Numerical investigation of floating zone silicon using Halbach array magnets
•The application of Halbach array magnets for FZ process is proposed.•Magnetic field in the melt provided by Halbach array magnets is adequately strong.•Halbach array magnets can locally restrain the melt flow.•Halbach array magnets can improve the crystallization interface deflection. Novel applica...
Uloženo v:
| Vydáno v: | Journal of Crystal Growth Ročník 546; s. 125773 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
15.09.2020
Elsevier BV Elsevier |
| Témata: | |
| ISSN: | 0022-0248, 1873-5002 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The application of Halbach array magnets for FZ process is proposed.•Magnetic field in the melt provided by Halbach array magnets is adequately strong.•Halbach array magnets can locally restrain the melt flow.•Halbach array magnets can improve the crystallization interface deflection.
Novel applications of Halbach array magnets in floating zone processes are proposed. Calculations of the floating zone process with two designs of Halbach array magnets are carried out and compared with the conventional floating zone process. The first part of the calculations including the static and high-frequency electromagnetic fields in the melt and crystal are modelled in COMSOL software. The effect of electromagnetic fields on the melt flow is calculated in three dimensions. From the calculation results, we confirm that Halbach array magnets can provide an adequately strong magnetic field at the surface of silicon to affect the melt flow. From the comparison of calculation results between conventional floating zone and floating zone with Halbach array magnets, the effects of the magnetic field on the melt flow, the temperature distribution, and the crystallization interface are confirmed. Halbach array magnets can locally restrain the melt flow velocity and improve the deflection of the crystallization interface. |
|---|---|
| AbstractList | Novel applications of Halbach array magnets in floating zone processes are proposed. Calculations of the floating zone process with two designs of Halbach array magnets are carried out and compared with the conventional floating zone process. The first part of the calculations including the static and high-frequency electromagnetic fields in the melt and crystal are modelled in COMSOL software. The effect of electromagnetic fields on the melt flow is calculated in three dimensions. From the calculation results, we confirm that Halbach array magnets can provide an adequately strong magnetic field at the surface of silicon to affect the melt flow. From the comparison of calculation results between conventional floating zone and floating zone with Halbach array magnets, the effects of the magnetic field on the melt flow, the temperature distribution, and the crystallization interface are confirmed. Halbach array magnets can locally restrain the melt flow velocity and improve the deflection of the crystallization interface. •The application of Halbach array magnets for FZ process is proposed.•Magnetic field in the melt provided by Halbach array magnets is adequately strong.•Halbach array magnets can locally restrain the melt flow.•Halbach array magnets can improve the crystallization interface deflection. Novel applications of Halbach array magnets in floating zone processes are proposed. Calculations of the floating zone process with two designs of Halbach array magnets are carried out and compared with the conventional floating zone process. The first part of the calculations including the static and high-frequency electromagnetic fields in the melt and crystal are modelled in COMSOL software. The effect of electromagnetic fields on the melt flow is calculated in three dimensions. From the calculation results, we confirm that Halbach array magnets can provide an adequately strong magnetic field at the surface of silicon to affect the melt flow. From the comparison of calculation results between conventional floating zone and floating zone with Halbach array magnets, the effects of the magnetic field on the melt flow, the temperature distribution, and the crystallization interface are confirmed. Halbach array magnets can locally restrain the melt flow velocity and improve the deflection of the crystallization interface. |
| ArticleNumber | 125773 |
| Author | Kakimoto, Koichi Zaidat, Kader Alradi, Samah Han, Xue-Feng |
| Author_xml | – sequence: 1 givenname: Xue-Feng orcidid: 0000-0002-9309-0038 surname: Han fullname: Han, Xue-Feng email: han0459@riam.kyushu-u.ac.jp organization: Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan – sequence: 2 givenname: Koichi orcidid: 0000-0003-4925-3511 surname: Kakimoto fullname: Kakimoto, Koichi organization: Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan – sequence: 3 givenname: Samah surname: Alradi fullname: Alradi, Samah organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France – sequence: 4 givenname: Kader surname: Zaidat fullname: Zaidat, Kader organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France |
| BackLink | https://cir.nii.ac.jp/crid/1871146593166235648$$DView record in CiNii https://hal.science/hal-02941119$$DView record in HAL |
| BookMark | eNqFUU1vGyEURFUi1fn4C9VK7SWHdYFlWZB6SBQ1cSWruSRnhPlwWK0hhbUl99f3bTa59BIhPdAw8-YxnKGTmKJD6AvBS4IJ_94ve5OPZZvTkmIKIG27rvmEFkR0Td1iTE_QAiqtMWXiMzorpccYlAQv0Pr3fudyMHqoQjy4MoatHkOKVfKVHxKc47b6C4ZVCUMwcLEvE7TSw0ab50rnrI_VTm-jG8sFOvV6KO7ybT9HT3c_H29X9frh_tftzbo2jMuxbq0XWrSdE22j_QbLVlrGCKDeW269E8JrybQzztnGbjSVElssrLDebihrztHV3PdZD-olh53OR5V0UKubtZowTCUjhMgDAe7XmfuS0589PFD1aZ8jjKco45R1Ehawfswsk1Mp2XllwvgaxJh1GBTBaspa9eo9azVlreasQc7_k79P9aHw2yyMIYDlVOHXCGG8lQ3hnDYtZwJo1zPNQaqH4LIqJrhonA3ZmVHZFD5y-gei46rQ |
| CitedBy_id | crossref_primary_10_3390_coatings13091565 |
| Cites_doi | 10.1016/j.jcrysgro.2007.10.043 10.1016/S0022-0248(01)01323-9 10.1016/j.jcrysgro.2019.04.023 10.3390/cryst10020121 10.1109/TMAG.2008.2001482 10.1016/j.jcrysgro.2009.02.041 10.1016/j.jcrysgro.2013.03.052 10.1016/S0022-0248(00)00354-7 10.1016/j.jcrysgro.2016.12.074 10.1016/S0022-0248(01)01909-1 |
| ContentType | Journal Article |
| Contributor | Science et Ingénierie des Matériaux et Procédés (SIMaP) ; Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA) Science et Ingénierie des Matériaux et Procédés (SIMaP) ; Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA) Université Grenoble Alpes (UGA) Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Science et Ingénierie des Matériaux et Procédés (SIMaP) |
| Contributor_xml | – sequence: 1 fullname: Science et Ingénierie des Matériaux et Procédés (SIMaP) ; Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA) – sequence: 2 fullname: Science et Ingénierie des Matériaux et Procédés (SIMaP) ; Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) ; Université Grenoble Alpes (UGA) – sequence: 3 fullname: Science et Ingénierie des Matériaux et Procédés (SIMaP) – sequence: 4 fullname: Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) – sequence: 5 fullname: Université Grenoble Alpes (UGA) |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Sep 15, 2020 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Sep 15, 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | RYH AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 1XC |
| DOI | 10.1016/j.jcrysgro.2020.125773 |
| DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Computer Science |
| EISSN | 1873-5002 |
| ExternalDocumentID | oai:HAL:hal-02941119v1 10_1016_j_jcrysgro_2020_125773 S0022024820302967 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K TN5 XPP ~02 ~G- AAQFI AATTM AAXKI AAYWO ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIIUN AKBMS AKRWK AKYEP ANKPU APXCP EFKBS RYH ~HD 29K 5VS 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADIYS ADMUD ADNMO ADVLN AFFNX AFJKZ AGQPQ AI. AIGII ASPBG AVWKF AZFZN BBWZM CITATION D-I EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SMS SPG VH1 WUQ ZMT 7SR 7U5 8BQ 8FD JG9 L7M 1XC |
| ID | FETCH-LOGICAL-c469t-5df8a857e853afb0959d441df8ffd6dfe88fa94aeceed3dba2990d08d8dfdb243 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557891200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-0248 |
| IngestDate | Tue Oct 14 20:54:07 EDT 2025 Sun Nov 09 06:43:10 EST 2025 Sat Nov 29 06:34:57 EST 2025 Tue Nov 18 22:11:54 EST 2025 Mon Nov 10 09:09:28 EST 2025 Fri Feb 23 02:46:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | A1. Magnetic fields A1. Computer simulation A1. Fluid flows A2. Floating zone technique B2. Semiconducting silicon |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c469t-5df8a857e853afb0959d441df8ffd6dfe88fa94aeceed3dba2990d08d8dfdb243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9309-0038 0000-0003-4925-3511 0000-0002-8160-6674 |
| PQID | 2462479797 |
| PQPubID | 2045452 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02941119v1 proquest_journals_2462479797 crossref_citationtrail_10_1016_j_jcrysgro_2020_125773 crossref_primary_10_1016_j_jcrysgro_2020_125773 nii_cinii_1871146593166235648 elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2020_125773 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-15 |
| PublicationDateYYYYMMDD | 2020-09-15 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of Crystal Growth |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Ratnieks, Muiznieks, Buligins, Raming, Mühlbauer, Lüdge, Riemann (b0050) 2000; 216 Wünscher, Menzel, Riemann, Lüdge (b0010) 2014; 385 Munakata, Someya, Tanasawa (b0030) 2002; 235 Choi, Yoo (b0040) 2008; 44 Drikis, Plate, Sennikovs, Virbulis (b0005) 2017; 474 Liu, Kakimoto (b0020) 2008; 310 Fan, Plascencia, Utigard (b0055) 2008; 47 Han, Liu, Nakano, Harada, Miyamura, Kakimoto (b0060) 2020; 10 Raming, Muižnieks, Mühlbauer (b0035) 2001; 230 Han, Liu, Nakano, Harada, Miyamura, Kakimoto (b0045) 2019; 125403 Kakimoto, Liu (b0015) 2009; 311 Yokoyama, Nakamura, Sugimura, Ono, Fujiwara, Kakimoto (b0025) 2019; 519 Drikis (10.1016/j.jcrysgro.2020.125773_b0005) 2017; 474 Wünscher (10.1016/j.jcrysgro.2020.125773_b0010) 2014; 385 Munakata (10.1016/j.jcrysgro.2020.125773_b0030) 2002; 235 Raming (10.1016/j.jcrysgro.2020.125773_b0035) 2001; 230 Ratnieks (10.1016/j.jcrysgro.2020.125773_b0050) 2000; 216 Yokoyama (10.1016/j.jcrysgro.2020.125773_b0025) 2019; 519 Han (10.1016/j.jcrysgro.2020.125773_b0060) 2020; 10 Han (10.1016/j.jcrysgro.2020.125773_b0045) 2019; 125403 Fan (10.1016/j.jcrysgro.2020.125773_b0055) 2008; 47 Choi (10.1016/j.jcrysgro.2020.125773_b0040) 2008; 44 Liu (10.1016/j.jcrysgro.2020.125773_b0020) 2008; 310 Kakimoto (10.1016/j.jcrysgro.2020.125773_b0015) 2009; 311 |
| References_xml | – volume: 311 start-page: 2313 year: 2009 end-page: 2316 ident: b0015 article-title: Analysis of local segregation of impurities at a silicon melt–crystal interface during crystal growth in transverse magnetic field-applied Czochralski method publication-title: J. Cryst. Growth – volume: 44 start-page: 2361 year: 2008 end-page: 2366 ident: b0040 article-title: Design of a halbach magnet array based on optimization techniques publication-title: IEEE Trans. Magn. – volume: 47 start-page: 509 year: 2008 end-page: 512 ident: b0055 article-title: High temperature electric conductivity of pure silicon publication-title: Canadian J. Metall. Mater. Sci. – volume: 235 start-page: 167 year: 2002 end-page: 172 ident: b0030 article-title: Suppression of marangoni convection in the FZ melt by high-frequency magnetic field publication-title: J. Cryst. Growth – volume: 216 start-page: 204 year: 2000 end-page: 219 ident: b0050 article-title: Influence of the three dimensionality of the HF electromagnetic field on resistivity variations in Si single crystals during FZ growth publication-title: J. Cryst. Growth – volume: 385 start-page: 100 year: 2014 end-page: 105 ident: b0010 article-title: Combined 3D and 2.5D modeling of the floating zone process with comsol multiphysics publication-title: J. Cryst. Growth – volume: 310 start-page: 306 year: 2008 end-page: 312 ident: b0020 article-title: Effects of crystal rotation rate on the melt–crystal interface of a CZ-Si crystal growth in a transverse magnetic field publication-title: J. Cryst. Growth – volume: 230 start-page: 108 year: 2001 end-page: 117 ident: b0035 article-title: Numerical investigation of the influence of EM-fields on fluid motion and resistivity distribution during floating-zone growth of large silicon single crystals publication-title: J. Cryst. Growth – volume: 519 start-page: 77 year: 2019 end-page: 83 ident: b0025 article-title: Time-dependent behavior of melt flow in the industrial scale silicon Czochralski growth with a transverse magnetic field publication-title: J. Cryst. Growth – volume: 10 year: 2020 ident: b0060 article-title: 3D numerical analysis of the asymmetric three-phase line of floating zone for silicon crystal growth publication-title: Crystals – volume: 474 start-page: 8 year: 2017 end-page: 15 ident: b0005 article-title: Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon publication-title: J. Cryst. Growth – volume: 125403 year: 2019 ident: b0045 article-title: 3D Numerical study of the asymmetric phenomenon in 200 mm floating zone silicon crystal growth publication-title: J. Cryst. Growth – volume: 310 start-page: 306 year: 2008 ident: 10.1016/j.jcrysgro.2020.125773_b0020 article-title: Effects of crystal rotation rate on the melt–crystal interface of a CZ-Si crystal growth in a transverse magnetic field publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2007.10.043 – volume: 230 start-page: 108 year: 2001 ident: 10.1016/j.jcrysgro.2020.125773_b0035 article-title: Numerical investigation of the influence of EM-fields on fluid motion and resistivity distribution during floating-zone growth of large silicon single crystals publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(01)01323-9 – volume: 125403 year: 2019 ident: 10.1016/j.jcrysgro.2020.125773_b0045 article-title: 3D Numerical study of the asymmetric phenomenon in 200 mm floating zone silicon crystal growth publication-title: J. Cryst. Growth – volume: 47 start-page: 509 year: 2008 ident: 10.1016/j.jcrysgro.2020.125773_b0055 article-title: High temperature electric conductivity of pure silicon publication-title: Canadian J. Metall. Mater. Sci. – volume: 519 start-page: 77 year: 2019 ident: 10.1016/j.jcrysgro.2020.125773_b0025 article-title: Time-dependent behavior of melt flow in the industrial scale silicon Czochralski growth with a transverse magnetic field publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2019.04.023 – volume: 10 year: 2020 ident: 10.1016/j.jcrysgro.2020.125773_b0060 article-title: 3D numerical analysis of the asymmetric three-phase line of floating zone for silicon crystal growth publication-title: Crystals doi: 10.3390/cryst10020121 – volume: 44 start-page: 2361 year: 2008 ident: 10.1016/j.jcrysgro.2020.125773_b0040 article-title: Design of a halbach magnet array based on optimization techniques publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2008.2001482 – volume: 311 start-page: 2313 year: 2009 ident: 10.1016/j.jcrysgro.2020.125773_b0015 article-title: Analysis of local segregation of impurities at a silicon melt–crystal interface during crystal growth in transverse magnetic field-applied Czochralski method publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.02.041 – volume: 385 start-page: 100 year: 2014 ident: 10.1016/j.jcrysgro.2020.125773_b0010 article-title: Combined 3D and 2.5D modeling of the floating zone process with comsol multiphysics publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2013.03.052 – volume: 216 start-page: 204 year: 2000 ident: 10.1016/j.jcrysgro.2020.125773_b0050 article-title: Influence of the three dimensionality of the HF electromagnetic field on resistivity variations in Si single crystals during FZ growth publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(00)00354-7 – volume: 474 start-page: 8 year: 2017 ident: 10.1016/j.jcrysgro.2020.125773_b0005 article-title: Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2016.12.074 – volume: 235 start-page: 167 year: 2002 ident: 10.1016/j.jcrysgro.2020.125773_b0030 article-title: Suppression of marangoni convection in the FZ melt by high-frequency magnetic field publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(01)01909-1 |
| SSID | ssj0001610 ssib006542288 ssib033400532 |
| Score | 2.3197455 |
| Snippet | •The application of Halbach array magnets for FZ process is proposed.•Magnetic field in the melt provided by Halbach array magnets is adequately... Novel applications of Halbach array magnets in floating zone processes are proposed. Calculations of the floating zone process with two designs of Halbach... |
| SourceID | hal proquest crossref nii elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 125773 |
| SubjectTerms | [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation [SPI.MAT]Engineering Sciences [physics]/Materials A1. Computer simulation A1. Fluid flows A1. Magnetic fields A2. Floating zone technique Arrays B2. Semiconducting silicon Computer Science Crystallization Electromagnetic fields Electromagnetism Engineering Sciences Flow velocity Magnetic fields Magnets Materials Modeling and Simulation Silicon Temperature distribution Three dimensional flow |
| Title | Numerical investigation of floating zone silicon using Halbach array magnets |
| URI | https://dx.doi.org/10.1016/j.jcrysgro.2020.125773 https://cir.nii.ac.jp/crid/1871146593166235648 https://www.proquest.com/docview/2462479797 https://hal.science/hal-02941119 |
| Volume | 546 |
| WOSCitedRecordID | wos000557891200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001610 issn: 0022-0248 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9swEBZLO9j2MLZuZenaIcbeijPHkS3pMZSObAthDx2EvRjZshKH1ClOUtr-9buzZKddOroxRkDEAkW27svp0_l-EPJBSD-TcEz2NOg6jyWCeUkAl7DTp5qlxudpJekhH43EeCy_OYP-sionwItCXF3Ji_8qaugDYWPo7F-Iu_lR6IDvIHRoQezQ_pHgR2v7EgaTaTQ5NCwrNPOFqtycbxbALZf5HGBQHK8rc8FAzROMrVJlqa6Pz9WkyGySp3uoa1peLzGIcgJn-NV0o8QqDTZeZx4syKRR5cBRAQ-VSfbrIk-neQOyeal0bu3S5xu79A-Va7Wyrh7aOQ87uwQcQrGuQrgxlm0FzDTBA5hGzW4_VucK3vNC37-jlENrmNxS8NbWMOvM8EnhKTs4dQdYGrcVUX5Jno3vogOcLwBlFsiIt8huwEMJ-m-3__l0_KXZtYH5-nVmeRxwK5r8_tl-R2RaU_SobRV5vrW9V5zl7AV57iRG-xYkL8mjrNgjT07qGn975NmtdJSvyLCBDr0DHbowtIYORehQBx1aQYc66NAKOtRB5zX5_un07GTguWobXsoiufJCbYQSIc-AwCmToH1YA1eGXmN0pE0mhFGSqQxpVU8nComM9oUW2ugkYL19slPALbwhNE1NYLqRAeqTMQ0HWmX8SIQSHYIinvA2Ceuli1OXih4roszj2udwFtdLHuOSx3bJ2-RjM-7CJmN5cISsJRM7SmmpYgyAenDsexBlMxHmYR_0hzH2AZQYkAR52W2TI5A0PAW2gGQM8g9lrxvBsSKMmGiTwxoDsVMSyzhgUcC4hM_BP9zfW_J08787JDurcp0dkcfp5Spflu8cvn8CiJy-CA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+floating+zone+silicon+using+Halbach+array+magnets&rft.jtitle=Journal+of+crystal+growth&rft.au=Han%2C+Xue-Feng&rft.au=Kakimoto%2C+Koichi&rft.au=Alradi%2C+Samah&rft.au=Zaidat%2C+Kader&rft.date=2020-09-15&rft.pub=Elsevier+B.V&rft.issn=0022-0248&rft.eissn=1873-5002&rft.volume=546&rft_id=info:doi/10.1016%2Fj.jcrysgro.2020.125773&rft.externalDocID=S0022024820302967 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon |