DEHA-Net: A Dual-Encoder-Based Hard Attention Network with an Adaptive ROI Mechanism for Lung Nodule Segmentation

Measuring pulmonary nodules accurately can help the early diagnosis of lung cancer, which can increase the survival rate among patients. Numerous techniques for lung nodule segmentation have been developed; however, most of them either rely on the 3D volumetric region of interest (VOI) input by radi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 23; číslo 4; s. 1989
Hlavní autori: Usman, Muhammad, Shin, Yeong-Gil
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 10.02.2023
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Measuring pulmonary nodules accurately can help the early diagnosis of lung cancer, which can increase the survival rate among patients. Numerous techniques for lung nodule segmentation have been developed; however, most of them either rely on the 3D volumetric region of interest (VOI) input by radiologists or use the 2D fixed region of interest (ROI) for all the slices of computed tomography (CT) scan. These methods only consider the presence of nodules within the given VOI, which limits the networks’ ability to detect nodules outside the VOI and can also encompass unnecessary structures in the VOI, leading to potentially inaccurate segmentation. In this work, we propose a novel approach for 3D lung nodule segmentation that utilizes the 2D region of interest (ROI) inputted from a radiologist or computer-aided detection (CADe) system. Concretely, we developed a two-stage lung nodule segmentation technique. Firstly, we designed a dual-encoder-based hard attention network (DEHA-Net) in which the full axial slice of thoracic computed tomography (CT) scan, along with an ROI mask, were considered as input to segment the lung nodule in the given slice. The output of DEHA-Net, the segmentation mask of the lung nodule, was inputted to the adaptive region of interest (A-ROI) algorithm to automatically generate the ROI masks for the surrounding slices, which eliminated the need for any further inputs from radiologists. After extracting the segmentation along the axial axis, at the second stage, we further investigated the lung nodule along sagittal and coronal views by employing DEHA-Net. All the estimated masks were inputted into the consensus module to obtain the final volumetric segmentation of the nodule. The proposed scheme was rigorously evaluated on the lung image database consortium and image database resource initiative (LIDC/IDRI) dataset, and an extensive analysis of the results was performed. The quantitative analysis showed that the proposed method not only improved the existing state-of-the-art methods in terms of dice score but also showed significant robustness against different types, shapes, and dimensions of the lung nodules. The proposed framework achieved the average dice score, sensitivity, and positive predictive value of 87.91%, 90.84%, and 89.56%, respectively.
AbstractList Measuring pulmonary nodules accurately can help the early diagnosis of lung cancer, which can increase the survival rate among patients. Numerous techniques for lung nodule segmentation have been developed; however, most of them either rely on the 3D volumetric region of interest (VOI) input by radiologists or use the 2D fixed region of interest (ROI) for all the slices of computed tomography (CT) scan. These methods only consider the presence of nodules within the given VOI, which limits the networks' ability to detect nodules outside the VOI and can also encompass unnecessary structures in the VOI, leading to potentially inaccurate segmentation. In this work, we propose a novel approach for 3D lung nodule segmentation that utilizes the 2D region of interest (ROI) inputted from a radiologist or computer-aided detection (CADe) system. Concretely, we developed a two-stage lung nodule segmentation technique. Firstly, we designed a dual-encoder-based hard attention network (DEHA-Net) in which the full axial slice of thoracic computed tomography (CT) scan, along with an ROI mask, were considered as input to segment the lung nodule in the given slice. The output of DEHA-Net, the segmentation mask of the lung nodule, was inputted to the adaptive region of interest (A-ROI) algorithm to automatically generate the ROI masks for the surrounding slices, which eliminated the need for any further inputs from radiologists. After extracting the segmentation along the axial axis, at the second stage, we further investigated the lung nodule along sagittal and coronal views by employing DEHA-Net. All the estimated masks were inputted into the consensus module to obtain the final volumetric segmentation of the nodule. The proposed scheme was rigorously evaluated on the lung image database consortium and image database resource initiative (LIDC/IDRI) dataset, and an extensive analysis of the results was performed. The quantitative analysis showed that the proposed method not only improved the existing state-of-the-art methods in terms of dice score but also showed significant robustness against different types, shapes, and dimensions of the lung nodules. The proposed framework achieved the average dice score, sensitivity, and positive predictive value of 87.91%, 90.84%, and 89.56%, respectively.Measuring pulmonary nodules accurately can help the early diagnosis of lung cancer, which can increase the survival rate among patients. Numerous techniques for lung nodule segmentation have been developed; however, most of them either rely on the 3D volumetric region of interest (VOI) input by radiologists or use the 2D fixed region of interest (ROI) for all the slices of computed tomography (CT) scan. These methods only consider the presence of nodules within the given VOI, which limits the networks' ability to detect nodules outside the VOI and can also encompass unnecessary structures in the VOI, leading to potentially inaccurate segmentation. In this work, we propose a novel approach for 3D lung nodule segmentation that utilizes the 2D region of interest (ROI) inputted from a radiologist or computer-aided detection (CADe) system. Concretely, we developed a two-stage lung nodule segmentation technique. Firstly, we designed a dual-encoder-based hard attention network (DEHA-Net) in which the full axial slice of thoracic computed tomography (CT) scan, along with an ROI mask, were considered as input to segment the lung nodule in the given slice. The output of DEHA-Net, the segmentation mask of the lung nodule, was inputted to the adaptive region of interest (A-ROI) algorithm to automatically generate the ROI masks for the surrounding slices, which eliminated the need for any further inputs from radiologists. After extracting the segmentation along the axial axis, at the second stage, we further investigated the lung nodule along sagittal and coronal views by employing DEHA-Net. All the estimated masks were inputted into the consensus module to obtain the final volumetric segmentation of the nodule. The proposed scheme was rigorously evaluated on the lung image database consortium and image database resource initiative (LIDC/IDRI) dataset, and an extensive analysis of the results was performed. The quantitative analysis showed that the proposed method not only improved the existing state-of-the-art methods in terms of dice score but also showed significant robustness against different types, shapes, and dimensions of the lung nodules. The proposed framework achieved the average dice score, sensitivity, and positive predictive value of 87.91%, 90.84%, and 89.56%, respectively.
Measuring pulmonary nodules accurately can help the early diagnosis of lung cancer, which can increase the survival rate among patients. Numerous techniques for lung nodule segmentation have been developed; however, most of them either rely on the 3D volumetric region of interest (VOI) input by radiologists or use the 2D fixed region of interest (ROI) for all the slices of computed tomography (CT) scan. These methods only consider the presence of nodules within the given VOI, which limits the networks’ ability to detect nodules outside the VOI and can also encompass unnecessary structures in the VOI, leading to potentially inaccurate segmentation. In this work, we propose a novel approach for 3D lung nodule segmentation that utilizes the 2D region of interest (ROI) inputted from a radiologist or computer-aided detection (CADe) system. Concretely, we developed a two-stage lung nodule segmentation technique. Firstly, we designed a dual-encoder-based hard attention network (DEHA-Net) in which the full axial slice of thoracic computed tomography (CT) scan, along with an ROI mask, were considered as input to segment the lung nodule in the given slice. The output of DEHA-Net, the segmentation mask of the lung nodule, was inputted to the adaptive region of interest (A-ROI) algorithm to automatically generate the ROI masks for the surrounding slices, which eliminated the need for any further inputs from radiologists. After extracting the segmentation along the axial axis, at the second stage, we further investigated the lung nodule along sagittal and coronal views by employing DEHA-Net. All the estimated masks were inputted into the consensus module to obtain the final volumetric segmentation of the nodule. The proposed scheme was rigorously evaluated on the lung image database consortium and image database resource initiative (LIDC/IDRI) dataset, and an extensive analysis of the results was performed. The quantitative analysis showed that the proposed method not only improved the existing state-of-the-art methods in terms of dice score but also showed significant robustness against different types, shapes, and dimensions of the lung nodules. The proposed framework achieved the average dice score, sensitivity, and positive predictive value of 87.91%, 90.84%, and 89.56%, respectively.
Measuring pulmonary nodules accurately can help the early diagnosis of lung cancer, which can increase the survival rate among patients. Numerous techniques for lung nodule segmentation have been developed; however, most of them either rely on the 3D volumetric region of interest (VOI) input by radiologists or use the 2D fixed region of interest (ROI) for all the slices of computed tomography (CT) scan. These methods only consider the presence of nodules within the given VOI, which limits the networks' ability to detect nodules outside the VOI and can also encompass unnecessary structures in the VOI, leading to potentially inaccurate segmentation. In this work, we propose a novel approach for 3D lung nodule segmentation that utilizes the 2D region of interest (ROI) inputted from a radiologist or computer-aided detection (CADe) system. Concretely, we developed a two-stage lung nodule segmentation technique. Firstly, we designed a dual-encoder-based hard attention network ( -Net) in which the full axial slice of thoracic computed tomography (CT) scan, along with an ROI mask, were considered as input to segment the lung nodule in the given slice. The output of -Net, the segmentation mask of the lung nodule, was inputted to the adaptive region of interest (A-ROI) algorithm to automatically generate the ROI masks for the surrounding slices, which eliminated the need for any further inputs from radiologists. After extracting the segmentation along the axial axis, at the second stage, we further investigated the lung nodule along sagittal and coronal views by employing -Net. All the estimated masks were inputted into the consensus module to obtain the final volumetric segmentation of the nodule. The proposed scheme was rigorously evaluated on the lung image database consortium and image database resource initiative (LIDC/IDRI) dataset, and an extensive analysis of the results was performed. The quantitative analysis showed that the proposed method not only improved the existing state-of-the-art methods in terms of dice score but also showed significant robustness against different types, shapes, and dimensions of the lung nodules. The proposed framework achieved the average dice score, sensitivity, and positive predictive value of 87.91%, 90.84%, and 89.56%, respectively.
Author Usman, Muhammad
Shin, Yeong-Gil
AuthorAffiliation Department of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
AuthorAffiliation_xml – name: Department of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0002-7278-8488
  surname: Usman
  fullname: Usman, Muhammad
– sequence: 2
  givenname: Yeong-Gil
  surname: Shin
  fullname: Shin, Yeong-Gil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36850583$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAQgCNURB9w4A8gS1zgEOpH4jgcKi3twq60tBKPszVxJrtesvbWTlrx73HZsmorTh7Z33ya8cxxduC8wyx7zegHIWp6GrmgBatV_Sw7YgUvcsU5PXgQH2bHMa4p5UII9SI7FFKVtFTiKLu-mM4m-SUOH8mEXIzQ51NnfIsh_wQRWzKD0JLJMKAbrHckgbc-_CK3dlgRcGTSwnawN0i-Xc3JVzQrcDZuSOcDWYxuSS59O_ZIvuNykwxw53iZPe-gj_jq_jzJfn6e_jif5YurL_PzySI3hayHvGhMx4B2FTeiwrJCzpQsqOCGScoKgI53NVRMlZ3iinKONcW6AakQGIIQJ9l85209rPU22A2E39qD1X8vfFhqCIM1PWrZJAUzBgoQBS1b6ATjrBM1lk1JG0ius51rOzYbbE3qJUD_SPr4xdmVXvobXdeSVpImwbt7QfDXI8ZBb2w02Pfg0I9R80olTlRlmdC3T9C1H4NLX5WoqpaVkrJI1JuHFe1L-TfZBLzfASb4GAN2e4RRfbc1er81iT19whq7G1Zqxvb_yfgDrCzBhw
CitedBy_id crossref_primary_10_1007_s12652_023_04711_9
crossref_primary_10_3390_bioengineering10070843
crossref_primary_10_1016_j_compbiomed_2025_111059
crossref_primary_10_1007_s42600_025_00410_w
crossref_primary_10_3390_electronics14153009
crossref_primary_10_1109_ACCESS_2024_3447697
crossref_primary_10_1016_j_bspc_2024_107268
crossref_primary_10_1016_j_bspc_2023_105507
crossref_primary_10_1016_j_bspc_2023_105804
crossref_primary_10_1016_j_iot_2025_101598
crossref_primary_10_1016_j_radonc_2024_110344
crossref_primary_10_1109_ACCESS_2023_3313174
crossref_primary_10_33411_ijist_202571476492
crossref_primary_10_1016_j_bspc_2024_106804
crossref_primary_10_1371_journal_pone_0311080
crossref_primary_10_54392_irjmt2416
crossref_primary_10_1007_s10278_025_01458_x
crossref_primary_10_3390_diagnostics14222604
crossref_primary_10_1016_j_compbiomed_2023_107570
Cites_doi 10.1007/978-3-319-24574-4_28
10.1016/j.eswa.2022.119475
10.1593/tlo.11232
10.1118/1.3528204
10.1016/j.ijleo.2018.08.086
10.1148/radiol.2017151022
10.1109/MSMW.2016.7537995
10.1109/ISBI.2018.8363765
10.1109/JBHI.2022.3198509
10.3390/math9131457
10.21037/jmai.2019.04.01
10.1109/JSTSP.2008.2011107
10.1016/S1076-6332(03)00671-8
10.1016/j.compbiomed.2022.105781
10.1109/ICPR48806.2021.9412218
10.1016/j.media.2017.06.014
10.1016/j.compbiomed.2017.11.013
10.1016/j.acra.2007.07.021
10.1016/j.media.2017.07.005
10.1109/LGRS.2018.2802944
10.1038/s41598-020-69817-y
10.1007/s13735-017-0141-z
10.1109/TITB.2007.899504
10.1109/TMI.2007.907555
10.1016/j.ins.2022.07.044
10.1109/EMBC.2017.8037182
10.1007/978-3-319-66179-7_65
10.1016/j.asoc.2019.105934
10.1109/TBME.2011.2167621
10.1016/j.ejmp.2019.06.003
10.1016/j.cmpb.2022.106946
10.1016/j.media.2010.08.005
10.1109/TETCI.2021.3051910
10.1007/978-3-030-32040-9_30
10.1007/978-3-030-30241-2_31
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23041989
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Medical Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6b8281cca4a3405daf3121f39e5b50ba
PMC9960760
36850583
10_3390_s23041989
Genre Journal Article
GrantInformation_xml – fundername: HealthHub, Seoul, South Korea
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-4bcf1a0f72c37e57e21864032c16014aaf2f9a7185f828022e90e9ba68ea1ea33
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000942305600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:33:02 EST 2025
Tue Nov 04 02:06:33 EST 2025
Sun Nov 09 13:43:51 EST 2025
Tue Oct 07 07:22:32 EDT 2025
Mon Jul 21 05:44:24 EDT 2025
Tue Nov 18 22:44:28 EST 2025
Sat Nov 29 07:13:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords dual-encoder-based CNN
lung nodule segmentation
3D segmentation
hard attention
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-4bcf1a0f72c37e57e21864032c16014aaf2f9a7185f828022e90e9ba68ea1ea33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7278-8488
OpenAccessLink https://doaj.org/article/6b8281cca4a3405daf3121f39e5b50ba
PMID 36850583
PQID 2779678664
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6b8281cca4a3405daf3121f39e5b50ba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9960760
proquest_miscellaneous_2780763755
proquest_journals_2779678664
pubmed_primary_36850583
crossref_primary_10_3390_s23041989
crossref_citationtrail_10_3390_s23041989
PublicationCentury 2000
PublicationDate 20230210
PublicationDateYYYYMMDD 2023-02-10
PublicationDate_xml – month: 2
  year: 2023
  text: 20230210
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ullah (ref_17) 2022; 608
Liu (ref_24) 2019; 63
Zhang (ref_27) 2022; 222
Chen (ref_25) 2021; 6
Guo (ref_14) 2018; 7
Diciotti (ref_9) 2008; 12
ref_35
ref_11
ref_33
Cao (ref_37) 2020; 86
ref_32
Jung (ref_36) 2018; 92
Tong (ref_21) 2018; 174
ref_30
Meyer (ref_28) 2007; 14
ref_16
ref_38
ref_15
Wang (ref_19) 2017; 40
Moltz (ref_3) 2009; 3
Zou (ref_34) 2004; 11
Diciotti (ref_10) 2011; 58
Litjens (ref_13) 2017; 42
Tyagi (ref_18) 2022; 147
Zhou (ref_39) 2022; 26
Usman (ref_5) 2020; 10
Ullah (ref_12) 2023; 216
Zhang (ref_26) 2018; 15
ref_23
Kubota (ref_31) 2011; 15
ref_22
Armato (ref_7) 2011; 38
Devaraj (ref_2) 2017; 284
ref_20
ref_29
Dehmeshki (ref_8) 2008; 27
Mozley (ref_1) 2012; 5
ref_4
ref_6
References_xml – ident: ref_32
– ident: ref_16
  doi: 10.1007/978-3-319-24574-4_28
– volume: 216
  start-page: 119475
  year: 2023
  ident: ref_12
  article-title: MTSS-AAE: Multi-task semi-supervised adversarial autoencoding for COVID-19 detection based on chest X-ray images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119475
– volume: 5
  start-page: 19
  year: 2012
  ident: ref_1
  article-title: Measurement of tumor volumes improves RECIST-based response assessments in advanced lung cancer
  publication-title: Transl. Oncol.
  doi: 10.1593/tlo.11232
– volume: 38
  start-page: 915
  year: 2011
  ident: ref_7
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– volume: 174
  start-page: 460
  year: 2018
  ident: ref_21
  article-title: Improved U-NET network for pulmonary nodules segmentation
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.08.086
– volume: 284
  start-page: 630
  year: 2017
  ident: ref_2
  article-title: Use of volumetry for lung nodule management: Theory and practice
  publication-title: Radiology
  doi: 10.1148/radiol.2017151022
– ident: ref_11
  doi: 10.1109/MSMW.2016.7537995
– ident: ref_30
  doi: 10.1109/ISBI.2018.8363765
– volume: 26
  start-page: 5619
  year: 2022
  ident: ref_39
  article-title: A cascaded multi-stage framework for automatic detection and segmentation of pulmonary nodules in developing countries
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3198509
– ident: ref_35
– ident: ref_38
  doi: 10.3390/math9131457
– ident: ref_6
  doi: 10.21037/jmai.2019.04.01
– volume: 3
  start-page: 122
  year: 2009
  ident: ref_3
  article-title: Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2008.2011107
– volume: 11
  start-page: 178
  year: 2004
  ident: ref_34
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index1: Scientific reports
  publication-title: Acad. Radiol.
  doi: 10.1016/S1076-6332(03)00671-8
– volume: 147
  start-page: 105781
  year: 2022
  ident: ref_18
  article-title: CSE-GAN: A 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105781
– ident: ref_23
  doi: 10.1109/ICPR48806.2021.9412218
– ident: ref_4
– volume: 40
  start-page: 172
  year: 2017
  ident: ref_19
  article-title: Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.06.014
– volume: 92
  start-page: 128
  year: 2018
  ident: ref_36
  article-title: Ground-glass nodule segmentation in chest CT images using asymmetric multi-phase deformable model and pulmonary vessel removal
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.11.013
– volume: 14
  start-page: 1464
  year: 2007
  ident: ref_28
  article-title: The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2007.07.021
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_13
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 15
  start-page: 749
  year: 2018
  ident: ref_26
  article-title: Road extraction by deep residual u-net
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
– volume: 10
  start-page: 12839
  year: 2020
  ident: ref_5
  article-title: Volumetric lung nodule segmentation using adaptive roi with multi-view residual learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69817-y
– volume: 7
  start-page: 87
  year: 2018
  ident: ref_14
  article-title: A review of semantic segmentation using deep neural networks
  publication-title: Int. J. Multimed. Inf. Retr.
  doi: 10.1007/s13735-017-0141-z
– volume: 12
  start-page: 7
  year: 2008
  ident: ref_9
  article-title: 3-D segmentation algorithm of small lung nodules in spiral CT images
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2007.899504
– volume: 27
  start-page: 467
  year: 2008
  ident: ref_8
  article-title: Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.907555
– volume: 608
  start-page: 1541
  year: 2022
  ident: ref_17
  article-title: Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.07.044
– ident: ref_20
  doi: 10.1109/EMBC.2017.8037182
– ident: ref_29
  doi: 10.1007/978-3-319-66179-7_65
– volume: 86
  start-page: 105934
  year: 2020
  ident: ref_37
  article-title: Dual-branch residual network for lung nodule segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105934
– volume: 58
  start-page: 3418
  year: 2011
  ident: ref_10
  article-title: Automated segmentation refinement of small lung nodules in CT scans by local shape analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2167621
– volume: 63
  start-page: 112
  year: 2019
  ident: ref_24
  article-title: A cascaded dual-pathway residual network for lung nodule segmentation in CT images
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2019.06.003
– volume: 222
  start-page: 106946
  year: 2022
  ident: ref_27
  article-title: Multi-Scale Segmentation Squeeze-and-Excitation UNet with Conditional Random Field for Segmenting Lung Tumor from CT Images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2022.106946
– volume: 15
  start-page: 133
  year: 2011
  ident: ref_31
  article-title: Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.08.005
– ident: ref_22
– volume: 6
  start-page: 1190
  year: 2021
  ident: ref_25
  article-title: Multi-Crop Convolutional Neural Networks for Fast Lung Nodule Segmentation
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2021.3051910
– ident: ref_33
  doi: 10.1007/978-3-030-32040-9_30
– ident: ref_15
  doi: 10.1007/978-3-030-30241-2_31
SSID ssj0023338
Score 2.5176322
Snippet Measuring pulmonary nodules accurately can help the early diagnosis of lung cancer, which can increase the survival rate among patients. Numerous techniques...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1989
SubjectTerms 3D segmentation
Adipates
Algorithms
Computer Systems
Consensus
dual-encoder-based CNN
hard attention
Humans
Lung cancer
lung nodule segmentation
Medical research
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMcypsGCjKIA5eoSRzHCReUpVsVqYSqPNRb5CR2WWmbbDdZfj8ziTd0UcWFa-LDSPPwfOOZbwDeGiVplKdyq0QmblgI3y2MFK6poigoqDOsLw38OJFZFp-fJ6e24NbatspNTOwDddWUVCM_CKRMMLBGUfhheeXS1ih6XbUrNG7DDjGVhRPYmc6y07MRcnFEYAOfEEdwf9BSCZS6hLZuoZ6s_6YM8-9GyWs3z9H9_5X5AezanJOlg5E8hFu6fgT3rjERPoarw9lx6ma6e89SdrhWC3dW07T7yp3iNVcxeuBnadcNzZEsG5rHGVVxmapZWqklxU129uUT-6xpmnjeXjJMiNkJRhOWNdV6odlXfXFpZ53qJ_D9aPbt47FrtzG4JULoDvVYGl95RgYll1pITdusQo8HpY-gLlTKBCZReNUJgygOUwOdeDopVBRr5WvF-VOY1E2t94AhxhP0gEfcN2HsR8qUkeAyEIhvvEIGDrzbaCcvLVU5bcxY5AhZSJH5qEgH3oxHlwM_x02HpqTi8QBRavcfmtVFbj00jwoU20eDDhXHLLZShvuBb3iiRYFSKQf2N0rOrZ-3-R8NO_B6_I0eSs8uqtbNms7EHkZxKYQDzwZ7GiUh-n9PxNwBuWVpW6Ju_6nnP3sWcKLVkZH3_N9ivYC7AboB9Zn73j5MutVav4Q75a9u3q5eWXf5DdnUHwQ
  priority: 102
  providerName: ProQuest
Title DEHA-Net: A Dual-Encoder-Based Hard Attention Network with an Adaptive ROI Mechanism for Lung Nodule Segmentation
URI https://www.ncbi.nlm.nih.gov/pubmed/36850583
https://www.proquest.com/docview/2779678664
https://www.proquest.com/docview/2780763755
https://pubmed.ncbi.nlm.nih.gov/PMC9960760
https://doaj.org/article/6b8281cca4a3405daf3121f39e5b50ba
Volume 23
WOSCitedRecordID wos000942305600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiOcSWCqDOHCJNrHjOOGWslntSttQLQ-VU-QkNlTqpkubcuS3M5OkUYtW4sLFB9tSHHvsmc-e-QbgrdWKQnkqt4pV7AaF9N3CKunaKgx5QZ5h7dXA1wuVZdFsFk93Un2RT1hHD9xN3HFYICbw8TuBFmhcVNoKn_tWxEYW0ita0witni2Y6qGWQOTV8QgJBPXHa7r6JO-gPe3TkvTfZFn-7SC5o3FOH8KD3lRkSTfER3DL1I_h_g6B4BP4eZKeJW5mmvcsYScbvXDTmoLUV-4YtVPF6F2eJU3T-TSyrPP5ZnT5ynTNkkpf03HHLj-es4mhIOD5-oqhHcsu8BBg2bLaLAz7ZL5f9SFK9VP4cpp-_nDm9kkU3BKRb4PTX1pfe1bxUigjlaEkVIEneOkjFgu0ttzGGjWUtDjRqNFN7Jm40GFktG-0EM_goF7W5jkwhGaS3t2IsiaI_FDbMpRCcYmwxCsUd-DddnLzsmcYp0QXixyRBq1DPqyDA2-GrtcdrcZNnca0QkMHYsJuK1A-8l4-8n_JhwNH2_XN--25zrlSMWrpMAwceD0048ai1xJdm-WG-kQeHr5KSgcOO3EYRkKs_Z6MhANqT1D2hrrfUs9_tOTdxIajQu_F__i3l3CPo6yTE7nvHcFBs9qYV3C3_NXM16sR3FYz1ZbRCO6M02x6OWp3CZaT3ynWTc8n029_AMdKFfY
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQl64A01FFgQSFys2muvN0ZCKCWpEjU1CFqUm1nbuyVS6qSJA-JP8RuZ8asNqrj1wDXew9j59pv9ZucB8MooSaU8mZ2FMrT9RLh2YqSwTRYEPKHMsDI08HUko6gzHoefNuB3UwtDaZUNJ5ZEnc1SipHvcilDJNYg8N_Pz2yaGkW3q80IjQoWB_rXT5Rsy3fDHv6_rznf7x99GNj1VAE7RSlYoD2pcZVjJE89qYXUNJXJdzyeuihOfKUMN6FCyhYG1Qi6OB06OkxU0NHK1YoCoEj515DHJaWQyfG5wPNQ71XdizwvdHaXFHClnKQ1n1eOBrjsPPt3WuYFP7d_-3_7QnfgVn2iZt1qC9yFDZ3fg60LfRbvw1mvP-jakS7esi7rrdTU7udUy7-w99CJZ4zSF1i3KKrUTxZVqfGMYtRM5aybqTl5Bfb545AdaqqVnixPGR732Qi5kkWzbDXV7Is-Oa0rufIHcHwl7_wQNvNZrreBoYIVdD1JnX38jhsokwbCk1ygenMSyS1406AhTutG7DQPZBqjICPgxC1wLHjZLp1X3UcuW7RHkGoXUMPw8ofZ4iSu-ScOEjTbxe3qKw_P6Jkynstd44VaJGiVsmCnAVVcs9gyPkeUBS_ax8g_dKmkcj1b0ZqOgz5KCmHBowq_rSU03MARHc8CuYbsNVPXn-ST72WPc2oaJAPn8b_Neg43BkeHo3g0jA6ewE2OW5Ay6l1nBzaLxUo_hevpj2KyXDwrNyqDb1eN-z_KOHmW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VLUJw4P0wFFgQSFys2GuvN0ZCKCWJGjU1ES-Vk1nbuyVS6qSxA-Kv8euYsR3ToIpbD1y9exjb38zsNzsPgOdGSSrlyewslKHtJ8K1EyOFbbIg4AllhlWhgc9jGUXdo6NwsgW_1rUwlFa5tomVoc7mKcXIO1zKEA1rEPgd06RFTPrDN4tTmyZI0U3repxGDZED_fMH0rfi9aiP__oF58PBx7f7djNhwE6RFpYoW2pc5RjJU09qITVNaPIdj6cuEhVfKcNNqNB8C4PMBN2dDh0dJiroauVqRcFQNP87eCT3Ucd2JqPDyZeW7nnI_upeRp4XOp2Cwq-UobThAatBAeedbv9O0jzj9YbX_-fvdQOuNWdt1quV4yZs6fwWXD3TgfE2nPYH-z070uUr1mP9lZrZg5yq_Jf2Hrr3jFFiA-uVZZ0UyqI6aZ5R9JqpnPUytSB_wd6_G7FDTVXU0-KEIRFgY7SiLJpnq5lmH_TxSVPjld-BTxfyzndhO5_n-j4w5LaCLi6p54_fdQNl0kB4kgvkdU4iuQUv18iI06ZFO00KmcVI1QhEcQsiC561Wxd1X5LzNu0RvNoN1Eq8ejBfHseNZYqDBMV2UZF95eHpPVPGc7lrvFCLBKVSFuyuARY39q2I_6DLgqftMlomum5SuZ6vaE_XQe8lhbDgXo3lVhIae-CIrmeB3ED5hqibK_n0W9X9nNoJycB58G-xnsBlhHs8HkUHD-EKR22kVHvX2YXtcrnSj-BS-r2cFsvHjdYy-HrRwP8N0UKD5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEHA-Net%3A+A+Dual-Encoder-Based+Hard+Attention+Network+with+an+Adaptive+ROI+Mechanism+for+Lung+Nodule+Segmentation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Usman%2C+Muhammad&rft.au=Shin%2C+Yeong-Gil&rft.date=2023-02-10&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=4&rft_id=info:doi/10.3390%2Fs23041989&rft.externalDocID=PMC9960760
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon