa2HwueD-XDEk3wKCZGAdLLRu0YB2qkfMeCOfC9vygOd9qhwhLs05uBemPieDMZiOmhYFUnPVoNAqOoHRvRdd1QinFJRGdYnOOA7W2uj5uXeupX-FgMZQE_pH08UlwP80i_jbqJi9XVfDuVpDi9YS5mJXLFr2HgHHKhknGmKpvEBV9-wRdxinV79xQlCnClazUm4eJ7qPcdbICh1vApphzwtFYVzaNqQGdN5SYm1kx97NSb7x_cuNO-j_7D4GjvBc
CitedBy_id crossref_primary_10_3390_info14010029
crossref_primary_10_1016_j_aei_2024_103032
crossref_primary_10_1109_ACCESS_2024_3434708
crossref_primary_10_1177_10775463251342614
crossref_primary_10_1016_j_measurement_2022_111875
crossref_primary_10_1007_s11063_022_11143_7
crossref_primary_10_1016_j_isatra_2023_06_008
crossref_primary_10_1088_1361_6501_acfe31
crossref_primary_10_1155_2024_2235272
crossref_primary_10_32604_cmc_2023_045718
crossref_primary_10_3390_e24050573
crossref_primary_10_1016_j_engappai_2025_110689
crossref_primary_10_3390_app12189076
crossref_primary_10_1007_s42401_024_00290_5
crossref_primary_10_1177_14759217231221214
crossref_primary_10_1016_j_apacoust_2022_109143
crossref_primary_10_1016_j_aei_2025_103620
crossref_primary_10_3390_app12042158
crossref_primary_10_3390_s24102992
crossref_primary_10_1007_s00170_025_15087_9
crossref_primary_10_1109_TIM_2025_3579822
crossref_primary_10_1088_1361_6501_ada4c7
crossref_primary_10_1016_j_ymssp_2024_111761
crossref_primary_10_1016_j_eswa_2022_117408
crossref_primary_10_1177_09544062251356104
crossref_primary_10_3390_electronics11091504
crossref_primary_10_1016_j_eswa_2025_127267
crossref_primary_10_3390_informatics12020035
Cites_doi 10.1177/1475921719893594
10.3390/s19235300
10.1016/j.isatra.2021.01.002
10.3390/s20154352
10.1007/s12065-020-00424-6
10.1016/j.neucom.2020.05.021
10.3233/JIFS-169524
10.3390/s19194069
10.1007/s13748-020-00211-5
10.1109/ACCESS.2021.3064854
10.3390/s20236993
10.1007/s00500-018-3256-0
10.3390/s20010223
10.2991/ijcis.2017.10.1.72
10.1016/j.jprocont.2020.01.004
10.1016/j.renene.2021.02.011
10.1109/JSEN.2020.3040696
10.1109/TII.2018.2793246
10.1016/j.asoc.2020.106333
10.1177/1475921718788299
10.1088/1361-6501/ab55f8
10.1016/j.dajour.2021.100007
10.1016/j.isatra.2017.03.017
10.1007/s10845-021-01810-2
10.1016/j.neucom.2021.04.122
10.1016/j.micpro.2020.103063
10.3390/s21010119
10.3390/app7101004
10.3390/e23070816
10.1007/s12206-018-1012-0
10.1016/j.knosys.2018.11.024
10.1016/j.knosys.2020.105764
10.1016/j.knosys.2021.107142
10.1109/ACCESS.2019.2940769
10.1109/TASE.2020.2969485
10.1109/ACCESS.2017.2728010
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.3390/e24010036
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_9e53ea89bc54445888360548273ed1cc
PMC8775338
35052062
10_3390_e24010036
Genre Journal Article
GrantInformation_xml – fundername: Macau Young Scholars Program
  grantid: AM2021002
– fundername: Natural Science Fund for Colleges and Universities in Jiangsu Province
  grantid: 20KJB460002
– fundername: National Natural Science Foundation of China
  grantid: 52005265 and 52105517
– fundername: Scientific Research Foundation of Nanjing Forestry University
  grantid: 163040095 and 163040117
– fundername: Jiangsu Provincial Key Research and Development Program
  grantid: BE2019030637
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
COVID
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-6e1598a85a5081f66119a27753b762e04dad925fdc1c2d9524e8f33ba0335cb3
IEDL.DBID PIMPY
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746260000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Tue Oct 14 18:58:46 EDT 2025
Tue Nov 04 01:56:23 EST 2025
Fri Sep 05 10:29:43 EDT 2025
Fri Jul 25 12:05:23 EDT 2025
Thu Jan 02 22:56:12 EST 2025
Sat Nov 29 07:12:55 EST 2025
Tue Nov 18 22:16:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords rolling bearing
fault diagnosis
seagull optimization algorithm
stacked variational denoising auto-encoder
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-6e1598a85a5081f66119a27753b762e04dad925fdc1c2d9524e8f33ba0335cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2767-8949
0000-0001-6986-6943
0000-0003-0713-4434
OpenAccessLink https://www.proquest.com/publiccontent/docview/2621280386?pq-origsite=%requestingapplication%
PMID 35052062
PQID 2621280386
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_9e53ea89bc54445888360548273ed1cc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8775338
proquest_miscellaneous_2622285245
proquest_journals_2621280386
pubmed_primary_35052062
crossref_citationtrail_10_3390_e24010036
crossref_primary_10_3390_e24010036
PublicationCentury 2000
PublicationDate 20211224
PublicationDateYYYYMMDD 2021-12-24
PublicationDate_xml – month: 12
  year: 2021
  text: 20211224
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Huang (ref_20) 2019; 7
Kuvvetli (ref_4) 2021; 1
Zhang (ref_14) 2020; 196
ref_13
ref_10
Tang (ref_25) 2021; 114
Chao (ref_29) 2021; 454
Chen (ref_31) 2018; 34
Che (ref_30) 2020; 76
ref_19
Yan (ref_11) 2020; 19
Qi (ref_34) 2017; 5
ref_15
Wang (ref_23) 2020; 92
Farajian (ref_38) 2020; 9
Appana (ref_33) 2018; 22
Shao (ref_37) 2017; 140
Shao (ref_12) 2017; 69
ref_24
Ma (ref_39) 2018; 14
Gunerkar (ref_5) 2019; 33
Aamir (ref_35) 2021; 14
Yan (ref_16) 2021; 226
Shang (ref_32) 2018; 32
Zhao (ref_22) 2020; 31
Costa (ref_26) 2021; 9
ref_3
Yan (ref_1) 2021; 170
Zhang (ref_28) 2021; 21
Chen (ref_36) 2020; 87
ref_27
Dhiman (ref_17) 2019; 165
ref_9
ref_8
Li (ref_2) 2020; 409
Martin (ref_21) 2019; 18
Demirel (ref_18) 2017; 10
ref_7
ref_6
References_xml – volume: 19
  start-page: 1602
  year: 2020
  ident: ref_11
  article-title: Health condition identification for rolling bearing using a multi-domain indicator-based optimized stacked denoising autoencoder
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719893594
– ident: ref_13
  doi: 10.3390/s19235300
– volume: 114
  start-page: 444
  year: 2021
  ident: ref_25
  article-title: Nonlinear quality-related fault detection using combined deep variational information bottleneck and variational autoencoder
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.01.002
– ident: ref_3
  doi: 10.3390/s20154352
– volume: 14
  start-page: 1619
  year: 2021
  ident: ref_35
  article-title: A deep contractive autoencoder for solving multiclass classification problems
  publication-title: Evol. Intel.
  doi: 10.1007/s12065-020-00424-6
– volume: 409
  start-page: 275
  year: 2020
  ident: ref_2
  article-title: Learning local discriminative representations via extreme learning machine for machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.021
– volume: 34
  start-page: 3443
  year: 2018
  ident: ref_31
  article-title: Fault diagnosis method of rotating machinery based on stacked denoising autoencoder
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169524
– ident: ref_6
  doi: 10.3390/s19194069
– volume: 9
  start-page: 263
  year: 2020
  ident: ref_38
  article-title: DMRAE: Discriminative manifold regularized auto-encoder for sparse and robust feature learning
  publication-title: Progress Artif. Intell.
  doi: 10.1007/s13748-020-00211-5
– volume: 9
  start-page: 40227
  year: 2021
  ident: ref_26
  article-title: Semi-supervised recurrent variational autoencoder approach for visual diagnosis of atrial fibrillation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064854
– ident: ref_10
  doi: 10.3390/s20236993
– volume: 22
  start-page: 6719
  year: 2018
  ident: ref_33
  article-title: Reliable fault diagnosis of bearings with varying rotational speeds using envelope spectrum and convolution neural networks
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3256-0
– ident: ref_19
  doi: 10.3390/s20010223
– volume: 10
  start-page: 1082
  year: 2017
  ident: ref_18
  article-title: Novel search space updating heuristics-based genetic algorithm for optimizing medium-scale airline crew pairing problems
  publication-title: Int. J. Comput. Int. Syst.
  doi: 10.2991/ijcis.2017.10.1.72
– volume: 87
  start-page: 54
  year: 2020
  ident: ref_36
  article-title: One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes
  publication-title: J. Process Contr.
  doi: 10.1016/j.jprocont.2020.01.004
– volume: 170
  start-page: 724
  year: 2021
  ident: ref_1
  article-title: Multichannel fault diagnosis of wind turbine driving system using multivariate singular spectrum decomposition and improved Kolmogorov complexity
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.02.011
– volume: 33
  start-page: 505
  year: 2019
  ident: ref_5
  article-title: Fault diagnosis of rolling element bearing based on artificial neural network
  publication-title: J. Meas. Sci. Technol.
– volume: 21
  start-page: 6476
  year: 2021
  ident: ref_28
  article-title: Semi-Supervised Bearing fault diagnosis and classification using variational autoencoder-based deep generative models
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3040696
– volume: 14
  start-page: 1137
  year: 2018
  ident: ref_39
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2793246
– volume: 92
  start-page: 106333
  year: 2020
  ident: ref_23
  article-title: Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106333
– volume: 18
  start-page: 1092
  year: 2019
  ident: ref_21
  article-title: Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718788299
– volume: 31
  start-page: 35004
  year: 2020
  ident: ref_22
  article-title: Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab55f8
– volume: 1
  start-page: 100007
  year: 2021
  ident: ref_4
  article-title: A predictive analytics model for COVID-19 pandemic using artificial neural networks
  publication-title: Decis. Anal. J.
  doi: 10.1016/j.dajour.2021.100007
– volume: 69
  start-page: 187
  year: 2017
  ident: ref_12
  article-title: Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.03.017
– ident: ref_27
  doi: 10.1007/s10845-021-01810-2
– volume: 454
  start-page: 324
  year: 2021
  ident: ref_29
  article-title: Implicit supervision for fault detection and segmentation of emerging fault types with deep variational autoencoders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.122
– volume: 76
  start-page: 103063
  year: 2020
  ident: ref_30
  article-title: Text feature extraction based on stacked variational autoencoder
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2020.103063
– ident: ref_8
  doi: 10.3390/s21010119
– ident: ref_15
– ident: ref_7
  doi: 10.3390/app7101004
– ident: ref_9
  doi: 10.3390/e23070816
– volume: 32
  start-page: 5139
  year: 2018
  ident: ref_32
  article-title: Fault diagnosis method of rolling bearing based on deep belief network
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-1012-0
– volume: 165
  start-page: 169
  year: 2019
  ident: ref_17
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– volume: 140
  start-page: 1
  year: 2017
  ident: ref_37
  article-title: Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
  publication-title: Knowl.-Based Syst.
– volume: 196
  start-page: 105764
  year: 2020
  ident: ref_14
  article-title: Ensemble deep contractive auto-encoders for intelligent fault diagnosis of machines under noisy environment
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105764
– volume: 226
  start-page: 107142
  year: 2021
  ident: ref_16
  article-title: Deep regularized variational autoencoder for intelligent fault diagnosis of rotor-bearing system within entire life-cycle process
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107142
– volume: 7
  start-page: 139086
  year: 2019
  ident: ref_20
  article-title: Motor fault detection and feature extraction using rnn-based variational autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940769
– ident: ref_24
  doi: 10.1109/TASE.2020.2969485
– volume: 5
  start-page: 15066
  year: 2017
  ident: ref_34
  article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728010
SSID ssj0023216
Score 2.4160728
Snippet Variational auto-encoders (VAE) have recently been successfully applied in the intelligent fault diagnosis of rolling bearings due to its self-learning ability...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 36
SubjectTerms Accuracy
Algorithms
Background noise
Bearings
Coders
Deep learning
Fault diagnosis
Feature extraction
Heuristic methods
Machine learning
Mathematical models
Neural networks
Noise
Noise reduction
Optimization
Optimization algorithms
Parameters
Robustness
Roller bearings
rolling bearing
seagull optimization algorithm
stacked variational denoising auto-encoder
Support vector machines
Teaching methods
Vibration analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMX1Apo0xZkEAcuVmM7Tpxjl3bFaeFQod4iPyYiUknQbpYDv74zSTbqVpW4cI1HymQ8nocz8w1jn5SulSu8FMHWTmTWR-Fy40QdgtXo4GJt_DBsolit7N1d-f3RqC-qCRvhgUfBXZZgNDhb-mCyjNoqqevAEHilhihDIOubFuUumZpSLa1kPuIIaUzqLwH9liTolT3vM4D0PxdZPi2QfORxlkfs1RQq8quRxWP2AtrXzFMNMbU78aXb3vf8eiyVaza8q_kC1ZZuvvlQCMBdy7-hRfjV_IXIMarEAxv5DySZLgD5NbRdM5BebftO3LTU4L5-w26XN7dfvoppToIImNz2IgeMSayzxmG0JWv0uLJ0qsBExKOpgzSLLpbK1DHIoGJpVAa21tq7VGsTvH7LDtquhVPGgzROR5A-DzErVGZDCTKaFEBRoCcT9nknvipMGOI0yuK-wlyCJF3Nkk7Yx5n09wic8RzRgvZgJiCs6-EBakA1aUD1Lw1I2MVuB6vpAG4qlaNPtqm2-I4P8zIeHfof4lrotgONUhbFYRJ2Mm74zImmAX9prhJW7KnCHqv7K23zc4DntiR5bc_-x7eds5eKimikEiq7YAf9egvv2GH40zeb9ftB5x8AUN0GgQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising Auto-Encoder
URI https://www.ncbi.nlm.nih.gov/pubmed/35052062
https://www.proquest.com/docview/2621280386
https://www.proquest.com/docview/2622285245
https://pubmed.ncbi.nlm.nih.gov/PMC8775338
https://doaj.org/article/9e53ea89bc54445888360548273ed1cc
Volume 24
WOSCitedRecordID wos000746260000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29j9MwFH_iWgYWPsRXjqMyiIHFamzHiTOhK9cKBkoFJ1SmyLEdiHQkR5vewMDfjl-SBopOTCwZ4jc4ed_2e78H8IKLguskZ9SoQtNI5ZbqWGpaGKOEd3C2kHk7bCJZLtV6na769uhtX1a5t4mtoe7QnrFu2xvhqa0NnphPeexNrgqFil9dfqc4QwrvWvuBGkcwRuCtcATj1dt3q89DAiY4izt0IeFT_anz3owhIMuBT2qh-6-LN_8um_zDDy3u_N8vuAu3-3iUnHYCdA9uuOo-5FiojD1VZKF3Fw056-rxyi2pCzLzuoHH66StNiC6Iu-92flW_nCW-NDVWwVLPnmS_pSRnLmqLlvS011T03mFXfSbB3C-mJ-_fkP7YQzU-Ay6obHzgY_SSmof0rHCu3WWap74bCf39tSFkdU25bKwhhluU8kjpwohch0KIU0uHsKoqiv3GIhhUgvrWB4bGyU8UiZ1zMrQOY7RJAvg5Z4bmemBynFexkXmExZkXDYwLoDnA-llh85xHdEMWToQIKB2-6LefMl6_cxSJ4XTKs2Nlxzs3sXmFokYqcJZZkwAJ3umZr2Wb7PfPAzg2bDs9RMvXXTl6l1Lw7nyv0MG8KiTn2EnAqcIhjEPIDmQrIOtHq5U5dcWA1zhnxfq-N_begK3ONbgME55dAKjZrNzT-GmuWrK7WYCR8laTWA8my9XHybtacQEa18_4vPnfNKrzy8yJCfx
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceIhXoIBBIHGJGttx1jkg1LJdddV22cMKlVPk2A6sVJKyDxD8J_4jM0k2sKji1gPXeBRN7M_fjON5ALwQshCmn_PQ6sKEsc5daBJlwsJaLdHAuULldbOJ_nisT0_TyRb8XOfCUFjlmhNronaVpX_kuyJBktWR1Mmb8y8hdY2i29V1C40GFkf--zc8si1ejwa4vi-FGB5M3x6GbVeB0OJRcBkmHi24NloZ9E14gfaJp0b00W3PkRh8FDvjUqEKZ7kVLlUi9rqQMjeRlMrmEl97BbZjxHrUg-3J6GTyoTvhScGTpnyRlGm069Fccqr4smH06t4AFzm0f8dl_mHohjf_sym6BTdaj5rtNVvgNmz58g7kFGpNWWFsaFZnSzZoIgpnC1YVbB91pAsCVsdLMFOyd0icn2c_vGPofCOvOfYeRdr_pGzgy2pWi-6tllV4UFIdgPldmF7GV92DXlmV_gEwy5WRzvM8sS7ui1jb1HOnIu8F-cM8gFfr5c5sW2qdOn6cZXjkImRkHTICeN6Jnjf1RS4S2ifMdAJUErx-UM0_Zi3DZKlX0hud5lbFMeUfU3qOoiqv0jtubQA7a9RkLU8tst-QCeBZN4wMQ9dGpvTVqpYRQuN0qADuNwDtNJHUBzFKRAD9DehuqLo5Us4-1VXMNc281A__rdZTuHY4PTnOjkfjo0dwXVBEERehiHegt5yv_GO4ar8uZ4v5k3YvMsguGdq_AKS4cTw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJceIhXoIBBIHGJNrbjxDkg1GV3RVW0VKhCvUWO7cBKJSn7AME_498xk2QDiypuPXCNR5Fjf_5mJp4HwDMhS2HSgodWlyaMdeFCkygTltZqiQrOlapomk2ks5k-OcmOduDnJheGwio3nNgQtast_SMfigRJVkdSJ8OyC4s4Gk9fnX0JqYMU3bRu2mm0EDn037-h-7Z8eTDGvX4uxHRy_PpN2HUYCC26hasw8ajNtdHKoJ3CS9RVPDMiRRO-QJLwUeyMy4QqneVWuEyJ2OtSysJEUipbSHztJdhNJfo8A9gdTWZH73tvTwqetKWMpMyioUfVyan6y5YCbPoEnGfc_h2j-YfSm17_j5frBlzrLG223x6Nm7Djq1tQUAg2ZYuxqVmfrti4jTScL1ldshHOkS4OWBNHwUzF3iGhfp7_8I6hUY5859gHFOn-n7Kxr-p5I7q_XtXhpKL6AIvbcHwRX3UHBlVd-XvALFdGOs-LxLo4FbG2medORd4LspN5AC82W5_brgQ7dQI5zdEVI5TkPUoCeNqLnrV1R84TGhF-egEqFd48qBcf84558swr6Y3OCqvimPKSKW1HUfVX6R23NoC9DYLyjr-W-W_4BPCkH0bmoeskU_l63cgIoXE5VAB3W7D2M5HUHzFKRADpFoy3pro9Us0_NdXNNa281Pf_Pa3HcAXxnL89mB0-gKuCAo24CEW8B4PVYu0fwmX7dTVfLh51x5JBfsHI_gWWJnnW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+Fault+Diagnosis+of+Bearings+Using+an+Optimized+Stacked+Variational+Denoising+Auto-Encoder&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Xiaoan+Yan&rft.au=Xu%2C+Yadong&rft.au=She%2C+Daoming&rft.au=Zhang%2C+Wan&rft.date=2021-12-24&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=1&rft.spage=36&rft_id=info:doi/10.3390%2Fe24010036&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon