Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines

Morphological attribute filters have not previously been parallelized, mainly because they are both global and non-separable. We propose a parallel algorithm which achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings and thickenings...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 30; no. 10; pp. 1800 - 1813
Main Authors: Wilkinson, M.H.F., Hui Gao, Hesselink, W.H., Jonker, J.-E., Meijster, A.
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.10.2008
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Morphological attribute filters have not previously been parallelized, mainly because they are both global and non-separable. We propose a parallel algorithm which achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings and thickenings, based on Salembier's Max-Trees and Min-trees. The image or volume is first partitioned in multiple slices. We then compute the Max-trees of each slice using any sequential Max-Tree algorithm. Subsequently, the Max-trees of the slices can be merged to obtain the Max-tree of the image. A C-implementation yielded good speed-ups on both a 16-processor MIPS 14000 parallel machine, and a dual-core Opteron-based machine. It is shown that the speed-up of the parallel algorithm is a direct measure of the gain with respect to the sequential algorithm used. Furthermore, the concurrent algorithm shows a speed gain of up to 72% on a single-core processor, due to reduced cache thrashing.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2007.70836