PCGen: A Fully Parallelizable Point Cloud Generative Model

Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing. Current state-of-the-art point cloud random generation methods are not fast enough for these applications. We introduce a vector-quantized var...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 24; číslo 5; s. 1414
Hlavní autori: Vercheval, Nicolas, Royen, Remco, Munteanu, Adrian, Pižurica, Aleksandra
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 22.02.2024
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing. Current state-of-the-art point cloud random generation methods are not fast enough for these applications. We introduce a vector-quantized variational autoencoder model (VQVAE) that can synthesize high-quality point clouds in milliseconds. Unlike previous work in VQVAEs, our model offers a compact sample representation suitable for conditional generation and data exploration with potential applications in rapid prototyping. We achieve this result by combining architectural improvements with an innovative approach for probabilistic random generation. First, we rethink current parallel point cloud autoencoder structures, and we propose several solutions to improve robustness, efficiency and reconstruction quality. Notable contributions in the decoder architecture include an innovative computation layer to process the shape semantic information, an attention mechanism that helps the model focus on different areas and a filter to cover possible sampling errors. Secondly, we introduce a parallel sampling strategy for VQVAE models consisting of a double encoding system, where a variational autoencoder learns how to generate the complex discrete distribution of the VQVAE, not only allowing quick inference but also describing the shape with a few global variables. We compare the proposed decoder and our VQVAE model with established and concurrent work, and we prove, one by one, the validity of the single contributions.
AbstractList Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing. Current state-of-the-art point cloud random generation methods are not fast enough for these applications. We introduce a vector-quantized variational autoencoder model (VQVAE) that can synthesize high-quality point clouds in milliseconds. Unlike previous work in VQVAEs, our model offers a compact sample representation suitable for conditional generation and data exploration with potential applications in rapid prototyping. We achieve this result by combining architectural improvements with an innovative approach for probabilistic random generation. First, we rethink current parallel point cloud autoencoder structures, and we propose several solutions to improve robustness, efficiency and reconstruction quality. Notable contributions in the decoder architecture include an innovative computation layer to process the shape semantic information, an attention mechanism that helps the model focus on different areas and a filter to cover possible sampling errors. Secondly, we introduce a parallel sampling strategy for VQVAE models consisting of a double encoding system, where a variational autoencoder learns how to generate the complex discrete distribution of the VQVAE, not only allowing quick inference but also describing the shape with a few global variables. We compare the proposed decoder and our VQVAE model with established and concurrent work, and we prove, one by one, the validity of the single contributions.
Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing. Current state-of-the-art point cloud random generation methods are not fast enough for these applications. We introduce a vector-quantized variational autoencoder model (VQVAE) that can synthesize high-quality point clouds in milliseconds. Unlike previous work in VQVAEs, our model offers a compact sample representation suitable for conditional generation and data exploration with potential applications in rapid prototyping. We achieve this result by combining architectural improvements with an innovative approach for probabilistic random generation. First, we rethink current parallel point cloud autoencoder structures, and we propose several solutions to improve robustness, efficiency and reconstruction quality. Notable contributions in the decoder architecture include an innovative computation layer to process the shape semantic information, an attention mechanism that helps the model focus on different areas and a filter to cover possible sampling errors. Secondly, we introduce a parallel sampling strategy for VQVAE models consisting of a double encoding system, where a variational autoencoder learns how to generate the complex discrete distribution of the VQVAE, not only allowing quick inference but also describing the shape with a few global variables. We compare the proposed decoder and our VQVAE model with established and concurrent work, and we prove, one by one, the validity of the single contributions.Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing. Current state-of-the-art point cloud random generation methods are not fast enough for these applications. We introduce a vector-quantized variational autoencoder model (VQVAE) that can synthesize high-quality point clouds in milliseconds. Unlike previous work in VQVAEs, our model offers a compact sample representation suitable for conditional generation and data exploration with potential applications in rapid prototyping. We achieve this result by combining architectural improvements with an innovative approach for probabilistic random generation. First, we rethink current parallel point cloud autoencoder structures, and we propose several solutions to improve robustness, efficiency and reconstruction quality. Notable contributions in the decoder architecture include an innovative computation layer to process the shape semantic information, an attention mechanism that helps the model focus on different areas and a filter to cover possible sampling errors. Secondly, we introduce a parallel sampling strategy for VQVAE models consisting of a double encoding system, where a variational autoencoder learns how to generate the complex discrete distribution of the VQVAE, not only allowing quick inference but also describing the shape with a few global variables. We compare the proposed decoder and our VQVAE model with established and concurrent work, and we prove, one by one, the validity of the single contributions.
Audience Academic
Author Pižurica, Aleksandra
Royen, Remco
Vercheval, Nicolas
Munteanu, Adrian
AuthorAffiliation 1 Research Group for Artificial Intelligence and Sparse Modelling (GAIM), Department of Telecommunications and Information Processing, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
2 Clifford Research Group, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
3 Department of Electronics and Informatics (ETRO), Faculty of Engineering, Vrije Universiteit Brussel, 1050 Brussel, Belgium adrian.munteanu@vub.be (A.M.)
AuthorAffiliation_xml – name: 3 Department of Electronics and Informatics (ETRO), Faculty of Engineering, Vrije Universiteit Brussel, 1050 Brussel, Belgium adrian.munteanu@vub.be (A.M.)
– name: 2 Clifford Research Group, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
– name: 1 Research Group for Artificial Intelligence and Sparse Modelling (GAIM), Department of Telecommunications and Information Processing, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
Author_xml – sequence: 1
  givenname: Nicolas
  orcidid: 0000-0002-4704-1577
  surname: Vercheval
  fullname: Vercheval, Nicolas
– sequence: 2
  givenname: Remco
  orcidid: 0000-0001-9639-7775
  surname: Royen
  fullname: Royen, Remco
– sequence: 3
  givenname: Adrian
  orcidid: 0000-0001-7290-0428
  surname: Munteanu
  fullname: Munteanu, Adrian
– sequence: 4
  givenname: Aleksandra
  orcidid: 0000-0002-9322-4999
  surname: Pižurica
  fullname: Pižurica, Aleksandra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38474954$$D View this record in MEDLINE/PubMed
BookMark eNpdkstuFDEQRS0URB6w4AdQS2xgMcHvRzbRaERCpCBmAWvLbZcHR552cHdHCl-Pw4RRgrwoq3x8y9dVx-hgKAMg9JbgU8YM_jRSjgXhhL9AR4RTvtCU4oMn-0N0PI43GFPGmH6FDpnmihvBj9DZenUJw1m37C7mnO-7tasuZ8jpt-szdOuShqlb5TKHrnFQ3ZTuoPtaAuTX6GV0eYQ3j_EE_bj4_H31ZXH97fJqtbxeeC7NtBDeEAPCYN8rySWj0pOoSGiRBeYp6ZnvTaCqDyCo8DJSHmUPRPVaER7YCbra6YbibuxtTVtX721xyf5NlLqxrk7JZ7BEEWCBa0qC45ExxyLXxhuJpdNAY9M632ndzv0Wgodhan6fiT4_GdJPuyl3lmDDOBO6KXx4VKjl1wzjZLdp9JCzG6DMo6VGSKmFYqqh7_9Db8pch_ZXD5QwBGNBG3W6ozauOUhDLK2wbyvANvnW6Jhafqm05MxQLdqFd0897B__r6kN-LgDfC3jWCHuEYLtw8DY_cCwP7Gjrp0
Cites_doi 10.1109/ICCV48922.2021.00577
10.1109/CVPR52688.2022.00614
10.1109/CVPR46437.2021.01481
10.1016/j.neunet.2018.09.001
10.1007/978-3-030-58574-7
10.1561/9781680836233
10.1109/ICCV.2019.01054
10.1007/978-3-031-19821-2
10.1109/TIP.2019.2957935
10.1007/978-3-030-58604-1
10.1109/ACCESS.2022.3196388
10.3390/buildings13092365
10.1109/SSCI47803.2020.9308513
10.1007/978-3-030-58580-8_22
10.1109/CVPR46437.2021.00286
10.1109/CVPRW56347.2022.00336
10.1109/CVPR52688.2022.00040
10.1109/CoG52621.2021.9619133
10.1007/978-3-030-01252-6
10.1109/CVPR.2018.00029
10.1109/CVPR.2018.00030
10.1109/CVPR.2019.00453
10.1007/978-1-4842-9579-3
10.1109/WACV45572.2020.9093430
10.1109/CVPR46437.2021.00737
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24051414
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_171e3d4821da4f33a3f489c9606a8e2f
PMC10934358
A786439285
38474954
10_3390_s24051414
Genre Journal Article
GrantInformation_xml – fundername: Fonds Wetenschappelijk Onderzoek (FWO) project
  grantid: G094122N
– fundername: Flanders AI Research Programme
  grantid: 174B0911
– fundername: Flanders AI Research Programme
  grantid: 174B09119
– fundername: Fonds Wetenschappelijk Onderzoek (FWO) projects
  grantid: 1S89420N; G094122N
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c469t-5c919e590cb7646326c1f71d26c3d3c21b3cb9d27bde525c6f24f6be17b8714d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001183172600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:46:32 EDT 2025
Tue Nov 04 02:06:17 EST 2025
Sun Nov 09 09:12:14 EST 2025
Tue Oct 07 07:28:19 EDT 2025
Tue Nov 04 18:27:37 EST 2025
Mon Jul 21 05:46:34 EDT 2025
Sat Nov 29 07:11:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords point clouds
autoencoder
real-time computing
variational autoencoder
vector-quantized variational autoencoder
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-5c919e590cb7646326c1f71d26c3d3c21b3cb9d27bde525c6f24f6be17b8714d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9322-4999
0000-0001-7290-0428
0000-0002-4704-1577
0000-0001-9639-7775
OpenAccessLink https://doaj.org/article/171e3d4821da4f33a3f489c9606a8e2f
PMID 38474954
PQID 2955910052
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_171e3d4821da4f33a3f489c9606a8e2f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10934358
proquest_miscellaneous_2956685737
proquest_journals_2955910052
gale_infotracacademiconefile_A786439285
pubmed_primary_38474954
crossref_primary_10_3390_s24051414
PublicationCentury 2000
PublicationDate 20240222
PublicationDateYYYYMMDD 2024-02-22
PublicationDate_xml – month: 2
  year: 2024
  text: 20240222
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
Cheng (ref_36) 2021; 34
ref_13
ref_35
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_30
Charlier (ref_40) 2021; 22
ref_19
ref_18
ref_17
Chen (ref_25) 2020; 29
ref_39
ref_16
ref_38
ref_15
Phan (ref_9) 2018; 108
ref_24
ref_23
ref_45
ref_22
ref_44
ref_21
ref_43
ref_20
ref_42
ref_41
ref_1
ref_3
ref_2
ref_29
ref_28
ref_27
ref_26
Lin (ref_37) 2022; 10
ref_8
ref_5
ref_4
Li (ref_31) 2021; 40
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_44
  doi: 10.1109/ICCV48922.2021.00577
– ident: ref_30
– ident: ref_35
  doi: 10.1109/CVPR52688.2022.00614
– ident: ref_3
– ident: ref_24
– ident: ref_27
  doi: 10.1109/CVPR46437.2021.01481
– ident: ref_26
– ident: ref_34
– volume: 108
  start-page: 533
  year: 2018
  ident: ref_9
  article-title: DGCNN: A convolutional neural network over large-scale labeled graphs
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.09.001
– volume: 22
  start-page: 74
  year: 2021
  ident: ref_40
  article-title: Kernel Operations on the GPU, with Autodiff, without Memory Overflows
  publication-title: J. Mach. Learn. Res.
– ident: ref_33
  doi: 10.1007/978-3-030-58574-7
– ident: ref_10
  doi: 10.1561/9781680836233
– ident: ref_11
– ident: ref_14
  doi: 10.1109/ICCV.2019.01054
– ident: ref_17
  doi: 10.1007/978-3-031-19821-2
– volume: 29
  start-page: 3183
  year: 2020
  ident: ref_25
  article-title: Deep Unsupervised Learning of 3D Point Clouds via Graph Topology Inference and Filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2957935
– volume: 34
  start-page: 6608
  year: 2021
  ident: ref_36
  article-title: Learning 3d dense correspondence via canonical point autoencoder
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_13
  doi: 10.1007/978-3-030-58604-1
– volume: 10
  start-page: 82076
  year: 2022
  ident: ref_37
  article-title: Noise Point Detection From Airborne LiDAR Point Cloud Based on Spatial Hierarchical Directional Relationship
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3196388
– ident: ref_39
– ident: ref_38
  doi: 10.3390/buildings13092365
– ident: ref_12
  doi: 10.1109/SSCI47803.2020.9308513
– ident: ref_42
– ident: ref_1
– ident: ref_23
– ident: ref_28
  doi: 10.1007/978-3-030-58580-8_22
– ident: ref_6
– ident: ref_8
– ident: ref_29
– ident: ref_45
  doi: 10.1109/CVPR46437.2021.00286
– ident: ref_15
  doi: 10.1109/CVPRW56347.2022.00336
– ident: ref_18
  doi: 10.1109/CVPR52688.2022.00040
– ident: ref_41
– ident: ref_5
  doi: 10.1109/CoG52621.2021.9619133
– ident: ref_16
  doi: 10.1007/978-3-030-01252-6
– ident: ref_20
  doi: 10.1109/CVPR.2018.00029
– ident: ref_22
  doi: 10.1109/CVPR.2018.00030
– ident: ref_2
  doi: 10.1109/CVPR.2019.00453
– ident: ref_19
– ident: ref_43
– volume: 40
  start-page: 151
  year: 2021
  ident: ref_31
  article-title: SP-GAN:Sphere-Guided 3D Shape Generation and Manipulation
  publication-title: ACM Trans. Graph. Proc. SIGGRAPH
– ident: ref_4
  doi: 10.1007/978-1-4842-9579-3
– ident: ref_32
  doi: 10.1109/WACV45572.2020.9093430
– ident: ref_21
  doi: 10.1109/CVPR46437.2021.00737
SSID ssj0023338
Score 2.4125707
Snippet Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1414
SubjectTerms autoencoder
Euclidean space
Machine learning
point clouds
real-time computing
Semantics
variational autoencoder
vector-quantized variational autoencoder
Virtual reality
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3o-UggJC4hS1fiR2eqm2qxYOaBUhQL1Z8austErKPpD498wk3nSjSlw4RYotZZyZ8cznxzeEfMiFgSyV2ox7EzKMUJlyvsxKFZR3BbfH3f2KH1_kbKYuL8sqLrit4rHK7ZzYTdSutbhGfsSQKo3iKubp9a8Mq0bh7mosoXGX7CNTGdj5_tn5rPo6QC4OCKznE-IA7o9WEL8gQ6BiFIU6sv7bU_JOTBqfl9wJQBeP_lf0x-RhTD3TSW8rT8gd3zwlD3YICZ-Rk2r6yTcn6SRFaPonreol1lrpjn4tfFq182adThftxqU9XzVOlinWU1s8J98vzr9NP2exukJmARKvs9yWtPR5eWyNLEQBaZylQVIHT-64ZdRwa0rHpHE-Z7ktAhOhMJ5KAyBLOP6C7DVt41-RFGGbMox7Rr0IvFAusECNUFTYIFyekPfbv62vexINDeADVaIHlSTkDPUwdEDe6-5Fu7zS0Y00ldRzJxSjroYv8ZoHoUqLMKxWnoWEfEQtavROUJWt4yUDkBN5rvREKkzBmAKZDrfK0tFtV_pGUwl5NzSDw-EuSt34dtP1KQqVSy4T8rK3i0FmDrEeECeMRY0sZjSocUsz_9mReiOtF6Su6uDfcr0m9xmkVd2lenZI9tbLjX9D7tnf6_lq-Taa_18Fgg5i
  priority: 102
  providerName: ProQuest
Title PCGen: A Fully Parallelizable Point Cloud Generative Model
URI https://www.ncbi.nlm.nih.gov/pubmed/38474954
https://www.proquest.com/docview/2955910052
https://www.proquest.com/docview/2956685737
https://pubmed.ncbi.nlm.nih.gov/PMC10934358
https://doaj.org/article/171e3d4821da4f33a3f489c9606a8e2f
Volume 24
WOSCitedRecordID wos001183172600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwoE9IN4bdqkCQuIUbf1I7OytW3UBia0iBKicovglKlXpqo-VuPDbdyZJq0YcuHBxJNuH8Uzs-b7E_gzwPpUGUSqzifAmJJShEu18nuQ6aO8yYYfN-YofX9R0qmezvDi46ov2hLXywK3jzpliXjipOXOVDEJUIkidWwLelfY80Oo7VPmOTHVUSyDzanWEBJL68zXmLUQGTPayTyPS__dSfJCL-vskDxLP1RN43CHGeNRa-hTu-foZHB_oCD6Hi2L80dcX8SgmRvk7LqoVXZHS7Nha-LhYzutNPF4sty5uZaZpjYvpGrTFC_h-Nfk2_pR0lyIkFpnsJkltznKf5kNrVCYzRF-WBcUcPoUTljMjrMkdV8b5lKc2C1yGzHimDHIj6cRLOKqXtT-BmNiWNlx4zjy6NtMu8MCM1EzaIF0awbuds8qbVvuiRM5AHi33Ho3gkty470By1U0FBrHsglj-K4gRfKAglDSp0NO26s4GoJ0kT1WOlCbkxDXadLaLU9nNtnXJSUaP0RfuCN7um3Ge0M-PqvbLbdMny3SqhIrgVRvWvc0CUzQSRRyL7gW8N6h-Sz3_1WhxkxoXIk79-n-44RQeccRMzYl5fgZHm9XWv4GH9nYzX68GcF_NVFPqATy4nEyLr4Pmrcfy-s8E64rP18XPO7MtBRs
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIly4P0wFDAIxMlq9mF7XQmhECiNmkY-FFROxt5HiRTZJQ9Q_xS_kRnbCYmQuPXAyZK9ssfeb2fmW-9-A_AylAVmqUwHwhYuoAgVKGOTIFFOWRMJ3a33V3wexqOROj1N0i34tdwLQ8sqlz6xdtSm0jRHvsdJKo3RLObb8-8BVY2iv6vLEhoNLI7sxU-kbLM3g_fYv684P_hw0j8M2qoCgUYqOA9CnbDEhklXF3EkI0xfNHMxM3gURmjOCqGLxPC4MDbkoY4cly4qLIsLJBfSCLzvFdiWCPZuB7bTwXH6ZUXxBDK-Rr9IiKS7N8N4iRkJkxtRry4O8HcIWIuBm-sz1wLewc3_7VPdghttau33mrFwG7ZseQeurwku3oX9tP_Rlvt-zyfqfeGn-ZRqydRL2ybWT6txOff7k2ph_EaPm4KBT_XiJvfg06UYfx86ZVXah-ATLVUFF5YzK52IlHHcsUIqJrWTJvTgxbJ3s_NGJCRDckUQyFYQ8OAd9fuqAel61yeq6VnWuomMxcwKIxVnJscniVw4qRJNNDNXljsPXhNqMvI-CA2dt5so0E7S8cp6saIUkyu0aXcJjqx1S7PsDzI8eL66jA6F_hLlpa0WdZsoUmEsYg8eNDhc2Swwl0FGje-iNhC68VKbV8rxt1q0nGTLMDVXj_5t1zO4dnhyPMyGg9HRY9jhmELWAgJ8Fzrz6cI-gav6x3w8mz5th54PXy8bwr8BnaVrRQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceFMMBQwCcbKSfdheV0IopASqVlEOgHIz9j5opMgueYD61_h1zPiRxkLi1gMnS7Zlz9qfZ-Zbz34D8CqUOWapTAfC5i6gCBUoY5MgUU5ZEwndr9ZXfD2Jx2M1nSaTHfjdroWhssrWJ1aO2pSa5sh7nKTSGM1i9lxTFjE5HL07-xFQByn609q206ghcmzPfyF9W749OsR3_Zrz0YfPw09B02Eg0EgLV0GoE5bYMOnrPI5khKmMZi5mBrfCCM1ZLnSeGB7nxoY81JHj0kW5ZXGOREMagde9AldJUpCcQjy9IHsCuV-tZCRE0u8tMXJibsJkJ_5VbQL-DgZb0bBbqbkV-ka3_-eHdgduNQm3P6i_kLuwY4t7cHNLhvE-HEyGH21x4A98IuTn_iRbUIeZquBtbv1JOStW_nBero1fq3RTiPCpi9z8AXy5FOMfwm5RFvYR-ERWVc6F5cxKJyJlHHcsl4pJ7aQJPXjZvun0rJYOSZFyERzSDRw8eE8Y2JxAat_VjnLxPW2cR8piZoWRijOT4Z1EJpxUiSbymSnLnQdvCEEp-SSEic6apRVoJ6l7pYNYUeLJFdq03wIlbZzVMr1AiQcvNofRzdC_o6yw5bo6J4pUGIvYg70akxubBWY4yLNxLKqD1s6gukeK2WklZU5iZpiwq8f_tus5XEfcpidH4-MncINjXlmpCvB92F0t1vYpXNM_V7Pl4ln1Dfrw7bLx-weQC3Jy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCGen%3A+A+Fully+Parallelizable+Point+Cloud+Generative+Model&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Vercheval%2C+Nicolas&rft.au=Royen%2C+Remco&rft.au=Munteanu%2C+Adrian&rft.au=Pi%C5%BEurica%2C+Aleksandra&rft.date=2024-02-22&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=5&rft_id=info:doi/10.3390%2Fs24051414&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon