Change Detection of Optical Remote Sensing Image Disturbed by Thin Cloud Using Wavelet Coefficient Substitution Algorithm

The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 19; H. 9; S. 1972
Hauptverfasser: Yang, Xiaoqian, Jia, Zhenhong, Yang, Jie, Kasabov, Nikola
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 26.04.2019
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change detection. Based on the analysis of the characteristics of thin cloud images, a method for removing thin clouds based on wavelet coefficient substitution is proposed in this paper. Based on the change in the wavelet coefficient, the high- and low-frequency parts of the remote sensing image are replaced separately, and the low-frequency clouds are suppressed while maintaining the high-frequency detail of the image, which achieves good results. Then, an unsupervised change detection algorithm based on a combined difference graph and fuzzy c-means clustering algorithm (FCM) clustering is applied. First, the image is transformed into a logarithmic domain, and the image is denoised using Frost filtering. Then, the mean ratio method and the difference method are used to obtain two graph difference maps, and the combined difference graph method is used to obtain the final difference image. The experimental results show that the algorithm can effectively solve the problem of image change detection under thin cloud interference.
AbstractList The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change detection. Based on the analysis of the characteristics of thin cloud images, a method for removing thin clouds based on wavelet coefficient substitution is proposed in this paper. Based on the change in the wavelet coefficient, the high- and low-frequency parts of the remote sensing image are replaced separately, and the low-frequency clouds are suppressed while maintaining the high-frequency detail of the image, which achieves good results. Then, an unsupervised change detection algorithm based on a combined difference graph and fuzzy c-means clustering algorithm (FCM) clustering is applied. First, the image is transformed into a logarithmic domain, and the image is denoised using Frost filtering. Then, the mean ratio method and the difference method are used to obtain two graph difference maps, and the combined difference graph method is used to obtain the final difference image. The experimental results show that the algorithm can effectively solve the problem of image change detection under thin cloud interference.
The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change detection. Based on the analysis of the characteristics of thin cloud images, a method for removing thin clouds based on wavelet coefficient substitution is proposed in this paper. Based on the change in the wavelet coefficient, the high- and low-frequency parts of the remote sensing image are replaced separately, and the low-frequency clouds are suppressed while maintaining the high-frequency detail of the image, which achieves good results. Then, an unsupervised change detection algorithm based on a combined difference graph and fuzzy c-means clustering algorithm (FCM) clustering is applied. First, the image is transformed into a logarithmic domain, and the image is denoised using Frost filtering. Then, the mean ratio method and the difference method are used to obtain two graph difference maps, and the combined difference graph method is used to obtain the final difference image. The experimental results show that the algorithm can effectively solve the problem of image change detection under thin cloud interference.The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical remote sensing image is subjected to thin cloud removal processing, and then the processed remote sensing image is subjected to image change detection. Based on the analysis of the characteristics of thin cloud images, a method for removing thin clouds based on wavelet coefficient substitution is proposed in this paper. Based on the change in the wavelet coefficient, the high- and low-frequency parts of the remote sensing image are replaced separately, and the low-frequency clouds are suppressed while maintaining the high-frequency detail of the image, which achieves good results. Then, an unsupervised change detection algorithm based on a combined difference graph and fuzzy c-means clustering algorithm (FCM) clustering is applied. First, the image is transformed into a logarithmic domain, and the image is denoised using Frost filtering. Then, the mean ratio method and the difference method are used to obtain two graph difference maps, and the combined difference graph method is used to obtain the final difference image. The experimental results show that the algorithm can effectively solve the problem of image change detection under thin cloud interference.
Author Jia, Zhenhong
Yang, Jie
Yang, Xiaoqian
Kasabov, Nikola
AuthorAffiliation 3 Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, 1020 Auckland, New Zealand; nkasabov@aut.ac.nz
1 College of Information Science and Engineering, Xinjiang University, Urumuqi 830046, China; m15099106737@163.com
2 Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China; Jieyang@sjtu.edu.cn
AuthorAffiliation_xml – name: 1 College of Information Science and Engineering, Xinjiang University, Urumuqi 830046, China; m15099106737@163.com
– name: 3 Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, 1020 Auckland, New Zealand; nkasabov@aut.ac.nz
– name: 2 Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China; Jieyang@sjtu.edu.cn
Author_xml – sequence: 1
  givenname: Xiaoqian
  surname: Yang
  fullname: Yang, Xiaoqian
– sequence: 2
  givenname: Zhenhong
  surname: Jia
  fullname: Jia, Zhenhong
– sequence: 3
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
– sequence: 4
  givenname: Nikola
  surname: Kasabov
  fullname: Kasabov, Nikola
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31035518$$D View this record in MEDLINE/PubMed
BookMark eNplkklrGzEUgIeS0iztoX-gCHppD26k0SzSpRDczRAINAk9Ci1PtsyM5EqagP99ZTsJSXrS8j59ek9Pp9WRDx6q6j3BXyjl-DwRjjnhff2qOiFN3cxYXeOjJ_Pj6jSlNcY1pZS9qY4pwbRtCTuptvOV9EtA3yCDzi54FCy62mSn5YB-wxgyoGvwyfklWoxyR7qUp6jAILVFNyvn0XwIk0G3e-aPvIMBMpoHsNZpBz6j60ml7PK0118MyxBdXo1vq9dWDgne3Y9n1e2P7zfzX7PLq5-L-cXlTDcdz7O2NUYpzdpaW9tqVdbaGK5wD0rTlgAzvdWStX2HuQXTU2b72gDpFO8Ms_SsWhy8Jsi12EQ3yrgVQTqx3whxKWQs9Q4gbAMESN8wbnUjlZRKMWuhk31jdQkW19eDazOpEYwu1UU5PJM-j3i3EstwJ7qWctrzIvh0L4jh7wQpi9ElDcMgPYQpibou1_eEMlzQjy_QdZiiL08laopJt4OaQn14mtFjKg8dLsD5AdAxpBTBCu2y3LWiJOgGQbDY_SHx-IfKic8vTjxI_2f_ARAeyWM
CitedBy_id crossref_primary_10_1109_TGRS_2024_3519810
crossref_primary_10_3390_s21134369
crossref_primary_10_3390_rs12152355
crossref_primary_10_3390_universe11090282
crossref_primary_10_1155_2021_2610887
Cites_doi 10.1109/JSTARS.2017.2655101
10.1109/LGRS.2012.2228626
10.1109/TNNLS.2015.2435783
10.1109/IFSC.2013.6675656
10.1016/j.isprsjprs.2013.03.006
10.1016/j.eswa.2015.04.002
10.1109/TGRS.2009.2029095
10.1109/SOPO.2010.5504180
10.1109/PROC.1981.11935
10.1109/LGRS.2009.2025059
10.1016/j.patcog.2009.08.020
10.1109/IndiaCom.2014.6828169
10.1109/GeoInformatics.2011.5980963
10.1016/0098-3004(84)90020-7
10.1109/M2RSM.2011.5697411
10.1016/j.sigpro.2009.01.012
10.1016/j.sigpro.2017.07.023
10.1109/ICALIP.2016.7846593
10.1109/78.157290
10.1109/LGRS.2011.2167211
10.1109/36.981363
10.1109/ICAPR.2009.82
10.1109/LGRS.2009.2026188
10.1109/36.911113
10.1109/36.210462
10.1109/ICNETS2.2017.8067921
10.1016/j.asoc.2012.03.060
10.1023/A:1021986309149
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s19091972
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f4e1e17489fc4abaabb8ffe6a74fcf4e
PMC6539379
31035518
10_3390_s19091972
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: the International Cooperative Research and Personnel Training Projects of the Ministry of Education of the People's Republic of China
  grantid: 2014-2029 and 2016-2196
– fundername: National Natural Science Foundation of China
  grantid: 61665012
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-55ddbbc852cff5cb55dcdd9b07ebc351e8d7fca857609fed738f72de16b96d8f3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469766800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:15 EDT 2025
Tue Nov 04 01:37:06 EST 2025
Thu Sep 04 18:56:10 EDT 2025
Tue Oct 07 07:10:07 EDT 2025
Thu Apr 03 07:08:19 EDT 2025
Sat Nov 29 07:18:02 EST 2025
Tue Nov 18 19:58:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords combination difference map
change detection
thin cloud removal
optical remote sensing image
unsupervised
FCM clustering
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-55ddbbc852cff5cb55dcdd9b07ebc351e8d7fca857609fed738f72de16b96d8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f4e1e17489fc4abaabb8ffe6a74fcf4e
PMID 31035518
PQID 2301613804
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f4e1e17489fc4abaabb8ffe6a74fcf4e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6539379
proquest_miscellaneous_2217471380
proquest_journals_2301613804
pubmed_primary_31035518
crossref_citationtrail_10_3390_s19091972
crossref_primary_10_3390_s19091972
PublicationCentury 2000
PublicationDate 20190426
PublicationDateYYYYMMDD 2019-04-26
PublicationDate_xml – month: 4
  year: 2019
  text: 20190426
  day: 26
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_9) 2010; 43
Hussain (ref_12) 2013; 80
Gong (ref_23) 2012; 9
Tang (ref_5) 2013; 10
ref_31
Liu (ref_17) 2018; 45
Shensa (ref_21) 1992; 40
Casillas (ref_28) 2003; 18
Tee (ref_30) 2002; 40
Villasensor (ref_24) 1993; 31
ref_19
ref_18
ref_15
Hesen (ref_33) 2014; 35
Frost (ref_22) 2005; 69
Zhu (ref_20) 2007; 6625
Zhang (ref_7) 2009; 89
Gong (ref_3) 2015; 27
Celik (ref_10) 2009; 6
ref_1
Li (ref_14) 2017; 10
Zhou (ref_16) 2015; 3
Celik (ref_11) 2009; 6
ref_29
ref_27
Celik (ref_2) 2010; 48
ref_8
Hazel (ref_13) 2001; 39
Bezdek (ref_26) 1984; 10
ref_4
Bhowmik (ref_32) 2015; 42
ref_6
Mishra (ref_25) 2012; 12
References_xml – volume: 10
  start-page: 1870
  year: 2017
  ident: ref_14
  article-title: Removal of optically thick clouds from High-Resolution satellite imagery using dictionary group learning and interdictionary nonlocal joint sparse coding
  publication-title: IEEE J. Selected Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2017.2655101
– volume: 10
  start-page: 1060
  year: 2013
  ident: ref_5
  article-title: Fault-tolerant building change detection from urban high-resolution remote sensing imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2228626
– volume: 27
  start-page: 125
  year: 2015
  ident: ref_3
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2015.2435783
– ident: ref_27
  doi: 10.1109/IFSC.2013.6675656
– volume: 80
  start-page: 91
  year: 2013
  ident: ref_12
  article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.03.006
– volume: 42
  start-page: 6075
  year: 2015
  ident: ref_32
  article-title: An effective power quality classifier using wavelet transform and support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.002
– volume: 48
  start-page: 1199
  year: 2010
  ident: ref_2
  article-title: Unsupervised change detection for satellite images using dual-tree complex wavelet transform
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2029095
– volume: 45
  start-page: Z6
  year: 2018
  ident: ref_17
  article-title: Study and Application of Improved Retinex Algorithm in Image Defogging
  publication-title: Computer Science
– ident: ref_29
  doi: 10.1109/SOPO.2010.5504180
– volume: 69
  start-page: 133
  year: 2005
  ident: ref_22
  article-title: An adaptive filter for smoothing noisy radar images
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1981.11935
– volume: 6
  start-page: 772
  year: 2009
  ident: ref_11
  article-title: Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and -Means Clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2025059
– volume: 43
  start-page: 579
  year: 2010
  ident: ref_9
  article-title: Invariant pattern recognition using contourlets and AdaBoost
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.08.020
– ident: ref_1
  doi: 10.1109/IndiaCom.2014.6828169
– ident: ref_15
  doi: 10.1109/GeoInformatics.2011.5980963
– volume: 10
  start-page: 191
  year: 1984
  ident: ref_26
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref_6
  doi: 10.1109/M2RSM.2011.5697411
– volume: 89
  start-page: 1334
  year: 2009
  ident: ref_7
  article-title: Multifocus image fusion using the nonsubsampled contourlet transform
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2009.01.012
– ident: ref_8
  doi: 10.1016/j.sigpro.2017.07.023
– ident: ref_18
  doi: 10.1109/ICALIP.2016.7846593
– volume: 40
  start-page: 2464
  year: 1992
  ident: ref_21
  article-title: The discrete wavelet transform: Wedding the a trous and Mallat algorithms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.157290
– volume: 35
  start-page: 42
  year: 2014
  ident: ref_33
  article-title: Based on NSCT Combination with FCM Multitemporal Remote Sensing Image Change Detection
  publication-title: Laser J.
– volume: 9
  start-page: 307
  year: 2012
  ident: ref_23
  article-title: A neighborhood-based ratio approach for change detection in SAR images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2167211
– volume: 40
  start-page: 210
  year: 2002
  ident: ref_30
  article-title: Haze detection and removal in high resolution satellite image with wavelet analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.981363
– ident: ref_4
  doi: 10.1109/ICAPR.2009.82
– ident: ref_19
– volume: 6
  start-page: 820
  year: 2009
  ident: ref_10
  article-title: Multiscale Change detection in multitemporal satellite images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2026188
– volume: 39
  start-page: 553
  year: 2001
  ident: ref_13
  article-title: Object-level change detection in spectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.911113
– volume: 31
  start-page: 227
  year: 1993
  ident: ref_24
  article-title: Change detection on Alaska’s North Slope using repeat-pass ERS-1 SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.210462
– ident: ref_31
  doi: 10.1109/ICNETS2.2017.8067921
– volume: 3
  start-page: 14
  year: 2015
  ident: ref_16
  article-title: An algorithm of cloud removal for remote sensing image based on improved homomorphic Filtering
  publication-title: Radio Eng.
– volume: 6625
  start-page: 241
  year: 2007
  ident: ref_20
  article-title: An improved approach to remove cloud and mist from remote sensing digital images based on mallat algorithm
  publication-title: J. Remote Sens.
– volume: 12
  start-page: 2683
  year: 2012
  ident: ref_25
  article-title: Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.03.060
– volume: 18
  start-page: 155
  year: 2003
  ident: ref_28
  article-title: Fuzzy control of HVAC systems optimized by genetic algorithms
  publication-title: Appl. Intell.
  doi: 10.1023/A:1021986309149
SSID ssj0023338
Score 2.2908046
Snippet The detection of changes in optical remote sensing images under the interference of thin clouds is studied for the first time in this paper. First, the optical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1972
SubjectTerms Algorithms
Atmospheric aerosols
change detection
Clouds
Clustering
combination difference map
FCM clustering
Fog
International conferences
Noise
optical remote sensing image
Remote sensing
Satellites
thin cloud removal
unsupervised
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BygEOvAuGghbEgYsVv3d9QiVQUQlKxLOcrH3MppVSOyQOUv89M2vHNKjixNHekTXWzM5jd-Ybxl4IdLJxAja0SpZhVkASlhgWhZlz0tlIgvLtY9_ei6MjeXxcTvv26FVfVrmxid5Qd2jPVLeNRnhsG0Mn5mMMnDFUSWWUvVr8DGmGFN219gM1rrIdAt6KRmxnevhh-mNIwFLMxzp0oRRT_fEKnWFJY7e2fJKH7r8s3vy7bPKCHzq49X__4Da72cejfL9ToDvsCtR32Y0LKIX32HnXgcDfQOvrtmreOP5x4Q_B-SdAWQP_THXw9YwfnimiRN1ZLzVYrs85TQblk3mzttzXJ_DvioZdtHzSgMevQH452S9ftECf35_PkNP25Ow--3rw9svkXdhPbAgNptltmOfWam1knhjncqPx2Vhb6kiANmkeg7TCGSUxyYlKB1ak0onEQlzosrDSpbtsVDc1PGS8iIyWinoE8jTTrlCgSspPbSqkSrIiYC83MqtMD2dOUzXmFaY1JN5qEG_Ang-kiw7D4zKi1yT4gYBgt_2LZjmr-l1cuQxiiAmwx5lMaaW0ls5BoUTmDC4GbG8j-qq3Bavqj6QD9mxYxl1MVzOqhmaNNJQZCiIK2INOywZOaBIc4eYFTGzp3xar2yv16YlHCifc4VSUj_7N1mN2HcNAf0eWFHts1C7X8IRdM7_a09Xyab-JfgM7yjPE
  priority: 102
  providerName: ProQuest
Title Change Detection of Optical Remote Sensing Image Disturbed by Thin Cloud Using Wavelet Coefficient Substitution Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/31035518
https://www.proquest.com/docview/2301613804
https://www.proquest.com/docview/2217471380
https://pubmed.ncbi.nlm.nih.gov/PMC6539379
https://doaj.org/article/f4e1e17489fc4abaabb8ffe6a74fcf4e
Volume 19
WOSCitedRecordID wos000469766800016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagcIAD4s1CiQziwGXVfdt7bEMqKtEQlVc4rfwYt5HS3SrZIPXCb2fGu4kSVIkLF0trj1Zez9iebz3-hrF3AjfZOAEbWiXLMCsgCUt0i8LMOelsJEH562PfP4nxWE6n5WQr1RfFhHX0wN3AHbgMYoiJI8WZTGmltJbOQaFE5gw20uobiXINpnqolSLy6niEUgT1B0vc9kpKsLWz-3iS_ps8y78DJLd2nOOH7EHvKvLDrouP2C2oH7P7WwSCT9h1dzmAf4DWh1TVvHH885X_P83PANUA_AuFqNfn_ORSkSSqdbXQYLm-5pS0kw_nzcpyHzrAfyjKQ9HyYQOeWgI7xmlp8fEE9PrD-XmzmLUXl0_Zt-PR1-HHsE-mEBpEwG2Y59ZqbWSeGOdyo_HZWFvqSIA2aR6DtMIZJRF_RKUDK1LpRGIhLnRZWOnSZ2yvbmp4wXgRGS0Vhe_naaZdoUCVBB1tKqRKsiJg79eDXJmeaZwSXswrRBykj2qjj4C93YhedfQaNwkdkaY2AsSI7SvQTqreTqp_2UnA9td6rvppuqwQf6HHm8ooC9ibTTNOMDo1UTU0K5Qh0CZIKGDPO7PY9ISStBGlXcDEjsHsdHW3pZ5deBJvogRORfnyf3zbK3YP_Th_yJUU-2yvXazgNbtrfrWz5WLAboup8KUcsDtHo_HkbOBnC5anv0dYNzk5nfz8A0L6Igg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4YCiwIJC5WHb92fUCopFSNmoYKCpST2WdaKbVD4oDyp_iN7Kwd06CKWw8c7R1Z6_W3szPe2e8DeEHtItsNtfIVZ5kfpzr0MxsW-bExzKiAae6Oj30e0OGQHR1lB2vwa3kWBssqlz7ROWpVSvxHvmlDZRucRCyI30y--6gahburSwmNGhZ7evHTpmyz1_1t-31fhuHOu8Pert-oCvjSpoKVnyRKCSFZEkpjEinstVQqEwHVQkZJVzNFjeTMBuJBZrSiETM0VLqbiixVzET2uZdgPbZgDzqwftDfP_japniRzfhq_qIoyoLNmV1uMxT2Wln1nDjAeRHt34WZZ1a6nRv_2xjdhOtNTE226klwC9Z0cRuunWFavAOL-hQF2daVqz0rSGnI-4n7kU8-aItXTT5iLX8xIv1TjpYW__Op0IqIBUF1U9Ibl3NFXI0F-cJRsKMivVI7Dg47kgR9sCu8wMdvjUd2ZKrj07vw6ULe_R50irLQD4CkgRSM4zmHJIqFSbnmGebYKqKMh3HqwaslKnLZULKjMsg4t6kZAihvAeTB89Z0UvOQnGf0FqHVGiB1uLtRTkd544lyE-uu7iLpkJExF5wLwYzRKaexkbbRg40luPLGn83yP8jy4FnbbD0Rbi_xQpdza4PZLUUjD-7XOG57gmp2yP3nAV1B-EpXV1uKk2PHdo7cyRHNHv67W0_hyu7h_iAf9Id7j-CqDWvdnl-YbkCnms71Y7gsf1Qns-mTZsoS-HbRM-A3t5aJ6g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCE48H4YCiwIJC5W_N71AaE2aUTUKkTl1ZvZZ1optUPigPLX-HXM2I5pUMWtB472jqz1-tvZGe_s9xHyisEi6wdGu1rw1I0SE7gphEVuZC232uNGVMfHvhyy0YgfH6fjLfJrfRYGyyrXPrFy1LpQ-I-8C6EyBCch96Kubcoixv3Bu9l3FxWkcKd1LadRQ-TArH5C-rZ4O-zDt34dBIP9T733bqMw4CpIC0s3jrWWUvE4UNbGSsK10jqVHjNShbFvuGZWCQ5BuZdao1nILQu08ROZJprbEJ57hWyzEJKeDtne2x-Nj9p0L4Tsr-YyCsPU6y5g6U1R5GtjBayEAi6Kbv8u0jy36g1u_c_jdZvcbGJtultPjjtky-R3yY1zDIz3yKo-XUH7pqxq0nJaWPphVv3gp0cGcGzoR6zxzyd0eCbQEubFci6NpnJFUfWU9qbFUtOq9oJ-FSjkUdJeYSpuDhhVir65KsjAx-9OJzAy5cnZffL5Ut79AenkRW4eEZp4SnKB5x_iMJI2EUakmHvrkHERRIlD3qwRkqmGqh0VQ6YZpGwIpqwFk0Netqazmp_kIqM9hFlrgJTi1Y1iPskaD5XZyPjGRzIiqyIhhZCSW2sSwSKroNEhO2ugZY2fW2R_UOaQF20zeCjcdhK5KZZgg1kvQyOHPKwx3fYEVe6QE9AhbAPtG13dbMlPTyoWdORUDln6-N_dek6uAeyzw-Ho4Am5DtFutRUYJDukU86X5im5qn6Up4v5s2b2UvLtsifAbw6YkoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change+Detection+of+Optical+Remote+Sensing+Image+Disturbed+by+Thin+Cloud+Using+Wavelet+Coefficient+Substitution+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Xiaoqian&rft.au=Jia%2C+Zhenhong&rft.au=Yang%2C+Jie&rft.au=Kasabov%2C+Nikola&rft.date=2019-04-26&rft.eissn=1424-8220&rft.volume=19&rft.issue=9&rft_id=info:doi/10.3390%2Fs19091972&rft_id=info%3Apmid%2F31035518&rft.externalDocID=31035518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon