A Machine Learning-based Algorithm for Water Network Contamination Source Localization
In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 20; číslo 9; s. 2613 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
03.05.2020
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random Forests for regression analysis to determine significant variables of a contamination event such as start time, end time and contaminant chemical concentration. The algorithm is based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data with sensors placed within a water supply network and selecting a most probable pollution source based on a tournament style selection between suspect nodes in a network with mentioned machine learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time, end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the algorithm’s tournament style selection for 30/30 runs for the small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small sensor network, the true contamination event scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of contamination leading to a pollution source identification, start and ending time of the event and the contaminant chemical concentration. |
|---|---|
| AbstractList | In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random Forests for regression analysis to determine significant variables of a contamination event such as start time, end time and contaminant chemical concentration. The algorithm is based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data with sensors placed within a water supply network and selecting a most probable pollution source based on a tournament style selection between suspect nodes in a network with mentioned machine learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time, end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the algorithm’s tournament style selection for 30/30 runs for the small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small sensor network, the true contamination event scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of contamination leading to a pollution source identification, start and ending time of the event and the contaminant chemical concentration. In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random Forests for regression analysis to determine significant variables of a contamination event such as start time, end time and contaminant chemical concentration. The algorithm is based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data with sensors placed within a water supply network and selecting a most probable pollution source based on a tournament style selection between suspect nodes in a network with mentioned machine learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time, end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the algorithm's tournament style selection for 30/30 runs for the small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small sensor network, the true contamination event scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of contamination leading to a pollution source identification, start and ending time of the event and the contaminant chemical concentration.In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance parallel systems. The algorithm utilizes the combination of Artificial Neural Networks for classification of the pollution source with Random Forests for regression analysis to determine significant variables of a contamination event such as start time, end time and contaminant chemical concentration. The algorithm is based on performing Monte Carlo water quality and hydraulic simulations in parallel, recording data with sensors placed within a water supply network and selecting a most probable pollution source based on a tournament style selection between suspect nodes in a network with mentioned machine learning methods. The novel algorithmic framework is tested on a small (92 nodes) and medium sized (865 nodes) water supply sensor network benchmarks with a set contamination event start time, end time and chemical concentration. Out of the 30 runs, the true source node was the finalist of the algorithm's tournament style selection for 30/30 runs for the small network, and 29/30 runs for the medium sized network. For all the 30 runs on the small sensor network, the true contamination event scenario start time, end time and chemical concentration was set as 14:20, 20:20 and 813.7 mg/L, respectively. The root mean square errors for all 30 algorithm runs for the three variables were 48 min, 4.38 min and 18.06 mg/L. For the 29 successful medium sized network runs the start time was 06:50, end time 07:40 and chemical concentration of 837 mg/L and the root mean square errors were 6.06 min, 12.36 min and 299.84 mg/L. The algorithmic framework successfully narrows down the potential sources of contamination leading to a pollution source identification, start and ending time of the event and the contaminant chemical concentration. |
| Author | Lučin, Ivana Kranjčević, Lado Družeta, Siniša Grbčić, Luka |
| AuthorAffiliation | 2 Center for Advanced Computing and Modelling, University of Rijeka, 51000 Rijeka, Croatia 1 Department of Fluid Mechanics and Computational Engineering, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; lgrbcic@riteh.hr (L.G.); ilucin@riteh.hr (I.L.); sinisa.druzeta@riteh.hr (S.D.) |
| AuthorAffiliation_xml | – name: 2 Center for Advanced Computing and Modelling, University of Rijeka, 51000 Rijeka, Croatia – name: 1 Department of Fluid Mechanics and Computational Engineering, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; lgrbcic@riteh.hr (L.G.); ilucin@riteh.hr (I.L.); sinisa.druzeta@riteh.hr (S.D.) |
| Author_xml | – sequence: 1 givenname: Luka orcidid: 0000-0003-0377-686X surname: Grbčić fullname: Grbčić, Luka – sequence: 2 givenname: Ivana orcidid: 0000-0002-5839-3156 surname: Lučin fullname: Lučin, Ivana – sequence: 3 givenname: Lado orcidid: 0000-0001-7469-3135 surname: Kranjčević fullname: Kranjčević, Lado – sequence: 4 givenname: Siniša surname: Družeta fullname: Družeta, Siniša |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32375289$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktvEzEQgC1URNvAgT-AVuJCD0v9Wq99QYoiCpUCHHgdLa93NnHYtVvbAcGvx01K1FacbNnffB7PzCk68sEDQs8Jfs2YwueJYqyoIOwROiGc8lpSio_u7I_RaUobjCljTD5Bx4yytqFSnaBv8-qDsWvnoVqCid75Vd2ZBH01H1churyeqiHE6rvJEKuPkH-F-KNaBJ_N5LzJLvjqc9hGW-KDNaP7szt7ih4PZkzw7Hadoa8Xb78s3tfLT-8uF_NlbblQuRZqYNDgjnS4s6SXgzLKCGmx4i0MtGctgFEgCVPEsJ7jFjeKMN6KRmGlejZDl3tvH8xGX0U3mfhbB-P07iDElTYxOzuCLkJGLQPRCcIl3DxoBJHSmo5RKPoZerN3XW27CXoLPkcz3pPev_FurVfhp24ply3nRfDqVhDD9RZS1pNLFsbReAjbpClTSjJMqCroywfophTRl1LtKMFEK5tCvbib0SGVf-0rwNkesDGkFGE4IATrm9HQh9Eo7PkD1rq8a1b5jBv_E_EXDWy5jw |
| CitedBy_id | crossref_primary_10_2166_hydro_2020_042 crossref_primary_10_1016_j_ymssp_2021_107834 crossref_primary_10_2166_hydro_2024_299 crossref_primary_10_1016_j_jclepro_2024_144171 crossref_primary_10_1016_j_advwatres_2021_104051 crossref_primary_10_3390_s21010245 crossref_primary_10_1016_j_arcontrol_2023_03_011 crossref_primary_10_3390_en16020705 crossref_primary_10_3390_s21041157 crossref_primary_10_3390_s21196383 crossref_primary_10_1016_j_jenvman_2023_119806 crossref_primary_10_3390_resources9110132 crossref_primary_10_3390_su17135810 |
| Cites_doi | 10.1061/(ASCE)0733-9496(2008)134:6(556) 10.1016/j.swevo.2020.100674 10.1061/40976(316)502 10.1007/s10586-017-0787-6 10.1061/(ASCE)WR.1943-5452.0000777 10.1016/j.jconhyd.2017.11.002 10.1016/j.engappai.2011.10.009 10.3390/s18040938 10.1023/A:1010933404324 10.1016/j.proeng.2014.11.229 10.3390/w10050579 10.1061/(ASCE)0733-9496(2006)132:4(234) 10.1061/(ASCE)0733-9496(2009)135:6(466) 10.1016/j.atmosenv.2013.02.051 10.1061/(ASCE)0733-9496(2009)135:5(334) 10.1007/s11356-017-0516-y 10.1061/(ASCE)WR.1943-5452.0000162 10.1080/15730620802566836 10.1080/15275920903140486 10.1061/(ASCE)0733-9496(2010)136:1(48) 10.1016/j.watres.2007.09.032 10.1080/03052150701540670 10.1016/j.eswa.2010.04.019 10.1061/40976(316)512 10.1061/(ASCE)WR.1943-5452.0000288 10.1016/j.ifacol.2018.09.523 10.1016/j.envsoft.2015.10.030 10.1016/j.ijheatmasstransfer.2009.03.028 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s20092613 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Open Access资源_DOAJ |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_7ef32c3e6b6148e0bc1a6188cab32e1a PMC7248744 32375289 10_3390_s20092613 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c469t-69f3e50b1b0bc1d8f9a9a68c0947ef2d37eea9e81391a3d4070591347659099d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537106200177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:40:36 EDT 2025 Tue Nov 04 01:47:00 EST 2025 Sun Nov 09 13:33:37 EST 2025 Tue Oct 07 07:07:28 EDT 2025 Wed Feb 19 02:31:37 EST 2025 Tue Nov 18 22:39:55 EST 2025 Sat Nov 29 07:09:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | artificial neural networks random forests sensor networks water network pollution machine learning parallel computing |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-69f3e50b1b0bc1d8f9a9a68c0947ef2d37eea9e81391a3d4070591347659099d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5839-3156 0000-0001-7469-3135 0000-0003-0377-686X 0000-0003-2150-3398 |
| OpenAccessLink | https://doaj.org/article/7ef32c3e6b6148e0bc1a6188cab32e1a |
| PMID | 32375289 |
| PQID | 2399636785 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7ef32c3e6b6148e0bc1a6188cab32e1a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7248744 proquest_miscellaneous_2399830129 proquest_journals_2399636785 pubmed_primary_32375289 crossref_primary_10_3390_s20092613 crossref_citationtrail_10_3390_s20092613 |
| PublicationCentury | 2000 |
| PublicationDate | 20200503 |
| PublicationDateYYYYMMDD | 2020-05-03 |
| PublicationDate_xml | – month: 5 year: 2020 text: 20200503 day: 3 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Vesselinov (ref_28) 2018; 212 Perelman (ref_16) 2013; 139 ref_13 ref_31 ref_30 Kerachian (ref_27) 2010; 37 Preis (ref_7) 2007; 39 Breiman (ref_33) 2001; 45 Pedregosa (ref_32) 2011; 12 ref_17 Hu (ref_6) 2020; 55 ref_15 Guidorzi (ref_4) 2009; 6 (ref_9) 2010; 30 Yan (ref_12) 2019; 26 Shen (ref_18) 2011; 138 Huang (ref_19) 2009; 135 Zhao (ref_2) 2016; 76 Alfonso (ref_5) 2010; 136 Xuesong (ref_11) 2017; 20 ref_24 Rutkowski (ref_23) 2018; 51 Wade (ref_26) 2013; 74 Guo (ref_25) 2009; 52 Ung (ref_3) 2017; 143 Liu (ref_21) 2012; 25 ref_29 Kim (ref_22) 2008; 42 Ostfeld (ref_1) 2008; 134 Dawsey (ref_14) 2006; 132 Zechman (ref_8) 2009; 135 Vankayala (ref_10) 2009; 10 Eliades (ref_20) 2014; 89 |
| References_xml | – volume: 134 start-page: 556 year: 2008 ident: ref_1 article-title: The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2008)134:6(556) – ident: ref_30 – volume: 55 start-page: 100674 year: 2020 ident: ref_6 article-title: Multi-objective based scheduling algorithm for sudden drinking water contamination incident publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100674 – ident: ref_17 doi: 10.1061/40976(316)502 – volume: 20 start-page: 1007 year: 2017 ident: ref_11 article-title: Research on contaminant sources identification of uncertainty water demand using genetic algorithm publication-title: Cluster Comput. doi: 10.1007/s10586-017-0787-6 – volume: 30 start-page: 11 year: 2010 ident: ref_9 article-title: Contamination source detection in water distribution networks publication-title: Eng. Rev. – volume: 143 start-page: 04017032 year: 2017 ident: ref_3 article-title: Accurate and Optimal Sensor Placement for Source Identification of Water Distribution Networks publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000777 – volume: 212 start-page: 134 year: 2018 ident: ref_28 article-title: Contaminant source identification using semi-supervised machine learning publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2017.11.002 – volume: 25 start-page: 309 year: 2012 ident: ref_21 article-title: Coupling of logistic regression analysis and local search methods for characterization of water distribution system contaminant source publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.10.009 – ident: ref_24 doi: 10.3390/s18040938 – volume: 45 start-page: 5 year: 2001 ident: ref_33 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 89 start-page: 1089 year: 2014 ident: ref_20 article-title: Contamination event detection in water distribution systems using a model-based approach publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.11.229 – ident: ref_13 doi: 10.3390/w10050579 – volume: 132 start-page: 234 year: 2006 ident: ref_14 article-title: Bayesian belief networks to integrate monitoring evidence of water distribution system contamination publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2006)132:4(234) – volume: 135 start-page: 466 year: 2009 ident: ref_19 article-title: Data mining to identify contaminant event locations in water distribution systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2009)135:6(466) – volume: 74 start-page: 45 year: 2013 ident: ref_26 article-title: Stochastic reconstruction of multiple source atmospheric contaminant dispersion events publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.02.051 – volume: 135 start-page: 334 year: 2009 ident: ref_8 article-title: Evolutionary computation-based methods for characterizing contaminant sources in a water distribution system publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2009)135:5(334) – volume: 26 start-page: 17901 year: 2019 ident: ref_12 article-title: Pollution source localization in an urban water supply network based on dynamic water demand publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0516-y – volume: 138 start-page: 230 year: 2011 ident: ref_18 article-title: False negative/positive issues in contaminant source identification for water-distribution systems publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000162 – ident: ref_31 – volume: 6 start-page: 115 year: 2009 ident: ref_4 article-title: A multi-objective approach for detecting and responding to accidental and intentional contamination events in water distribution systems publication-title: Urban Water J. doi: 10.1080/15730620802566836 – ident: ref_29 – volume: 10 start-page: 253 year: 2009 ident: ref_10 article-title: Contaminant source identification in water distribution networks under conditions of demand uncertainty publication-title: Environ. Forensics doi: 10.1080/15275920903140486 – volume: 136 start-page: 48 year: 2010 ident: ref_5 article-title: Multiobjective optimization of operational responses for contaminant flushing in water distribution networks publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)0733-9496(2010)136:1(48) – volume: 42 start-page: 1308 year: 2008 ident: ref_22 article-title: Source tracking of microbial intrusion in water systems using artificial neural networks publication-title: Water Res. doi: 10.1016/j.watres.2007.09.032 – volume: 39 start-page: 941 year: 2007 ident: ref_7 article-title: A contamination source identification model for water distribution system security publication-title: Eng. Optim. doi: 10.1080/03052150701540670 – volume: 37 start-page: 7154 year: 2010 ident: ref_27 article-title: Characterizing an unknown pollution source in groundwater resources systems using PSVM and PNN publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.04.019 – volume: 12 start-page: 2825 year: 2011 ident: ref_32 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_15 doi: 10.1061/40976(316)512 – volume: 139 start-page: 426 year: 2013 ident: ref_16 article-title: Bayesian networks for source intrusion detection publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000288 – volume: 51 start-page: 15 year: 2018 ident: ref_23 article-title: Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.523 – volume: 76 start-page: 128 year: 2016 ident: ref_2 article-title: New formulation and optimization methods for water sensor placement publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.10.030 – volume: 52 start-page: 3955 year: 2009 ident: ref_25 article-title: Source identification for unsteady atmospheric dispersion of hazardous materials using Markov Chain Monte Carlo method publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.03.028 |
| SSID | ssj0023338 |
| Score | 2.4187949 |
| Snippet | In this paper, a novel machine learning based algorithm for water supply pollution source identification is presented built specifically for high performance... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2613 |
| SubjectTerms | Air pollution artificial neural networks Groundwater Hydraulics Identification Machine learning Neural networks Optimization algorithms parallel computing random forests Regression analysis sensor networks Sensors Simulation Support vector machines water network pollution Water quality Water shortages Water supply |
| SummonAdditionalLinks | – databaseName: ProQuest Publicly Available Content dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-xsofxAOyTMJi8aQ97sdrESew8TWUaYtKoKu2LPUW24xQkSKEt_P3cOW7WTmhPk_IUnyI75_uy734H8L6qlcpMrXmqrOVpLRwn0HaurHIu06LWxvpmE3I0UmdnxTiUR89DWuVSJ3pF3aI9U942KuF-NbV0Yt6nisxcoKLNPl7fcOohRXetoaHGI9gk4K1BDzbHX07Hv7sATGA81qILCQz1-3OPOOQ7G6zYJA_d_5C_-Xfa5IodOt75vyvYhe3gj7Jhu4GewoZrnsHWCkrhc_g5ZKc-5dKxgMY64WT8Kja8nOAnF-dXDF1f9gvd1hkbtXnljGCvNOXZEOfZN39HwL6S5QyVny_gx_Hn759OeGjHwC3G0AueF8jJbGBiMzA2rlRd6ELnymKAKF2dVEI6pwun0KeMtagwUkTXjSpV86xAP7QSL6HXTBu3B0w5ITMrXFxrmaYyNbVURhRVEtNTpBF8WDKktAGrnFpmXJYYsxDvyo53EbzrSK9bgI6HiI6Iqx0BYWr7F9PZpAwiWuIiRIKTyg2BozpapM5jpaw2InGxjuBgydcyCPq8_MPGCN52wyiidO-iGze9bWmUoBO_CF61W6ibiUjwT2DQG4Fc21xrU10faS7OPQy4TFLqXbD_72m9hicJHRFQjqY4gN5idusO4bG9W1zMZ2-ChNwDNBckrQ priority: 102 providerName: ProQuest |
| Title | A Machine Learning-based Algorithm for Water Network Contamination Source Localization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32375289 https://www.proquest.com/docview/2399636785 https://www.proquest.com/docview/2399830129 https://pubmed.ncbi.nlm.nih.gov/PMC7248744 https://doaj.org/article/7ef32c3e6b6148e0bc1a6188cab32e1a |
| Volume | 20 |
| WOSCitedRecordID | wos000537106200177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFH4ajAMcJsaAhUHlTTvsEtHESWwfCyrapLWqGLByimzHASSWorZw3G_fe04atQiJy6TIh9gH53u23vuc5-8BfC1KKVNT6jCR1oZJyV1Iou2htNK5VPNSG-uLTYjhUI7HarRU6otywmp54Bq4Y-FKHlvuMkOSla5rbKSzSEqrDY9d5EOjrlALMtVQLY7Mq9YR4kjqj2deW8jXMFjyPl6k_6XI8nmC5JLHOduGd02oyHr1FN_DG1ftwNaSgOAHuOqxgc-GdKwRSr0JyS8VrHd_M0Hef_uHYVTKfmNEOWXDOuWbkSKVphQYMgr75Y_v2U9yas2lzF24POtfnH4Pm0oJoUV6Ow8zhSCnXRMZwqeQpdJKZ9Iid0P84oIL57RyEsO9SPMCSRxGVXSJNEsVhogF34P1alK5j8Ck4yJFvKNSiyQRiSmFNFwVcUSPSgL4tkAwt42MOFWzuM-RThDYeQt2AF_aoQ-1dsZLg07IDO0Akrv2L3AR5M0iyF9bBAEcLoyYN3twltOt3YyjM04D-Nx24-6hXyK6cpPHeozkdBgXwH5t83YmPEYkkI8GIFZWw8pUV3uqu1uv0C3ihMoKHPyPb_sEmzFxfEqy5IewPp8-uiPYsE_zu9m0A2tiLHwrO_D2pD8cnXf8VsB28LeP70Y_BqPrf3yNEIU |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAl64A1dKGAQSFxWzdr7sA8IhUfVqEkUiQLltHi93rRSu2mTFMSf4jcy432QoIpbD0h72rVWY_vzeMae-QbgRV5IGWWF9kNpjB8WwvpE2u5LI62NtCh0ZlyxiWQ0kgcHarwGv5pcGAqrbHSiU9T51NAZ-TblYMYCVWv05vTMp6pRdLvalNCoYLFnf_5Al23-uv8e5_cl5zsf9t_t-nVVAd-gK7jwY4UCRd0syLqZCXJZKK10LA36OYkteC4Sa7WyEk2jQIscHR60QCjhMo4UmlO5wP9egfUQwd7twPq4Pxx_bV08gR5fxV8khOpuzx2nkaudsLTrueIAF1m0fwdmLu10Ozf_tzG6BTdqm5r1qkVwG9ZseQc2lpgW78LnHhu6sFHLakbZiU8beM56xxPswuLwhKH5zr6g6T1joyo2nhF1l6ZYIUIv--juOdiAdv86e_UefLqUjt2HTjkt7SYwaUUSGWGDQidhmIRZkchMqJwH9KjQg1fNlKem5lunsh_HKfpdhI60RYcHz9umpxXJyEWN3hJu2gbEC-5eTGeTtFYzKXZCcBQqzojg1VIndRxIaXQmuA20B1sNctJaWc3TP7Dx4Fn7GdUM3R3p0k7PqzZS0KmlBw8qkLaSCI4jgY67B8kKfFdEXf1SHh06KvOEh1R_4eG_xXoK13b3h4N00B_tPYLrnI48KOZUbEFnMTu3j-Gq-b44ms-e1OuRwbfLhvdvGK90gg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiF64P0IFDAIJC7RbuIkdg4IbWlXVC3RimdvwXGcbaWSbXe3oP61_jpmHCfsoopbD0g5xVY0Tr6M57PH3wC8LCsp46JSfiS19qOKG59E232ppTGx4pUqtC02IbJM7u-noxU4b8_CUFpl6xOtoy4nmtbIe3QGM-HoWuNe5dIiRlvDt8cnPlWQop3WtpxGA5Fdc_YL6dvszc4WfutXYTjc_vzuve8qDPgaaeHcT1I0Lu4XQdEvdFDKKlWpSqRGziNMFZZcGKNSIzFMChQvkfxgNEKHL5M4xdCq5PjcK7AmsBmJ39rmdjb62NE9juyv0TLiPO33ZlbfyNZRWJgBbaGAi6Lbv5M0F2a94c3_-X3dghsu1maD5ue4DSumvgPrCwqMd-HrgH2w6aSGOaXZsU8Te8kGR2McwvzgB8Ownn3DkHzKsiZnnpGkl6IcIkI1-2T3P9geRQXuVOs9-HIpA7sPq_WkNg-BScNFrLkJKiWiSERFJWTB0zIM6EojD163nz_XToedyoEc5cjHCCl5hxQPXnRdjxvxkYs6bRKGug6kF25vTKbj3LmfHAfBQzQqKUj41dAgVRJIqVXBQxMoDzZaFOXOic3yPxDy4HnXjO6H9pRUbSanTR_JaTXTgwcNYDtLeIhvAgm9B2IJykumLrfUhwdW4lyEEdVlePRvs57BNcR0vreT7T6G6yGthFAqKt-A1fn01DyBq_rn_HA2fep-TQbfLxvdvwFGqn0c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning-based+Algorithm+for+Water+Network+Contamination+Source+Localization&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Luka+Grb%C4%8Di%C4%87&rft.au=Ivana+Lu%C4%8Din&rft.au=Lado+Kranj%C4%8Devi%C4%87&rft.au=Sini%C5%A1a+Dru%C5%BEeta&rft.date=2020-05-03&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=9&rft.spage=2613&rft_id=info:doi/10.3390%2Fs20092613&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7ef32c3e6b6148e0bc1a6188cab32e1a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |