Change Detection of Optical Remote Sensing Image Disturbed by Thin Cloud Using Wavelet Coefficient Substitution Algorithm
The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 19; H. 9; S. 1972 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
26.04.2019
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change detection. Based on the analysis of the characteristics of thin cloud images, a method for removing thin clouds based on wavelet coefficient substitution is proposed in this paper. Based on the change in the wavelet coefficient, the high- and low-frequency parts of the remote sensing image are replaced separately, and the low-frequency clouds are suppressed while maintaining the high-frequency detail of the image, which achieves good results. Then, an unsupervised change detection algorithm based on a combined difference graph and fuzzy c-means clustering algorithm (FCM) clustering is applied. First, the image is transformed into a logarithmic domain, and the image is denoised using Frost filtering. Then, the mean ratio method and the difference method are used to obtain two graph difference maps, and the combined difference graph method is used to obtain the final difference image. The experimental results show that the algorithm can effectively solve the problem of image change detection under thin cloud interference. |
|---|---|
| AbstractList | The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change detection. Based on the analysis of the characteristics of thin cloud images, a method for removing thin clouds based on wavelet coefficient substitution is proposed in this paper. Based on the change in the wavelet coefficient, the high- and low-frequency parts of the remote sensing image are replaced separately, and the low-frequency clouds are suppressed while maintaining the high-frequency detail of the image, which achieves good results. Then, an unsupervised change detection algorithm based on a combined difference graph and fuzzy c-means clustering algorithm (FCM) clustering is applied. First, the image is transformed into a logarithmic domain, and the image is denoised using Frost filtering. Then, the mean ratio method and the difference method are used to obtain two graph difference maps, and the combined difference graph method is used to obtain the final difference image. The experimental results show that the algorithm can effectively solve the problem of image change detection under thin cloud interference. The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change detection. Based on the analysis of the characteristics of thin cloud images, a method for removing thin clouds based on wavelet coefficient substitution is proposed in this paper. Based on the change in the wavelet coefficient, the high- and low-frequency parts of the remote sensing image are replaced separately, and the low-frequency clouds are suppressed while maintaining the high-frequency detail of the image, which achieves good results. Then, an unsupervised change detection algorithm based on a combined difference graph and fuzzy c-means clustering algorithm (FCM) clustering is applied. First, the image is transformed into a logarithmic domain, and the image is denoised using Frost filtering. Then, the mean ratio method and the difference method are used to obtain two graph difference maps, and the combined difference graph method is used to obtain the final difference image. The experimental results show that the algorithm can effectively solve the problem of image change detection under thin cloud interference.The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change detection. Based on the analysis of the characteristics of thin cloud images, a method for removing thin clouds based on wavelet coefficient substitution is proposed in this paper. Based on the change in the wavelet coefficient, the high- and low-frequency parts of the remote sensing image are replaced separately, and the low-frequency clouds are suppressed while maintaining the high-frequency detail of the image, which achieves good results. Then, an unsupervised change detection algorithm based on a combined difference graph and fuzzy c-means clustering algorithm (FCM) clustering is applied. First, the image is transformed into a logarithmic domain, and the image is denoised using Frost filtering. Then, the mean ratio method and the difference method are used to obtain two graph difference maps, and the combined difference graph method is used to obtain the final difference image. The experimental results show that the algorithm can effectively solve the problem of image change detection under thin cloud interference. |
| Author | Jia, Zhenhong Yang, Jie Yang, Xiaoqian Kasabov, Nikola |
| AuthorAffiliation | 3 Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, 1020 Auckland, New Zealand; nkasabov@aut.ac.nz 1 College of Information Science and Engineering, Xinjiang University, Urumuqi 830046, China; m15099106737@163.com 2 Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China; Jieyang@sjtu.edu.cn |
| AuthorAffiliation_xml | – name: 1 College of Information Science and Engineering, Xinjiang University, Urumuqi 830046, China; m15099106737@163.com – name: 3 Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, 1020 Auckland, New Zealand; nkasabov@aut.ac.nz – name: 2 Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China; Jieyang@sjtu.edu.cn |
| Author_xml | – sequence: 1 givenname: Xiaoqian surname: Yang fullname: Yang, Xiaoqian – sequence: 2 givenname: Zhenhong surname: Jia fullname: Jia, Zhenhong – sequence: 3 givenname: Jie surname: Yang fullname: Yang, Jie – sequence: 4 givenname: Nikola surname: Kasabov fullname: Kasabov, Nikola |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31035518$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkklrGzEUgIeS0iztoX-gCHppD26k0SzSpRDczRAINAk9Ci1PtsyM5EqagP99ZTsJSXrS8j59ek9Pp9WRDx6q6j3BXyjl-DwRjjnhff2qOiFN3cxYXeOjJ_Pj6jSlNcY1pZS9qY4pwbRtCTuptvOV9EtA3yCDzi54FCy62mSn5YB-wxgyoGvwyfklWoxyR7qUp6jAILVFNyvn0XwIk0G3e-aPvIMBMpoHsNZpBz6j60ml7PK0118MyxBdXo1vq9dWDgne3Y9n1e2P7zfzX7PLq5-L-cXlTDcdz7O2NUYpzdpaW9tqVdbaGK5wD0rTlgAzvdWStX2HuQXTU2b72gDpFO8Ms_SsWhy8Jsi12EQ3yrgVQTqx3whxKWQs9Q4gbAMESN8wbnUjlZRKMWuhk31jdQkW19eDazOpEYwu1UU5PJM-j3i3EstwJ7qWctrzIvh0L4jh7wQpi9ElDcMgPYQpibou1_eEMlzQjy_QdZiiL08laopJt4OaQn14mtFjKg8dLsD5AdAxpBTBCu2y3LWiJOgGQbDY_SHx-IfKic8vTjxI_2f_ARAeyWM |
| CitedBy_id | crossref_primary_10_1109_TGRS_2024_3519810 crossref_primary_10_3390_s21134369 crossref_primary_10_3390_rs12152355 crossref_primary_10_3390_universe11090282 crossref_primary_10_1155_2021_2610887 |
| Cites_doi | 10.1109/JSTARS.2017.2655101 10.1109/LGRS.2012.2228626 10.1109/TNNLS.2015.2435783 10.1109/IFSC.2013.6675656 10.1016/j.isprsjprs.2013.03.006 10.1016/j.eswa.2015.04.002 10.1109/TGRS.2009.2029095 10.1109/SOPO.2010.5504180 10.1109/PROC.1981.11935 10.1109/LGRS.2009.2025059 10.1016/j.patcog.2009.08.020 10.1109/IndiaCom.2014.6828169 10.1109/GeoInformatics.2011.5980963 10.1016/0098-3004(84)90020-7 10.1109/M2RSM.2011.5697411 10.1016/j.sigpro.2009.01.012 10.1016/j.sigpro.2017.07.023 10.1109/ICALIP.2016.7846593 10.1109/78.157290 10.1109/LGRS.2011.2167211 10.1109/36.981363 10.1109/ICAPR.2009.82 10.1109/LGRS.2009.2026188 10.1109/36.911113 10.1109/36.210462 10.1109/ICNETS2.2017.8067921 10.1016/j.asoc.2012.03.060 10.1023/A:1021986309149 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s19091972 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f4e1e17489fc4abaabb8ffe6a74fcf4e PMC6539379 31035518 10_3390_s19091972 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: the International Cooperative Research and Personnel Training Projects of the Ministry of Education of the People's Republic of China grantid: 2014-2029 and 2016-2196 – fundername: National Natural Science Foundation of China grantid: 61665012 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-55ddbbc852cff5cb55dcdd9b07ebc351e8d7fca857609fed738f72de16b96d8f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469766800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:15 EDT 2025 Tue Nov 04 01:37:06 EST 2025 Thu Sep 04 18:56:10 EDT 2025 Tue Oct 07 07:10:07 EDT 2025 Thu Apr 03 07:08:19 EDT 2025 Sat Nov 29 07:18:02 EST 2025 Tue Nov 18 19:58:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | combination difference map change detection thin cloud removal optical remote sensing image unsupervised FCM clustering |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-55ddbbc852cff5cb55dcdd9b07ebc351e8d7fca857609fed738f72de16b96d8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/f4e1e17489fc4abaabb8ffe6a74fcf4e |
| PMID | 31035518 |
| PQID | 2301613804 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f4e1e17489fc4abaabb8ffe6a74fcf4e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6539379 proquest_miscellaneous_2217471380 proquest_journals_2301613804 pubmed_primary_31035518 crossref_citationtrail_10_3390_s19091972 crossref_primary_10_3390_s19091972 |
| PublicationCentury | 2000 |
| PublicationDate | 20190426 |
| PublicationDateYYYYMMDD | 2019-04-26 |
| PublicationDate_xml | – month: 4 year: 2019 text: 20190426 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Chen (ref_9) 2010; 43 Hussain (ref_12) 2013; 80 Gong (ref_23) 2012; 9 Tang (ref_5) 2013; 10 ref_31 Liu (ref_17) 2018; 45 Shensa (ref_21) 1992; 40 Casillas (ref_28) 2003; 18 Tee (ref_30) 2002; 40 Villasensor (ref_24) 1993; 31 ref_19 ref_18 ref_15 Hesen (ref_33) 2014; 35 Frost (ref_22) 2005; 69 Zhu (ref_20) 2007; 6625 Zhang (ref_7) 2009; 89 Gong (ref_3) 2015; 27 Celik (ref_10) 2009; 6 ref_1 Li (ref_14) 2017; 10 Zhou (ref_16) 2015; 3 Celik (ref_11) 2009; 6 ref_29 ref_27 Celik (ref_2) 2010; 48 ref_8 Hazel (ref_13) 2001; 39 Bezdek (ref_26) 1984; 10 ref_4 Bhowmik (ref_32) 2015; 42 ref_6 Mishra (ref_25) 2012; 12 |
| References_xml | – volume: 10 start-page: 1870 year: 2017 ident: ref_14 article-title: Removal of optically thick clouds from High-Resolution satellite imagery using dictionary group learning and interdictionary nonlocal joint sparse coding publication-title: IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2017.2655101 – volume: 10 start-page: 1060 year: 2013 ident: ref_5 article-title: Fault-tolerant building change detection from urban high-resolution remote sensing imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2228626 – volume: 27 start-page: 125 year: 2015 ident: ref_3 article-title: Change detection in synthetic aperture radar images based on deep neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2015.2435783 – ident: ref_27 doi: 10.1109/IFSC.2013.6675656 – volume: 80 start-page: 91 year: 2013 ident: ref_12 article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2013.03.006 – volume: 42 start-page: 6075 year: 2015 ident: ref_32 article-title: An effective power quality classifier using wavelet transform and support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.002 – volume: 48 start-page: 1199 year: 2010 ident: ref_2 article-title: Unsupervised change detection for satellite images using dual-tree complex wavelet transform publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2029095 – volume: 45 start-page: Z6 year: 2018 ident: ref_17 article-title: Study and Application of Improved Retinex Algorithm in Image Defogging publication-title: Computer Science – ident: ref_29 doi: 10.1109/SOPO.2010.5504180 – volume: 69 start-page: 133 year: 2005 ident: ref_22 article-title: An adaptive filter for smoothing noisy radar images publication-title: Proc. IEEE doi: 10.1109/PROC.1981.11935 – volume: 6 start-page: 772 year: 2009 ident: ref_11 article-title: Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and -Means Clustering publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2009.2025059 – volume: 43 start-page: 579 year: 2010 ident: ref_9 article-title: Invariant pattern recognition using contourlets and AdaBoost publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.08.020 – ident: ref_1 doi: 10.1109/IndiaCom.2014.6828169 – ident: ref_15 doi: 10.1109/GeoInformatics.2011.5980963 – volume: 10 start-page: 191 year: 1984 ident: ref_26 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – ident: ref_6 doi: 10.1109/M2RSM.2011.5697411 – volume: 89 start-page: 1334 year: 2009 ident: ref_7 article-title: Multifocus image fusion using the nonsubsampled contourlet transform publication-title: Signal Process. doi: 10.1016/j.sigpro.2009.01.012 – ident: ref_8 doi: 10.1016/j.sigpro.2017.07.023 – ident: ref_18 doi: 10.1109/ICALIP.2016.7846593 – volume: 40 start-page: 2464 year: 1992 ident: ref_21 article-title: The discrete wavelet transform: Wedding the a trous and Mallat algorithms publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.157290 – volume: 35 start-page: 42 year: 2014 ident: ref_33 article-title: Based on NSCT Combination with FCM Multitemporal Remote Sensing Image Change Detection publication-title: Laser J. – volume: 9 start-page: 307 year: 2012 ident: ref_23 article-title: A neighborhood-based ratio approach for change detection in SAR images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2167211 – volume: 40 start-page: 210 year: 2002 ident: ref_30 article-title: Haze detection and removal in high resolution satellite image with wavelet analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.981363 – ident: ref_4 doi: 10.1109/ICAPR.2009.82 – ident: ref_19 – volume: 6 start-page: 820 year: 2009 ident: ref_10 article-title: Multiscale Change detection in multitemporal satellite images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2009.2026188 – volume: 39 start-page: 553 year: 2001 ident: ref_13 article-title: Object-level change detection in spectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.911113 – volume: 31 start-page: 227 year: 1993 ident: ref_24 article-title: Change detection on Alaska’s North Slope using repeat-pass ERS-1 SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.210462 – ident: ref_31 doi: 10.1109/ICNETS2.2017.8067921 – volume: 3 start-page: 14 year: 2015 ident: ref_16 article-title: An algorithm of cloud removal for remote sensing image based on improved homomorphic Filtering publication-title: Radio Eng. – volume: 6625 start-page: 241 year: 2007 ident: ref_20 article-title: An improved approach to remove cloud and mist from remote sensing digital images based on mallat algorithm publication-title: J. Remote Sens. – volume: 12 start-page: 2683 year: 2012 ident: ref_25 article-title: Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.03.060 – volume: 18 start-page: 155 year: 2003 ident: ref_28 article-title: Fuzzy control of HVAC systems optimized by genetic algorithms publication-title: Appl. Intell. doi: 10.1023/A:1021986309149 |
| SSID | ssj0023338 |
| Score | 2.2908046 |
| Snippet | The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1972 |
| SubjectTerms | Algorithms Atmospheric aerosols change detection Clouds Clustering combination difference map FCM clustering Fog International conferences Noise optical remote sensing image Remote sensing Satellites thin cloud removal unsupervised Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BygEOvAuGghbEgYsVv3d9QiVQUQlKxLOcrH3MppVSOyQOUv89M2vHNKjixNHekTXWzM5jd-Ybxl4IdLJxAja0SpZhVkASlhgWhZlz0tlIgvLtY9_ei6MjeXxcTvv26FVfVrmxid5Qd2jPVLeNRnhsG0Mn5mMMnDFUSWWUvVr8DGmGFN219gM1rrIdAt6KRmxnevhh-mNIwFLMxzp0oRRT_fEKnWFJY7e2fJKH7r8s3vy7bPKCHzq49X__4Da72cejfL9ToDvsCtR32Y0LKIX32HnXgcDfQOvrtmreOP5x4Q_B-SdAWQP_THXw9YwfnimiRN1ZLzVYrs85TQblk3mzttzXJ_DvioZdtHzSgMevQH452S9ftECf35_PkNP25Ow--3rw9svkXdhPbAgNptltmOfWam1knhjncqPx2Vhb6kiANmkeg7TCGSUxyYlKB1ak0onEQlzosrDSpbtsVDc1PGS8iIyWinoE8jTTrlCgSspPbSqkSrIiYC83MqtMD2dOUzXmFaY1JN5qEG_Ang-kiw7D4zKi1yT4gYBgt_2LZjmr-l1cuQxiiAmwx5lMaaW0ls5BoUTmDC4GbG8j-qq3Bavqj6QD9mxYxl1MVzOqhmaNNJQZCiIK2INOywZOaBIc4eYFTGzp3xar2yv16YlHCifc4VSUj_7N1mN2HcNAf0eWFHts1C7X8IRdM7_a09Xyab-JfgM7yjPE priority: 102 providerName: ProQuest |
| Title | Change Detection of Optical Remote Sensing Image Disturbed by Thin Cloud Using Wavelet Coefficient Substitution Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31035518 https://www.proquest.com/docview/2301613804 https://www.proquest.com/docview/2217471380 https://pubmed.ncbi.nlm.nih.gov/PMC6539379 https://doaj.org/article/f4e1e17489fc4abaabb8ffe6a74fcf4e |
| Volume | 19 |
| WOSCitedRecordID | wos000469766800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagcIAD4s1CiQziwGXVfdt7bEMqKtEQlVc4rfwYt5HS3SrZIPXCb2fGu4kSVIkLF0trj1Zez9iebz3-hrF3AjfZOAEbWiXLMCsgCUt0i8LMOelsJEH562PfP4nxWE6n5WQr1RfFhHX0wN3AHbgMYoiJI8WZTGmltJbOQaFE5gw20uobiXINpnqolSLy6niEUgT1B0vc9kpKsLWz-3iS_ps8y78DJLd2nOOH7EHvKvLDrouP2C2oH7P7WwSCT9h1dzmAf4DWh1TVvHH885X_P83PANUA_AuFqNfn_ORSkSSqdbXQYLm-5pS0kw_nzcpyHzrAfyjKQ9HyYQOeWgI7xmlp8fEE9PrD-XmzmLUXl0_Zt-PR1-HHsE-mEBpEwG2Y59ZqbWSeGOdyo_HZWFvqSIA2aR6DtMIZJRF_RKUDK1LpRGIhLnRZWOnSZ2yvbmp4wXgRGS0Vhe_naaZdoUCVBB1tKqRKsiJg79eDXJmeaZwSXswrRBykj2qjj4C93YhedfQaNwkdkaY2AsSI7SvQTqreTqp_2UnA9td6rvppuqwQf6HHm8ooC9ibTTNOMDo1UTU0K5Qh0CZIKGDPO7PY9ISStBGlXcDEjsHsdHW3pZ5deBJvogRORfnyf3zbK3YP_Th_yJUU-2yvXazgNbtrfrWz5WLAboup8KUcsDtHo_HkbOBnC5anv0dYNzk5nfz8A0L6Igg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4YCiwIJC5WHb92fUCopFSNmoYKCpST2WdaKbVD4oDyp_iN7Kwd06CKWw8c7R1Z6_W3szPe2e8DeEHtItsNtfIVZ5kfpzr0MxsW-bExzKiAae6Oj30e0OGQHR1lB2vwa3kWBssqlz7ROWpVSvxHvmlDZRucRCyI30y--6gahburSwmNGhZ7evHTpmyz1_1t-31fhuHOu8Pert-oCvjSpoKVnyRKCSFZEkpjEinstVQqEwHVQkZJVzNFjeTMBuJBZrSiETM0VLqbiixVzET2uZdgPbZgDzqwftDfP_japniRzfhq_qIoyoLNmV1uMxT2Wln1nDjAeRHt34WZZ1a6nRv_2xjdhOtNTE226klwC9Z0cRuunWFavAOL-hQF2daVqz0rSGnI-4n7kU8-aItXTT5iLX8xIv1TjpYW__Op0IqIBUF1U9Ibl3NFXI0F-cJRsKMivVI7Dg47kgR9sCu8wMdvjUd2ZKrj07vw6ULe_R50irLQD4CkgRSM4zmHJIqFSbnmGebYKqKMh3HqwaslKnLZULKjMsg4t6kZAihvAeTB89Z0UvOQnGf0FqHVGiB1uLtRTkd544lyE-uu7iLpkJExF5wLwYzRKaexkbbRg40luPLGn83yP8jy4FnbbD0Rbi_xQpdza4PZLUUjD-7XOG57gmp2yP3nAV1B-EpXV1uKk2PHdo7cyRHNHv67W0_hyu7h_iAf9Id7j-CqDWvdnl-YbkCnms71Y7gsf1Qns-mTZsoS-HbRM-A3t5aJ6g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCE48H4YCiwIJC5W_N71AaE2aUTUKkTl1ZvZZ1optUPigPLX-HXM2I5pUMWtB472jqz1-tvZGe_s9xHyisEi6wdGu1rw1I0SE7gphEVuZC232uNGVMfHvhyy0YgfH6fjLfJrfRYGyyrXPrFy1LpQ-I-8C6EyBCch96Kubcoixv3Bu9l3FxWkcKd1LadRQ-TArH5C-rZ4O-zDt34dBIP9T733bqMw4CpIC0s3jrWWUvE4UNbGSsK10jqVHjNShbFvuGZWCQ5BuZdao1nILQu08ROZJprbEJ57hWyzEJKeDtne2x-Nj9p0L4Tsr-YyCsPU6y5g6U1R5GtjBayEAi6Kbv8u0jy36g1u_c_jdZvcbGJtultPjjtky-R3yY1zDIz3yKo-XUH7pqxq0nJaWPphVv3gp0cGcGzoR6zxzyd0eCbQEubFci6NpnJFUfWU9qbFUtOq9oJ-FSjkUdJeYSpuDhhVir65KsjAx-9OJzAy5cnZffL5Ut79AenkRW4eEZp4SnKB5x_iMJI2EUakmHvrkHERRIlD3qwRkqmGqh0VQ6YZpGwIpqwFk0Netqazmp_kIqM9hFlrgJTi1Y1iPskaD5XZyPjGRzIiqyIhhZCSW2sSwSKroNEhO2ugZY2fW2R_UOaQF20zeCjcdhK5KZZgg1kvQyOHPKwx3fYEVe6QE9AhbAPtG13dbMlPTyoWdORUDln6-N_dek6uAeyzw-Ho4Am5DtFutRUYJDukU86X5im5qn6Up4v5s2b2UvLtsifAbw6YkoQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change+Detection+of+Optical+Remote+Sensing+Image+Disturbed+by+Thin+Cloud+Using+Wavelet+Coefficient+Substitution+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Xiaoqian&rft.au=Jia%2C+Zhenhong&rft.au=Yang%2C+Jie&rft.au=Kasabov%2C+Nikola&rft.date=2019-04-26&rft.eissn=1424-8220&rft.volume=19&rft.issue=9&rft_id=info:doi/10.3390%2Fs19091972&rft_id=info%3Apmid%2F31035518&rft.externalDocID=31035518 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |