A Machine Learning-based Algorithm for Water Network Contamination Source Localization

In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 20; číslo 9; s. 2613
Hlavní autori: Grbčić, Luka, Lučin, Ivana, Kranjčević, Lado, Družeta, Siniša
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 03.05.2020
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random Forests for regression analysis to determine significant variables of a contamination event such as start time, end time and contaminant chemical concentration. The algorithm is based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data with sensors placed within a water supply network and selecting a most probable pollution source based on a tournament style selection between suspect nodes in a network with mentioned machine learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time, end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the algorithm’s tournament style selection for 30/30 runs for the small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small sensor network, the true contamination event scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of contamination leading to a pollution source identification, start and ending time of the event and the contaminant chemical concentration.
AbstractList In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random Forests for regression analysis to determine significant variables of a contamination event such as start time, end time and contaminant chemical concentration. The algorithm is based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data with sensors placed within a water supply network and selecting a most probable pollution source based on a tournament style selection between suspect nodes in a network with mentioned machine learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time, end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the algorithm’s tournament style selection for 30/30 runs for the small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small sensor network, the true contamination event scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of contamination leading to a pollution source identification, start and ending time of the event and the contaminant chemical concentration.
In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random Forests for regression analysis to determine significant variables of a contamination event such as start time, end time and contaminant chemical concentration. The algorithm is based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data with sensors placed within a water supply network and selecting a most probable pollution source based on a tournament style selection between suspect nodes in a network with mentioned machine learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time, end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the algorithm's tournament style selection for 30/30 runs for the small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small sensor network, the true contamination event scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of contamination leading to a pollution source identification, start and ending time of the event and the contaminant chemical concentration.In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random Forests for regression analysis to determine significant variables of a contamination event such as start time, end time and contaminant chemical concentration. The algorithm is based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data with sensors placed within a water supply network and selecting a most probable pollution source based on a tournament style selection between suspect nodes in a network with mentioned machine learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time, end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the algorithm's tournament style selection for 30/30 runs for the small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small sensor network, the true contamination event scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of contamination leading to a pollution source identification, start and ending time of the event and the contaminant chemical concentration.
Author Lučin, Ivana
Kranjčević, Lado
Družeta, Siniša
Grbčić, Luka
AuthorAffiliation 2 Center for Advanced Computing and Modelling, University of Rijeka, 51000 Rijeka, Croatia
1 Department of Fluid Mechanics and Computational Engineering, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; lgrbcic@riteh.hr (L.G.); ilucin@riteh.hr (I.L.); sinisa.druzeta@riteh.hr (S.D.)
AuthorAffiliation_xml – name: 2 Center for Advanced Computing and Modelling, University of Rijeka, 51000 Rijeka, Croatia
– name: 1 Department of Fluid Mechanics and Computational Engineering, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; lgrbcic@riteh.hr (L.G.); ilucin@riteh.hr (I.L.); sinisa.druzeta@riteh.hr (S.D.)
Author_xml – sequence: 1
  givenname: Luka
  orcidid: 0000-0003-0377-686X
  surname: Grbčić
  fullname: Grbčić, Luka
– sequence: 2
  givenname: Ivana
  orcidid: 0000-0002-5839-3156
  surname: Lučin
  fullname: Lučin, Ivana
– sequence: 3
  givenname: Lado
  orcidid: 0000-0001-7469-3135
  surname: Kranjčević
  fullname: Kranjčević, Lado
– sequence: 4
  givenname: Siniša
  surname: Družeta
  fullname: Družeta, Siniša
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32375289$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEQgC1URNvAgT-AVuJCD0v9Wq99QYoiCpUCHHgdLa93NnHYtVvbAcGvx01K1FacbNnffB7PzCk68sEDQs8Jfs2YwueJYqyoIOwROiGc8lpSio_u7I_RaUobjCljTD5Bx4yytqFSnaBv8-qDsWvnoVqCid75Vd2ZBH01H1churyeqiHE6rvJEKuPkH-F-KNaBJ_N5LzJLvjqc9hGW-KDNaP7szt7ih4PZkzw7Hadoa8Xb78s3tfLT-8uF_NlbblQuRZqYNDgjnS4s6SXgzLKCGmx4i0MtGctgFEgCVPEsJ7jFjeKMN6KRmGlejZDl3tvH8xGX0U3mfhbB-P07iDElTYxOzuCLkJGLQPRCcIl3DxoBJHSmo5RKPoZerN3XW27CXoLPkcz3pPev_FurVfhp24ply3nRfDqVhDD9RZS1pNLFsbReAjbpClTSjJMqCroywfophTRl1LtKMFEK5tCvbib0SGVf-0rwNkesDGkFGE4IATrm9HQh9Eo7PkD1rq8a1b5jBv_E_EXDWy5jw
CitedBy_id crossref_primary_10_2166_hydro_2020_042
crossref_primary_10_1016_j_ymssp_2021_107834
crossref_primary_10_2166_hydro_2024_299
crossref_primary_10_1016_j_jclepro_2024_144171
crossref_primary_10_1016_j_advwatres_2021_104051
crossref_primary_10_3390_s21010245
crossref_primary_10_1016_j_arcontrol_2023_03_011
crossref_primary_10_3390_en16020705
crossref_primary_10_3390_s21041157
crossref_primary_10_3390_s21196383
crossref_primary_10_1016_j_jenvman_2023_119806
crossref_primary_10_3390_resources9110132
crossref_primary_10_3390_su17135810
Cites_doi 10.1061/(ASCE)0733-9496(2008)134:6(556)
10.1016/j.swevo.2020.100674
10.1061/40976(316)502
10.1007/s10586-017-0787-6
10.1061/(ASCE)WR.1943-5452.0000777
10.1016/j.jconhyd.2017.11.002
10.1016/j.engappai.2011.10.009
10.3390/s18040938
10.1023/A:1010933404324
10.1016/j.proeng.2014.11.229
10.3390/w10050579
10.1061/(ASCE)0733-9496(2006)132:4(234)
10.1061/(ASCE)0733-9496(2009)135:6(466)
10.1016/j.atmosenv.2013.02.051
10.1061/(ASCE)0733-9496(2009)135:5(334)
10.1007/s11356-017-0516-y
10.1061/(ASCE)WR.1943-5452.0000162
10.1080/15730620802566836
10.1080/15275920903140486
10.1061/(ASCE)0733-9496(2010)136:1(48)
10.1016/j.watres.2007.09.032
10.1080/03052150701540670
10.1016/j.eswa.2010.04.019
10.1061/40976(316)512
10.1061/(ASCE)WR.1943-5452.0000288
10.1016/j.ifacol.2018.09.523
10.1016/j.envsoft.2015.10.030
10.1016/j.ijheatmasstransfer.2009.03.028
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20092613
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_7ef32c3e6b6148e0bc1a6188cab32e1a
PMC7248744
32375289
10_3390_s20092613
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-69f3e50b1b0bc1d8f9a9a68c0947ef2d37eea9e81391a3d4070591347659099d3
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537106200177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:40:36 EDT 2025
Tue Nov 04 01:47:00 EST 2025
Sun Nov 09 13:33:37 EST 2025
Tue Oct 07 07:07:28 EDT 2025
Wed Feb 19 02:31:37 EST 2025
Tue Nov 18 22:39:55 EST 2025
Sat Nov 29 07:09:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords artificial neural networks
random forests
sensor networks
water network pollution
machine learning
parallel computing
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-69f3e50b1b0bc1d8f9a9a68c0947ef2d37eea9e81391a3d4070591347659099d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5839-3156
0000-0001-7469-3135
0000-0003-0377-686X
0000-0003-2150-3398
OpenAccessLink https://doaj.org/article/7ef32c3e6b6148e0bc1a6188cab32e1a
PMID 32375289
PQID 2399636785
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_7ef32c3e6b6148e0bc1a6188cab32e1a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7248744
proquest_miscellaneous_2399830129
proquest_journals_2399636785
pubmed_primary_32375289
crossref_primary_10_3390_s20092613
crossref_citationtrail_10_3390_s20092613
PublicationCentury 2000
PublicationDate 20200503
PublicationDateYYYYMMDD 2020-05-03
PublicationDate_xml – month: 5
  year: 2020
  text: 20200503
  day: 3
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Vesselinov (ref_28) 2018; 212
Perelman (ref_16) 2013; 139
ref_13
ref_31
ref_30
Kerachian (ref_27) 2010; 37
Preis (ref_7) 2007; 39
Breiman (ref_33) 2001; 45
Pedregosa (ref_32) 2011; 12
ref_17
Hu (ref_6) 2020; 55
ref_15
Guidorzi (ref_4) 2009; 6
(ref_9) 2010; 30
Yan (ref_12) 2019; 26
Shen (ref_18) 2011; 138
Huang (ref_19) 2009; 135
Zhao (ref_2) 2016; 76
Alfonso (ref_5) 2010; 136
Xuesong (ref_11) 2017; 20
ref_24
Rutkowski (ref_23) 2018; 51
Wade (ref_26) 2013; 74
Guo (ref_25) 2009; 52
Ung (ref_3) 2017; 143
Liu (ref_21) 2012; 25
ref_29
Kim (ref_22) 2008; 42
Ostfeld (ref_1) 2008; 134
Dawsey (ref_14) 2006; 132
Zechman (ref_8) 2009; 135
Vankayala (ref_10) 2009; 10
Eliades (ref_20) 2014; 89
References_xml – volume: 134
  start-page: 556
  year: 2008
  ident: ref_1
  article-title: The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2008)134:6(556)
– ident: ref_30
– volume: 55
  start-page: 100674
  year: 2020
  ident: ref_6
  article-title: Multi-objective based scheduling algorithm for sudden drinking water contamination incident
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100674
– ident: ref_17
  doi: 10.1061/40976(316)502
– volume: 20
  start-page: 1007
  year: 2017
  ident: ref_11
  article-title: Research on contaminant sources identification of uncertainty water demand using genetic algorithm
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-0787-6
– volume: 30
  start-page: 11
  year: 2010
  ident: ref_9
  article-title: Contamination source detection in water distribution networks
  publication-title: Eng. Rev.
– volume: 143
  start-page: 04017032
  year: 2017
  ident: ref_3
  article-title: Accurate and Optimal Sensor Placement for Source Identification of Water Distribution Networks
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000777
– volume: 212
  start-page: 134
  year: 2018
  ident: ref_28
  article-title: Contaminant source identification using semi-supervised machine learning
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2017.11.002
– volume: 25
  start-page: 309
  year: 2012
  ident: ref_21
  article-title: Coupling of logistic regression analysis and local search methods for characterization of water distribution system contaminant source
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2011.10.009
– ident: ref_24
  doi: 10.3390/s18040938
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_33
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 89
  start-page: 1089
  year: 2014
  ident: ref_20
  article-title: Contamination event detection in water distribution systems using a model-based approach
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.11.229
– ident: ref_13
  doi: 10.3390/w10050579
– volume: 132
  start-page: 234
  year: 2006
  ident: ref_14
  article-title: Bayesian belief networks to integrate monitoring evidence of water distribution system contamination
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2006)132:4(234)
– volume: 135
  start-page: 466
  year: 2009
  ident: ref_19
  article-title: Data mining to identify contaminant event locations in water distribution systems
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2009)135:6(466)
– volume: 74
  start-page: 45
  year: 2013
  ident: ref_26
  article-title: Stochastic reconstruction of multiple source atmospheric contaminant dispersion events
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.02.051
– volume: 135
  start-page: 334
  year: 2009
  ident: ref_8
  article-title: Evolutionary computation-based methods for characterizing contaminant sources in a water distribution system
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2009)135:5(334)
– volume: 26
  start-page: 17901
  year: 2019
  ident: ref_12
  article-title: Pollution source localization in an urban water supply network based on dynamic water demand
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0516-y
– volume: 138
  start-page: 230
  year: 2011
  ident: ref_18
  article-title: False negative/positive issues in contaminant source identification for water-distribution systems
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000162
– ident: ref_31
– volume: 6
  start-page: 115
  year: 2009
  ident: ref_4
  article-title: A multi-objective approach for detecting and responding to accidental and intentional contamination events in water distribution systems
  publication-title: Urban Water J.
  doi: 10.1080/15730620802566836
– ident: ref_29
– volume: 10
  start-page: 253
  year: 2009
  ident: ref_10
  article-title: Contaminant source identification in water distribution networks under conditions of demand uncertainty
  publication-title: Environ. Forensics
  doi: 10.1080/15275920903140486
– volume: 136
  start-page: 48
  year: 2010
  ident: ref_5
  article-title: Multiobjective optimization of operational responses for contaminant flushing in water distribution networks
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)0733-9496(2010)136:1(48)
– volume: 42
  start-page: 1308
  year: 2008
  ident: ref_22
  article-title: Source tracking of microbial intrusion in water systems using artificial neural networks
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.09.032
– volume: 39
  start-page: 941
  year: 2007
  ident: ref_7
  article-title: A contamination source identification model for water distribution system security
  publication-title: Eng. Optim.
  doi: 10.1080/03052150701540670
– volume: 37
  start-page: 7154
  year: 2010
  ident: ref_27
  article-title: Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.04.019
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_32
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_15
  doi: 10.1061/40976(316)512
– volume: 139
  start-page: 426
  year: 2013
  ident: ref_16
  article-title: Bayesian networks for source intrusion detection
  publication-title: J. Water Resour. Plan. Manag.
  doi: 10.1061/(ASCE)WR.1943-5452.0000288
– volume: 51
  start-page: 15
  year: 2018
  ident: ref_23
  article-title: Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.523
– volume: 76
  start-page: 128
  year: 2016
  ident: ref_2
  article-title: New formulation and optimization methods for water sensor placement
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.10.030
– volume: 52
  start-page: 3955
  year: 2009
  ident: ref_25
  article-title: Source identification for unsteady atmospheric dispersion of hazardous materials using Markov Chain Monte Carlo method
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.03.028
SSID ssj0023338
Score 2.4187949
Snippet In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2613
SubjectTerms Air pollution
artificial neural networks
Groundwater
Hydraulics
Identification
Machine learning
Neural networks
Optimization algorithms
parallel computing
random forests
Regression analysis
sensor networks
Sensors
Simulation
Support vector machines
water network pollution
Water quality
Water shortages
Water supply
SummonAdditionalLinks – databaseName: ProQuest Publicly Available Content
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-xsofxAOyTMJi8aQ97sdrESew8TWUaYtKoKu2LPUW24xQkSKEt_P3cOW7WTmhPk_IUnyI75_uy734H8L6qlcpMrXmqrOVpLRwn0HaurHIu06LWxvpmE3I0UmdnxTiUR89DWuVSJ3pF3aI9U942KuF-NbV0Yt6nisxcoKLNPl7fcOohRXetoaHGI9gk4K1BDzbHX07Hv7sATGA81qILCQz1-3OPOOQ7G6zYJA_d_5C_-Xfa5IodOt75vyvYhe3gj7Jhu4GewoZrnsHWCkrhc_g5ZKc-5dKxgMY64WT8Kja8nOAnF-dXDF1f9gvd1hkbtXnljGCvNOXZEOfZN39HwL6S5QyVny_gx_Hn759OeGjHwC3G0AueF8jJbGBiMzA2rlRd6ELnymKAKF2dVEI6pwun0KeMtagwUkTXjSpV86xAP7QSL6HXTBu3B0w5ITMrXFxrmaYyNbVURhRVEtNTpBF8WDKktAGrnFpmXJYYsxDvyo53EbzrSK9bgI6HiI6Iqx0BYWr7F9PZpAwiWuIiRIKTyg2BozpapM5jpaw2InGxjuBgydcyCPq8_MPGCN52wyiidO-iGze9bWmUoBO_CF61W6ibiUjwT2DQG4Fc21xrU10faS7OPQy4TFLqXbD_72m9hicJHRFQjqY4gN5idusO4bG9W1zMZ2-ChNwDNBckrQ
  priority: 102
  providerName: ProQuest
Title A Machine Learning-based Algorithm for Water Network Contamination Source Localization
URI https://www.ncbi.nlm.nih.gov/pubmed/32375289
https://www.proquest.com/docview/2399636785
https://www.proquest.com/docview/2399830129
https://pubmed.ncbi.nlm.nih.gov/PMC7248744
https://doaj.org/article/7ef32c3e6b6148e0bc1a6188cab32e1a
Volume 20
WOSCitedRecordID wos000537106200177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFH4ajAMcJsaAhUHlTTvsEtHESWwfCyrapLWqGLByimzHASSWorZw3G_fe04atQiJy6TIh9gH53u23vuc5-8BfC1KKVNT6jCR1oZJyV1Iou2htNK5VPNSG-uLTYjhUI7HarRU6otywmp54Bq4Y-FKHlvuMkOSla5rbKSzSEqrDY9d5EOjrlALMtVQLY7Mq9YR4kjqj2deW8jXMFjyPl6k_6XI8nmC5JLHOduGd02oyHr1FN_DG1ftwNaSgOAHuOqxgc-GdKwRSr0JyS8VrHd_M0Hef_uHYVTKfmNEOWXDOuWbkSKVphQYMgr75Y_v2U9yas2lzF24POtfnH4Pm0oJoUV6Ow8zhSCnXRMZwqeQpdJKZ9Iid0P84oIL57RyEsO9SPMCSRxGVXSJNEsVhogF34P1alK5j8Ck4yJFvKNSiyQRiSmFNFwVcUSPSgL4tkAwt42MOFWzuM-RThDYeQt2AF_aoQ-1dsZLg07IDO0Akrv2L3AR5M0iyF9bBAEcLoyYN3twltOt3YyjM04D-Nx24-6hXyK6cpPHeozkdBgXwH5t83YmPEYkkI8GIFZWw8pUV3uqu1uv0C3ihMoKHPyPb_sEmzFxfEqy5IewPp8-uiPYsE_zu9m0A2tiLHwrO_D2pD8cnXf8VsB28LeP70Y_BqPrf3yNEIU
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAl64A1dKGAQSFxWzdr7sA8IhUfVqEkUiQLltHi93rRSu2mTFMSf4jcy432QoIpbD0h72rVWY_vzeMae-QbgRV5IGWWF9kNpjB8WwvpE2u5LI62NtCh0ZlyxiWQ0kgcHarwGv5pcGAqrbHSiU9T51NAZ-TblYMYCVWv05vTMp6pRdLvalNCoYLFnf_5Al23-uv8e5_cl5zsf9t_t-nVVAd-gK7jwY4UCRd0syLqZCXJZKK10LA36OYkteC4Sa7WyEk2jQIscHR60QCjhMo4UmlO5wP9egfUQwd7twPq4Pxx_bV08gR5fxV8khOpuzx2nkaudsLTrueIAF1m0fwdmLu10Ozf_tzG6BTdqm5r1qkVwG9ZseQc2lpgW78LnHhu6sFHLakbZiU8beM56xxPswuLwhKH5zr6g6T1joyo2nhF1l6ZYIUIv--juOdiAdv86e_UefLqUjt2HTjkt7SYwaUUSGWGDQidhmIRZkchMqJwH9KjQg1fNlKem5lunsh_HKfpdhI60RYcHz9umpxXJyEWN3hJu2gbEC-5eTGeTtFYzKXZCcBQqzojg1VIndRxIaXQmuA20B1sNctJaWc3TP7Dx4Fn7GdUM3R3p0k7PqzZS0KmlBw8qkLaSCI4jgY67B8kKfFdEXf1SHh06KvOEh1R_4eG_xXoK13b3h4N00B_tPYLrnI48KOZUbEFnMTu3j-Gq-b44ms-e1OuRwbfLhvdvGK90gg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiF64P0IFDAIJC7RbuIkdg4IbWlXVC3RimdvwXGcbaWSbXe3oP61_jpmHCfsoopbD0g5xVY0Tr6M57PH3wC8LCsp46JSfiS19qOKG59E232ppTGx4pUqtC02IbJM7u-noxU4b8_CUFpl6xOtoy4nmtbIe3QGM-HoWuNe5dIiRlvDt8cnPlWQop3WtpxGA5Fdc_YL6dvszc4WfutXYTjc_vzuve8qDPgaaeHcT1I0Lu4XQdEvdFDKKlWpSqRGziNMFZZcGKNSIzFMChQvkfxgNEKHL5M4xdCq5PjcK7AmsBmJ39rmdjb62NE9juyv0TLiPO33ZlbfyNZRWJgBbaGAi6Lbv5M0F2a94c3_-X3dghsu1maD5ue4DSumvgPrCwqMd-HrgH2w6aSGOaXZsU8Te8kGR2McwvzgB8Ownn3DkHzKsiZnnpGkl6IcIkI1-2T3P9geRQXuVOs9-HIpA7sPq_WkNg-BScNFrLkJKiWiSERFJWTB0zIM6EojD163nz_XToedyoEc5cjHCCl5hxQPXnRdjxvxkYs6bRKGug6kF25vTKbj3LmfHAfBQzQqKUj41dAgVRJIqVXBQxMoDzZaFOXOic3yPxDy4HnXjO6H9pRUbSanTR_JaTXTgwcNYDtLeIhvAgm9B2IJykumLrfUhwdW4lyEEdVlePRvs57BNcR0vreT7T6G6yGthFAqKt-A1fn01DyBq_rn_HA2fep-TQbfLxvdvwFGqn0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning-based+Algorithm+for+Water+Network+Contamination+Source+Localization&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Luka+Grb%C4%8Di%C4%87&rft.au=Ivana+Lu%C4%8Din&rft.au=Lado+Kranj%C4%8Devi%C4%87&rft.au=Sini%C5%A1a+Dru%C5%BEeta&rft.date=2020-05-03&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=9&rft.spage=2613&rft_id=info:doi/10.3390%2Fs20092613&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7ef32c3e6b6148e0bc1a6188cab32e1a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon