Numerical investigation of floating zone silicon using Halbach array magnets

•The application of Halbach array magnets for FZ process is proposed.•Magnetic field in the melt provided by Halbach array magnets is adequately strong.•Halbach array magnets can locally restrain the melt flow.•Halbach array magnets can improve the crystallization interface deflection. Novel applica...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Crystal Growth Ročník 546; s. 125773
Hlavní autoři: Han, Xue-Feng, Kakimoto, Koichi, Alradi, Samah, Zaidat, Kader
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.09.2020
Elsevier BV
Elsevier
Témata:
ISSN:0022-0248, 1873-5002
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The application of Halbach array magnets for FZ process is proposed.•Magnetic field in the melt provided by Halbach array magnets is adequately strong.•Halbach array magnets can locally restrain the melt flow.•Halbach array magnets can improve the crystallization interface deflection. Novel applications of Halbach array magnets in floating zone processes are proposed. Calculations of the floating zone process with two designs of Halbach array magnets are carried out and compared with the conventional floating zone process. The first part of the calculations including the static and high-frequency electromagnetic fields in the melt and crystal are modelled in COMSOL software. The effect of electromagnetic fields on the melt flow is calculated in three dimensions. From the calculation results, we confirm that Halbach array magnets can provide an adequately strong magnetic field at the surface of silicon to affect the melt flow. From the comparison of calculation results between conventional floating zone and floating zone with Halbach array magnets, the effects of the magnetic field on the melt flow, the temperature distribution, and the crystallization interface are confirmed. Halbach array magnets can locally restrain the melt flow velocity and improve the deflection of the crystallization interface.
AbstractList Novel applications of Halbach array magnets in floating zone processes are proposed. Calculations of the floating zone process with two designs of Halbach array magnets are carried out and compared with the conventional floating zone process. The first part of the calculations including the static and high-frequency electromagnetic fields in the melt and crystal are modelled in COMSOL software. The effect of electromagnetic fields on the melt flow is calculated in three dimensions. From the calculation results, we confirm that Halbach array magnets can provide an adequately strong magnetic field at the surface of silicon to affect the melt flow. From the comparison of calculation results between conventional floating zone and floating zone with Halbach array magnets, the effects of the magnetic field on the melt flow, the temperature distribution, and the crystallization interface are confirmed. Halbach array magnets can locally restrain the melt flow velocity and improve the deflection of the crystallization interface.
•The application of Halbach array magnets for FZ process is proposed.•Magnetic field in the melt provided by Halbach array magnets is adequately strong.•Halbach array magnets can locally restrain the melt flow.•Halbach array magnets can improve the crystallization interface deflection. Novel applications of Halbach array magnets in floating zone processes are proposed. Calculations of the floating zone process with two designs of Halbach array magnets are carried out and compared with the conventional floating zone process. The first part of the calculations including the static and high-frequency electromagnetic fields in the melt and crystal are modelled in COMSOL software. The effect of electromagnetic fields on the melt flow is calculated in three dimensions. From the calculation results, we confirm that Halbach array magnets can provide an adequately strong magnetic field at the surface of silicon to affect the melt flow. From the comparison of calculation results between conventional floating zone and floating zone with Halbach array magnets, the effects of the magnetic field on the melt flow, the temperature distribution, and the crystallization interface are confirmed. Halbach array magnets can locally restrain the melt flow velocity and improve the deflection of the crystallization interface.
ArticleNumber 125773
Author Kakimoto, Koichi
Zaidat, Kader
Alradi, Samah
Han, Xue-Feng
Author_xml – sequence: 1
  givenname: Xue-Feng
  orcidid: 0000-0002-9309-0038
  surname: Han
  fullname: Han, Xue-Feng
  email: han0459@riam.kyushu-u.ac.jp
  organization: Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
– sequence: 2
  givenname: Koichi
  orcidid: 0000-0003-4925-3511
  surname: Kakimoto
  fullname: Kakimoto, Koichi
  organization: Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
– sequence: 3
  givenname: Samah
  surname: Alradi
  fullname: Alradi, Samah
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France
– sequence: 4
  givenname: Kader
  surname: Zaidat
  fullname: Zaidat, Kader
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France
BackLink https://cir.nii.ac.jp/crid/1871146593166235648$$DView record in CiNii
https://hal.science/hal-02941119$$DView record in HAL
BookMark eNqFUU1vGyEURFUi1fn4C9VK7SWHdYFlWZB6SBQ1cSWruSRnhPlwWK0hhbUl99f3bTa59BIhPdAw8-YxnKGTmKJD6AvBS4IJ_94ve5OPZZvTkmIKIG27rvmEFkR0Td1iTE_QAiqtMWXiMzorpccYlAQv0Pr3fudyMHqoQjy4MoatHkOKVfKVHxKc47b6C4ZVCUMwcLEvE7TSw0ab50rnrI_VTm-jG8sFOvV6KO7ybT9HT3c_H29X9frh_tftzbo2jMuxbq0XWrSdE22j_QbLVlrGCKDeW269E8JrybQzztnGbjSVElssrLDebihrztHV3PdZD-olh53OR5V0UKubtZowTCUjhMgDAe7XmfuS0589PFD1aZ8jjKco45R1Ehawfswsk1Mp2XllwvgaxJh1GBTBaspa9eo9azVlreasQc7_k79P9aHw2yyMIYDlVOHXCGG8lQ3hnDYtZwJo1zPNQaqH4LIqJrhonA3ZmVHZFD5y-gei46rQ
CitedBy_id crossref_primary_10_3390_coatings13091565
Cites_doi 10.1016/j.jcrysgro.2007.10.043
10.1016/S0022-0248(01)01323-9
10.1016/j.jcrysgro.2019.04.023
10.3390/cryst10020121
10.1109/TMAG.2008.2001482
10.1016/j.jcrysgro.2009.02.041
10.1016/j.jcrysgro.2013.03.052
10.1016/S0022-0248(00)00354-7
10.1016/j.jcrysgro.2016.12.074
10.1016/S0022-0248(01)01909-1
ContentType Journal Article
Contributor Science et Ingénierie des Matériaux et Procédés (SIMaP) ; Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)
Science et Ingénierie des Matériaux et Procédés (SIMaP) ; Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)
Université Grenoble Alpes (UGA)
Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Science et Ingénierie des Matériaux et Procédés (SIMaP)
Contributor_xml – sequence: 1
  fullname: Science et Ingénierie des Matériaux et Procédés (SIMaP) ; Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)
– sequence: 2
  fullname: Science et Ingénierie des Matériaux et Procédés (SIMaP) ; Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA)
– sequence: 3
  fullname: Science et Ingénierie des Matériaux et Procédés (SIMaP)
– sequence: 4
  fullname: Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
– sequence: 5
  fullname: Université Grenoble Alpes (UGA)
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Sep 15, 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 15, 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID RYH
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
1XC
DOI 10.1016/j.jcrysgro.2020.125773
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Computer Science
EISSN 1873-5002
ExternalDocumentID oai:HAL:hal-02941119v1
10_1016_j_jcrysgro_2020_125773
S0022024820302967
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
TN5
XPP
~02
~G-
AAQFI
AATTM
AAXKI
AAYWO
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
EFKBS
RYH
~HD
29K
5VS
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
ADVLN
AFFNX
AFJKZ
AGQPQ
AI.
AIGII
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SMS
SPG
VH1
WUQ
ZMT
7SR
7U5
8BQ
8FD
JG9
L7M
1XC
ID FETCH-LOGICAL-c469t-5df8a857e853afb0959d441df8ffd6dfe88fa94aeceed3dba2990d08d8dfdb243
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557891200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0248
IngestDate Tue Oct 14 20:54:07 EDT 2025
Sun Nov 09 06:43:10 EST 2025
Sat Nov 29 06:34:57 EST 2025
Tue Nov 18 22:11:54 EST 2025
Mon Nov 10 09:09:28 EST 2025
Fri Feb 23 02:46:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords A1. Magnetic fields
A1. Computer simulation
A1. Fluid flows
A2. Floating zone technique
B2. Semiconducting silicon
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c469t-5df8a857e853afb0959d441df8ffd6dfe88fa94aeceed3dba2990d08d8dfdb243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9309-0038
0000-0003-4925-3511
0000-0002-8160-6674
PQID 2462479797
PQPubID 2045452
ParticipantIDs hal_primary_oai_HAL_hal_02941119v1
proquest_journals_2462479797
crossref_citationtrail_10_1016_j_jcrysgro_2020_125773
crossref_primary_10_1016_j_jcrysgro_2020_125773
nii_cinii_1871146593166235648
elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2020_125773
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of Crystal Growth
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Ratnieks, Muiznieks, Buligins, Raming, Mühlbauer, Lüdge, Riemann (b0050) 2000; 216
Wünscher, Menzel, Riemann, Lüdge (b0010) 2014; 385
Munakata, Someya, Tanasawa (b0030) 2002; 235
Choi, Yoo (b0040) 2008; 44
Drikis, Plate, Sennikovs, Virbulis (b0005) 2017; 474
Liu, Kakimoto (b0020) 2008; 310
Fan, Plascencia, Utigard (b0055) 2008; 47
Han, Liu, Nakano, Harada, Miyamura, Kakimoto (b0060) 2020; 10
Raming, Muižnieks, Mühlbauer (b0035) 2001; 230
Han, Liu, Nakano, Harada, Miyamura, Kakimoto (b0045) 2019; 125403
Kakimoto, Liu (b0015) 2009; 311
Yokoyama, Nakamura, Sugimura, Ono, Fujiwara, Kakimoto (b0025) 2019; 519
Drikis (10.1016/j.jcrysgro.2020.125773_b0005) 2017; 474
Wünscher (10.1016/j.jcrysgro.2020.125773_b0010) 2014; 385
Munakata (10.1016/j.jcrysgro.2020.125773_b0030) 2002; 235
Raming (10.1016/j.jcrysgro.2020.125773_b0035) 2001; 230
Ratnieks (10.1016/j.jcrysgro.2020.125773_b0050) 2000; 216
Yokoyama (10.1016/j.jcrysgro.2020.125773_b0025) 2019; 519
Han (10.1016/j.jcrysgro.2020.125773_b0060) 2020; 10
Han (10.1016/j.jcrysgro.2020.125773_b0045) 2019; 125403
Fan (10.1016/j.jcrysgro.2020.125773_b0055) 2008; 47
Choi (10.1016/j.jcrysgro.2020.125773_b0040) 2008; 44
Liu (10.1016/j.jcrysgro.2020.125773_b0020) 2008; 310
Kakimoto (10.1016/j.jcrysgro.2020.125773_b0015) 2009; 311
References_xml – volume: 311
  start-page: 2313
  year: 2009
  end-page: 2316
  ident: b0015
  article-title: Analysis of local segregation of impurities at a silicon melt–crystal interface during crystal growth in transverse magnetic field-applied Czochralski method
  publication-title: J. Cryst. Growth
– volume: 44
  start-page: 2361
  year: 2008
  end-page: 2366
  ident: b0040
  article-title: Design of a halbach magnet array based on optimization techniques
  publication-title: IEEE Trans. Magn.
– volume: 47
  start-page: 509
  year: 2008
  end-page: 512
  ident: b0055
  article-title: High temperature electric conductivity of pure silicon
  publication-title: Canadian J. Metall. Mater. Sci.
– volume: 235
  start-page: 167
  year: 2002
  end-page: 172
  ident: b0030
  article-title: Suppression of marangoni convection in the FZ melt by high-frequency magnetic field
  publication-title: J. Cryst. Growth
– volume: 216
  start-page: 204
  year: 2000
  end-page: 219
  ident: b0050
  article-title: Influence of the three dimensionality of the HF electromagnetic field on resistivity variations in Si single crystals during FZ growth
  publication-title: J. Cryst. Growth
– volume: 385
  start-page: 100
  year: 2014
  end-page: 105
  ident: b0010
  article-title: Combined 3D and 2.5D modeling of the floating zone process with comsol multiphysics
  publication-title: J. Cryst. Growth
– volume: 310
  start-page: 306
  year: 2008
  end-page: 312
  ident: b0020
  article-title: Effects of crystal rotation rate on the melt–crystal interface of a CZ-Si crystal growth in a transverse magnetic field
  publication-title: J. Cryst. Growth
– volume: 230
  start-page: 108
  year: 2001
  end-page: 117
  ident: b0035
  article-title: Numerical investigation of the influence of EM-fields on fluid motion and resistivity distribution during floating-zone growth of large silicon single crystals
  publication-title: J. Cryst. Growth
– volume: 519
  start-page: 77
  year: 2019
  end-page: 83
  ident: b0025
  article-title: Time-dependent behavior of melt flow in the industrial scale silicon Czochralski growth with a transverse magnetic field
  publication-title: J. Cryst. Growth
– volume: 10
  year: 2020
  ident: b0060
  article-title: 3D numerical analysis of the asymmetric three-phase line of floating zone for silicon crystal growth
  publication-title: Crystals
– volume: 474
  start-page: 8
  year: 2017
  end-page: 15
  ident: b0005
  article-title: Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon
  publication-title: J. Cryst. Growth
– volume: 125403
  year: 2019
  ident: b0045
  article-title: 3D Numerical study of the asymmetric phenomenon in 200 mm floating zone silicon crystal growth
  publication-title: J. Cryst. Growth
– volume: 310
  start-page: 306
  year: 2008
  ident: 10.1016/j.jcrysgro.2020.125773_b0020
  article-title: Effects of crystal rotation rate on the melt–crystal interface of a CZ-Si crystal growth in a transverse magnetic field
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2007.10.043
– volume: 230
  start-page: 108
  year: 2001
  ident: 10.1016/j.jcrysgro.2020.125773_b0035
  article-title: Numerical investigation of the influence of EM-fields on fluid motion and resistivity distribution during floating-zone growth of large silicon single crystals
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(01)01323-9
– volume: 125403
  year: 2019
  ident: 10.1016/j.jcrysgro.2020.125773_b0045
  article-title: 3D Numerical study of the asymmetric phenomenon in 200 mm floating zone silicon crystal growth
  publication-title: J. Cryst. Growth
– volume: 47
  start-page: 509
  year: 2008
  ident: 10.1016/j.jcrysgro.2020.125773_b0055
  article-title: High temperature electric conductivity of pure silicon
  publication-title: Canadian J. Metall. Mater. Sci.
– volume: 519
  start-page: 77
  year: 2019
  ident: 10.1016/j.jcrysgro.2020.125773_b0025
  article-title: Time-dependent behavior of melt flow in the industrial scale silicon Czochralski growth with a transverse magnetic field
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2019.04.023
– volume: 10
  year: 2020
  ident: 10.1016/j.jcrysgro.2020.125773_b0060
  article-title: 3D numerical analysis of the asymmetric three-phase line of floating zone for silicon crystal growth
  publication-title: Crystals
  doi: 10.3390/cryst10020121
– volume: 44
  start-page: 2361
  year: 2008
  ident: 10.1016/j.jcrysgro.2020.125773_b0040
  article-title: Design of a halbach magnet array based on optimization techniques
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2008.2001482
– volume: 311
  start-page: 2313
  year: 2009
  ident: 10.1016/j.jcrysgro.2020.125773_b0015
  article-title: Analysis of local segregation of impurities at a silicon melt–crystal interface during crystal growth in transverse magnetic field-applied Czochralski method
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.02.041
– volume: 385
  start-page: 100
  year: 2014
  ident: 10.1016/j.jcrysgro.2020.125773_b0010
  article-title: Combined 3D and 2.5D modeling of the floating zone process with comsol multiphysics
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2013.03.052
– volume: 216
  start-page: 204
  year: 2000
  ident: 10.1016/j.jcrysgro.2020.125773_b0050
  article-title: Influence of the three dimensionality of the HF electromagnetic field on resistivity variations in Si single crystals during FZ growth
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(00)00354-7
– volume: 474
  start-page: 8
  year: 2017
  ident: 10.1016/j.jcrysgro.2020.125773_b0005
  article-title: Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2016.12.074
– volume: 235
  start-page: 167
  year: 2002
  ident: 10.1016/j.jcrysgro.2020.125773_b0030
  article-title: Suppression of marangoni convection in the FZ melt by high-frequency magnetic field
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(01)01909-1
SSID ssj0001610
ssib006542288
ssib033400532
Score 2.3197455
Snippet •The application of Halbach array magnets for FZ process is proposed.•Magnetic field in the melt provided by Halbach array magnets is adequately...
Novel applications of Halbach array magnets in floating zone processes are proposed. Calculations of the floating zone process with two designs of Halbach...
SourceID hal
proquest
crossref
nii
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125773
SubjectTerms [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
[SPI.MAT]Engineering Sciences [physics]/Materials
A1. Computer simulation
A1. Fluid flows
A1. Magnetic fields
A2. Floating zone technique
Arrays
B2. Semiconducting silicon
Computer Science
Crystallization
Electromagnetic fields
Electromagnetism
Engineering Sciences
Flow velocity
Magnetic fields
Magnets
Materials
Modeling and Simulation
Silicon
Temperature distribution
Three dimensional flow
Title Numerical investigation of floating zone silicon using Halbach array magnets
URI https://dx.doi.org/10.1016/j.jcrysgro.2020.125773
https://cir.nii.ac.jp/crid/1871146593166235648
https://www.proquest.com/docview/2462479797
https://hal.science/hal-02941119
Volume 546
WOSCitedRecordID wos000557891200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001610
  issn: 0022-0248
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbaDQn2gGCA6NhQhBAvU0qaOLH9WE2dClSFh26qeLGcOmlTZWlJf2jjiT-dc-ykrSgMHlAlq3Kbxr77ev588d0h9FY6biwcP7QBIMTGkYhtERLHJsBeXUlhgSqi0q57pN-nwyH7Uqv9KGNh1inJMnp7y-b_VdXQB8pWobP_oO7qR6ED3oPSoQW1Q_tXiu-v9EMYlUyjyqGhWWGczkRxzPn7DLjlIkkBBtn5qnAXdEUaqtgqkefi7vxGjLNIJ3naQ11H-d1CBVGOYQ-_nGyMWGHBhqvIBoGMK1MOHBXwULhkP82S0SSpQJbmQibaL32z8Ut_FYkUS33UQ5rDw8YvAZtQVVfB3zjLqoCZ6237C1tflUVNrz7a5FLi2b7j7NhkH29b1dZeW6_dDtPmVE0aJtxUo2gCYSO6OMpucu3-Z3551evxQWc4eDf_Zqu6Y-r5vCnCUkeHLvEZ2MXD9ofO8GO1mgMjdsqM82rkW1Hm-2_9O4JTn6iTtvUsSX5Z9gsuM3iCHhtNWm0NnqeoFmXH6OFFWfvvGB1tpal8hnoVpKwdSFmz2CohZSlIWQZSVgEpy0DKKiBlGUg9R1eXncFF1zZVOOwRDtjS9mVMBfVJBMROxKHyG0vg0NAbxzKQcURpLBgWkaJbngyFIjjSoZLKWIYu9l6ggwyG8BJZkgiPUTD6YURxCN-TgmDBQPARxjLwGsgvRcdHJkW9qpSS8vIs4pSXIudK5FyLvIHeV9fNdZKWe69gpWa4oZqaQnJA173XvgFVVjdS-dm77R5XfY7LMJAHtm410BloGmahWoC4Cv73mdcKYLvhB5g20GmJAW6Mx4K7OHAxYfA6-fPHr9CjzV_uFB0s81V0hh6M1stkkb82EP4JdO2_NQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+floating+zone+silicon+using+Halbach+array+magnets&rft.jtitle=Journal+of+crystal+growth&rft.au=Han%2C+Xue-Feng&rft.au=Kakimoto%2C+Koichi&rft.au=Alradi%2C+Samah&rft.au=Zaidat%2C+Kader&rft.date=2020-09-15&rft.pub=Elsevier+BV&rft.issn=0022-0248&rft.eissn=1873-5002&rft.volume=546&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jcrysgro.2020.125773&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon