PE-MCAT: Leveraging Image Sensor Fusion and Adaptive Thresholds for Semi-Supervised 3D Object Detection
Existing 3D object detection frameworks in sensor-based applications heavily rely on large-scale annotated data to achieve optimal performance. However, obtaining such annotations from sensor data—like LiDAR or image sensors—is both time-consuming and costly. Semi-supervised learning offers an effic...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 24; číslo 21; s. 6940 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
29.10.2024
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Existing 3D object detection frameworks in sensor-based applications heavily rely on large-scale annotated data to achieve optimal performance. However, obtaining such annotations from sensor data—like LiDAR or image sensors—is both time-consuming and costly. Semi-supervised learning offers an efficient solution to this challenge and holds significant potential for sensor-driven artificial intelligence (AI) applications. While it reduces the need for labeled data, semi-supervised learning still depends on a small amount of labeled samples for training. In the initial stages, relying on such limited samples can adversely affect the effective training of student–teacher networks. In this paper, we propose PE-MCAT, a semi-supervised 3D object detection method that generates high-precision pseudo-labels. First, to address the challenges of insufficient local feature capture and poor robustness in point cloud data, we introduce a point enrichment module. This module incorporates information from image sensors and combines multiple feature fusion methods of local and self-features to directly enhance the quality of point clouds and pseudo-labels, compensating for the limitations posed by using only a few labeled samples. Second, we explore the relationship between the teacher network and the pseudo-labels it generates. We propose a multi-class adaptive threshold strategy to initially filter and create a high-quality pseudo-label set. Furthermore, a joint variable threshold strategy is introduced to refine this set further, enhancing the selection of superior pseudo-labels.Extensive experiments demonstrate that PE-MCAT consistently outperforms recent state-of-the-art methods across different datasets. Specifically, on the KITTI dataset and using only 2% of labeled samples, our method improved the mean Average Precision (mAP) by 0.7% for cars, 3.7% for pedestrians, and 3.0% for cyclists. |
|---|---|
| AbstractList | Existing 3D object detection frameworks in sensor-based applications heavily rely on large-scale annotated data to achieve optimal performance. However, obtaining such annotations from sensor data—like LiDAR or image sensors—is both time-consuming and costly. Semi-supervised learning offers an efficient solution to this challenge and holds significant potential for sensor-driven artificial intelligence (AI) applications. While it reduces the need for labeled data, semi-supervised learning still depends on a small amount of labeled samples for training. In the initial stages, relying on such limited samples can adversely affect the effective training of student–teacher networks. In this paper, we propose PE-MCAT, a semi-supervised 3D object detection method that generates high-precision pseudo-labels. First, to address the challenges of insufficient local feature capture and poor robustness in point cloud data, we introduce a point enrichment module. This module incorporates information from image sensors and combines multiple feature fusion methods of local and self-features to directly enhance the quality of point clouds and pseudo-labels, compensating for the limitations posed by using only a few labeled samples. Second, we explore the relationship between the teacher network and the pseudo-labels it generates. We propose a multi-class adaptive threshold strategy to initially filter and create a high-quality pseudo-label set. Furthermore, a joint variable threshold strategy is introduced to refine this set further, enhancing the selection of superior pseudo-labels.Extensive experiments demonstrate that PE-MCAT consistently outperforms recent state-of-the-art methods across different datasets. Specifically, on the KITTI dataset and using only 2% of labeled samples, our method improved the mean Average Precision (mAP) by 0.7% for cars, 3.7% for pedestrians, and 3.0% for cyclists. Existing 3D object detection frameworks in sensor-based applications heavily rely on large-scale annotated data to achieve optimal performance. However, obtaining such annotations from sensor data-like LiDAR or image sensors-is both time-consuming and costly. Semi-supervised learning offers an efficient solution to this challenge and holds significant potential for sensor-driven artificial intelligence (AI) applications. While it reduces the need for labeled data, semi-supervised learning still depends on a small amount of labeled samples for training. In the initial stages, relying on such limited samples can adversely affect the effective training of student-teacher networks. In this paper, we propose PE-MCAT, a semi-supervised 3D object detection method that generates high-precision pseudo-labels. First, to address the challenges of insufficient local feature capture and poor robustness in point cloud data, we introduce a point enrichment module. This module incorporates information from image sensors and combines multiple feature fusion methods of local and self-features to directly enhance the quality of point clouds and pseudo-labels, compensating for the limitations posed by using only a few labeled samples. Second, we explore the relationship between the teacher network and the pseudo-labels it generates. We propose a multi-class adaptive threshold strategy to initially filter and create a high-quality pseudo-label set. Furthermore, a joint variable threshold strategy is introduced to refine this set further, enhancing the selection of superior pseudo-labels.Extensive experiments demonstrate that PE-MCAT consistently outperforms recent state-of-the-art methods across different datasets. Specifically, on the KITTI dataset and using only 2% of labeled samples, our method improved the mean Average Precision (mAP) by 0.7% for cars, 3.7% for pedestrians, and 3.0% for cyclists.Existing 3D object detection frameworks in sensor-based applications heavily rely on large-scale annotated data to achieve optimal performance. However, obtaining such annotations from sensor data-like LiDAR or image sensors-is both time-consuming and costly. Semi-supervised learning offers an efficient solution to this challenge and holds significant potential for sensor-driven artificial intelligence (AI) applications. While it reduces the need for labeled data, semi-supervised learning still depends on a small amount of labeled samples for training. In the initial stages, relying on such limited samples can adversely affect the effective training of student-teacher networks. In this paper, we propose PE-MCAT, a semi-supervised 3D object detection method that generates high-precision pseudo-labels. First, to address the challenges of insufficient local feature capture and poor robustness in point cloud data, we introduce a point enrichment module. This module incorporates information from image sensors and combines multiple feature fusion methods of local and self-features to directly enhance the quality of point clouds and pseudo-labels, compensating for the limitations posed by using only a few labeled samples. Second, we explore the relationship between the teacher network and the pseudo-labels it generates. We propose a multi-class adaptive threshold strategy to initially filter and create a high-quality pseudo-label set. Furthermore, a joint variable threshold strategy is introduced to refine this set further, enhancing the selection of superior pseudo-labels.Extensive experiments demonstrate that PE-MCAT consistently outperforms recent state-of-the-art methods across different datasets. Specifically, on the KITTI dataset and using only 2% of labeled samples, our method improved the mean Average Precision (mAP) by 0.7% for cars, 3.7% for pedestrians, and 3.0% for cyclists. |
| Audience | Academic |
| Author | Song, Shaojing Ai, Luxia Li, Bohao |
| AuthorAffiliation | 1 School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China; 20221513056@stu.sspu.edu.cn 2 School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai 201209, China 3 School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; luxiaai@hust.edu.cn |
| AuthorAffiliation_xml | – name: 1 School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China; 20221513056@stu.sspu.edu.cn – name: 3 School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; luxiaai@hust.edu.cn – name: 2 School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai 201209, China |
| Author_xml | – sequence: 1 givenname: Bohao surname: Li fullname: Li, Bohao – sequence: 2 givenname: Shaojing orcidid: 0000-0002-1194-6390 surname: Song fullname: Song, Shaojing – sequence: 3 givenname: Luxia surname: Ai fullname: Ai, Luxia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39517835$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkk1vEzEQhleoiH7AgT-ALHGBwxZ_xWtzQVHaQqSgIiWcV157duNoYwd7NxL_Hqdpoxb5MNb4mXdmPHNZnPngoSjeE3zNmMJfEuWUCMXxq-KCcMpLSSk-e3Y_Ly5T2mBMGWPyTXHO1IRUkk0uiu7XbflzNl19RQvYQ9Sd8x2ab3UHaAk-hYjuxuSCR9pbNLV6N7g9oNU6QlqH3ibUZmQJW1cuxx3EvUtgEbtB980GzIBuYMgmx78tXre6T_Du0V4Vv-9uV7Mf5eL--3w2XZSGCzWUXBpiObNGWslFI4UFyVrDCGlbLLCpJo0RBDfCcmW5FlxpoRWpNJYYqglmV8X8qGuD3tS76LY6_q2DdvWDI8Su1nFwpodaE0E10Q2BBjjWVDPdUqZUm5M1WTJrfTtq7cZmC9aAH6LuX4i-fPFuXXdhXxMy4ZJJmhU-PSrE8GeENNRblwz0vfYQxlQzQmXFcR5RRj_-h27CGH3-qwMlaCWVOrR3faQ6nTtwvg05scnH5hGYvBWty_6pzAVQStgh4MPzHk7FP21ABj4fARNDShHaE0Jwfdiu-rRd7B_8Yb7v |
| Cites_doi | 10.1109/ACCESS.2021.3070379 10.1109/CVPR42600.2020.00178 10.1016/j.patrec.2009.09.011 10.1109/ITSC48978.2021.9564951 10.1109/ICCV48922.2021.00305 10.1109/CVPR.2012.6248074 10.3390/s18103337 10.1109/ICCV.2019.00204 10.1109/CVPR42600.2020.00466 10.1609/aaai.v35i4.16456 10.1109/CVPR.2019.01298 10.3390/rs15235612 10.1007/978-3-030-01234-2_49 10.1109/CVPR42600.2020.01105 10.1109/CVPR46437.2021.01438 10.1109/CVPR52688.2022.00823 10.1109/CVPR.2018.00033 10.1109/TPAMI.2017.2699184 10.1109/CVPR42600.2020.01054 10.1609/aaai.v35i2.16207 10.1109/ICCV48922.2021.00717 10.1109/CVPR52688.2022.02067 10.1109/MFI49285.2020.9235240 10.1109/CVPR.2015.7298965 10.1007/978-3-031-20080-9_22 10.1109/CVPR.2019.00086 10.1109/CVPR46437.2021.01162 10.1109/CVPR42600.2020.01109 10.1016/j.autcon.2023.105262 10.1109/ICRA48891.2023.10160489 10.1109/CVPR46437.2021.00454 10.1109/CVPR52729.2023.02281 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s24216940 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_a162a1ab1ebe40a2a3af2399f11fb17a PMC11548382 A815422130 39517835 10_3390_s24216940 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-48c1d43dc8d846b86de83fc311ff060c75bc610b6d49d4a649a6a917a080e7503 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001351066000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:39:26 EDT 2025 Tue Nov 04 02:05:30 EST 2025 Thu Sep 04 19:48:22 EDT 2025 Tue Oct 07 07:39:18 EDT 2025 Tue Nov 04 18:13:26 EST 2025 Wed Feb 19 02:03:09 EST 2025 Sat Nov 29 07:20:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | pseudo-label semi-supervised learning multi-feature fusion point enrichment adaptive threshold |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-48c1d43dc8d846b86de83fc311ff060c75bc610b6d49d4a649a6a917a080e7503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1194-6390 |
| OpenAccessLink | https://doaj.org/article/a162a1ab1ebe40a2a3af2399f11fb17a |
| PMID | 39517835 |
| PQID | 3126278990 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a162a1ab1ebe40a2a3af2399f11fb17a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11548382 proquest_miscellaneous_3128740822 proquest_journals_3126278990 gale_infotracacademiconefile_A815422130 pubmed_primary_39517835 crossref_primary_10_3390_s24216940 |
| PublicationCentury | 2000 |
| PublicationDate | 20241029 |
| PublicationDateYYYYMMDD | 2024-10-29 |
| PublicationDate_xml | – month: 10 year: 2024 text: 20241029 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_14 ref_13 ref_35 ref_12 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 ref_19 ref_18 ref_17 ref_39 ref_16 ref_38 ref_15 ref_37 Jain (ref_36) 2010; 31 ref_25 Chen (ref_24) 2021; 9 ref_23 ref_22 ref_21 ref_20 ref_40 ref_1 ref_3 ref_2 ref_28 ref_27 ref_26 Chen (ref_29) 2017; 40 ref_9 Sohn (ref_34) 2020; Volume 33 ref_8 ref_5 Hu (ref_7) 2024; 159 ref_4 ref_6 |
| References_xml | – volume: 9 start-page: 51710 year: 2021 ident: ref_24 article-title: RoIFusion: 3D object detection from LiDAR and vision publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3070379 – ident: ref_30 – ident: ref_4 doi: 10.1109/CVPR42600.2020.00178 – volume: 31 start-page: 651 year: 2010 ident: ref_36 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – ident: ref_39 – ident: ref_40 – ident: ref_23 doi: 10.1109/ITSC48978.2021.9564951 – ident: ref_14 – ident: ref_33 doi: 10.1109/ICCV48922.2021.00305 – ident: ref_37 doi: 10.1109/CVPR.2012.6248074 – ident: ref_18 doi: 10.3390/s18103337 – ident: ref_35 – ident: ref_6 doi: 10.1109/ICCV.2019.00204 – ident: ref_20 doi: 10.1109/CVPR42600.2020.00466 – ident: ref_15 doi: 10.1609/aaai.v35i4.16456 – ident: ref_17 doi: 10.1109/CVPR.2019.01298 – ident: ref_19 doi: 10.3390/rs15235612 – ident: ref_26 doi: 10.1007/978-3-030-01234-2_49 – ident: ref_5 doi: 10.1109/CVPR42600.2020.01105 – ident: ref_9 doi: 10.1109/CVPR46437.2021.01438 – ident: ref_16 doi: 10.1109/CVPR52688.2022.00823 – ident: ref_31 – volume: Volume 33 start-page: 596 year: 2020 ident: ref_34 article-title: Fixmatch: Simplifying semi-supervised learning with consistency and confidence publication-title: Advances in Neural Information Processing Systems – ident: ref_22 doi: 10.1109/CVPR.2018.00033 – volume: 40 start-page: 834 year: 2017 ident: ref_29 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: ref_3 doi: 10.1109/CVPR42600.2020.01054 – ident: ref_2 doi: 10.1609/aaai.v35i2.16207 – ident: ref_28 doi: 10.1109/ICCV48922.2021.00717 – ident: ref_38 doi: 10.1109/CVPR52688.2022.02067 – ident: ref_25 doi: 10.1109/MFI49285.2020.9235240 – ident: ref_27 doi: 10.1109/CVPR.2015.7298965 – ident: ref_10 doi: 10.1007/978-3-031-20080-9_22 – ident: ref_13 – ident: ref_1 doi: 10.1109/CVPR.2019.00086 – ident: ref_21 doi: 10.1109/CVPR46437.2021.01162 – ident: ref_8 doi: 10.1109/CVPR42600.2020.01109 – volume: 159 start-page: 105262 year: 2024 ident: ref_7 article-title: 3D vision technologies for a self-developed structural external crack damage recognition robot publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.105262 – ident: ref_11 doi: 10.1109/ICRA48891.2023.10160489 – ident: ref_32 doi: 10.1109/CVPR46437.2021.00454 – ident: ref_12 doi: 10.1109/CVPR52729.2023.02281 |
| SSID | ssj0023338 |
| Score | 2.4335163 |
| Snippet | Existing 3D object detection frameworks in sensor-based applications heavily rely on large-scale annotated data to achieve optimal performance. However,... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 6940 |
| SubjectTerms | Accuracy adaptive threshold Algorithms Artificial intelligence Equipment and supplies Image processing Learning Localization Methods multi-feature fusion Optical radar point enrichment pseudo-label Remote sensing Semantics semi-supervised learning Sensors Teachers |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CjgMcxucgMJBBSJyiJrbr2lxQ2VYxaRuVVtA4RY7tjB6Wdk3L3897SRpaIXHimvjwrPfh33vP_j2A9544zga-iFXBVSyLgYyt1ETjGookCc6K-m3V97PhxYW-ujKT9nl01V6r3MTEOlA3bM90bxuDcN_PHVXM-yLlit5wmuTT4jamGVLUa20HatyFPSLeSnqwNzk9n_zoEjCB-VjDLiQw1e9X1A5VhuoeW2dSTd3_d4DeOqF2b09uHUfjh_93I49gv4WlbNTY0WO4E8on8GCLrPApXE9O4vOj0fQjOwto__V0I3Z6g_GIXWIuPF-y8ZpKb8yWno28XVAgZVO0lYpaXBVDeIwrb2bx5XpBEaoKnolj9jWnUhA7Dqv6Vlj5DL6NT6ZHX-J2TEPsMLdexVK71EvhnfYIZnKtfNCicCJNiyJRiRsOcocgLVdeGi-tksYqi1miRbAaqI16AL1yXoYXwDB85kIliKF0LnPuTVBGeWWGA8Rt3vAI3m0UlS0aNo4MsxjSZtZpM4LPpMJuARFo1x_my-us9cfMporb1OYpGrFMLLfCFvTMt0Cpc5Qtgg9kABm5OWrZ2fa1AspJhFnZSCP25BwRQASHGz1nrf9X2R-1RvC2-42eS-0YW4b5ul5D8xARoUXwvDGpTmaBwJdqchHoHWPb2dTun3L2s2YHJ34lLTR_-W-5XsF9jviMjmFuDqG3Wq7Da7jnfq1m1fJN6zm_AWwSKb4 priority: 102 providerName: ProQuest |
| Title | PE-MCAT: Leveraging Image Sensor Fusion and Adaptive Thresholds for Semi-Supervised 3D Object Detection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39517835 https://www.proquest.com/docview/3126278990 https://www.proquest.com/docview/3128740822 https://pubmed.ncbi.nlm.nih.gov/PMC11548382 https://doaj.org/article/a162a1ab1ebe40a2a3af2399f11fb17a |
| Volume | 24 |
| WOSCitedRecordID | wos001351066000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BwgEOiM8lsFQGIXGKNrFdx-bW3W3FStsSsQWVU-TEDvSwadW0e9zfzkySVq04cOHig20pzow982ZsPwN8dMRx1ndlqEquQln2ZWilJhpXX0aRL6xo7lb9uEomEz2bmXTvqS86E9bSA7eCO7Wx4ja2eYxfk5HlVtiS7mOWcVzmcdJAoygx22CqC7UERl4tj5DAoP60po1PZSjDsed9GpL-v03xni86PCe553hGT-FJhxjZoB3pM7jnq-fweI9H8AX8Sofh-Hww_cyuPE7N5uEhdnmDpoJdY5i6WLHRhrJizFaODZxdko1jU1RjTbtPNUPkij1v5uH1ZknGo_aOiQv2NacsDbvw6-bAVvUSvo-G0_MvYfeCQlhg2LsOpS5iJ4UrtEOckWvlvBZlIVB2ZaSiIunnBeKnXDlpnLRKGqssBnAWcaSnHc5XcFQtKv8aGFq2XKgI4Y3OZc6d8coop0zSR0jlDA_gw1ay2bIlysgwwCDxZzvxB3BGMt91IG7rpgI1nnUaz_6l8QA-kcYyWoGolsJ2FwlwnMRllQ00wkLO0TkHcLJVatYtzToTMVd0_ddg8_tdMy4q2imxlV9smj70VCGCpwCO2zmwG7NATErpsgD0wew4-KnDlmr-uyHuJuojLTR_8z_E8BYecQRY5Ee5OYGj9Wrj38HD4nY9r1c9uJ_MkqbUPXhwNpyk33rNEsFyfDfEuvRynP78A9vQFe8 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4YCiwIxMmqvbvZeJEQCk2jRk1CpKaonMzauy451AlxAuJP8RuZsZ2QCIlbD1ztlTW2v535ZmZnBuCVpR5nTZv5KuPKl1lT-kZG1MbVZUHgUiPK2qpP_dZwGJ2d6dEO_FrVwtCxypVOLBW1naYUI98XIVdUtamD97NvPk2NouzqaoRGBYtj9_MHumzFu14H_-9rzruH44Mjv54q4KfoCi58GaWhlcKmkUXbm0TKukhkqQjDLAtUkLaaSYqcIlFWaiuNktoog06NQW7lKOuHz70CuxLBHjRgd9QbjD6vXTyBHl_Vv0gIHewXlHBVmiIrG1avHA7wtwnYsIHb5zM3DF731v_2qW7DzZpas3a1F-7Ajsvvwo2Nhov34Hx06A8O2uO3rO9wD5cTmljvAnUqO0F_fjpn3SWFD5nJLWtbMyNjwMaI94LSdAVDio8rLyb-yXJGWrZwlokO-5hQOIt13KI82Zbfh9NLedMH0MinuXsEDE1AIlSAPDBKZMKtdkorq3SridzTau7ByxUU4lnVUSRGT4zwEq_x4sEHAsl6ATUBLy9M5-dxrVNiEypuQpOEuBFlYLgRJqNS5QylTlA2D94QxGJSVYij1NQVFygnNf2K2xHyZ86RxXiwt0JSXOuwIv4DIw9erG-j9qGUksnddFmuoZmOyDI9eFiBdi2zQPJOcUUPoi04b73U9p188rXscE49oiIR8cf_lus5XDsaD_pxvzc8fgLXOfJNohVc70FjMV-6p3A1_b6YFPNn9T5l8OWy8f4bXhF6dA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFKFy4JtiKLAgECer9q6zWSMhlDaJiBpCRAPqzay965JD7RAnIP4av44ZxzaJkLj1wNVeWWP7zcybnZ0ZgBeGepy1TerKlEs3SNuBqwNFbVxt6nk20aKsrfo86ozH6uwsnOzAr7oWho5V1jaxNNQmT2iP_FD4XFLVZugdptWxiElv8Hb-zaUJUpRprcdprCFyYn_-wPCteDPs4b9-yfmgPz1-51YTBtwEw8KlG6jEN4EwiTLoh2MljVUiTYTvp6knvaTTjhPkF7E0QWgCLYNQS40BjkaeZSkDiM-9ArsdgddasHvUH08-NuGewOhv3ctICJS6oOSrDGmXZcMDloMC_nYHG_5w-6zmhvMb3PyfP9stuFFRbtZd68ht2LHZHbi-0YjxLpxP-u774-70NRtZ1O1ychMbXqCtZacY5-cLNljRtiLTmWFdo-fkJNgU9aCg9F3BkPrjyouZe7qak_UtrGGixz7EtM3FenZZnnjL7sGnS3nT-9DK8sw-AIauIRbSQ36o4iDmJrQylEaGnTZyUhNyB57XsIjm604jEUZohJ2owY4DRwSYZgE1By8v5IvzqLI1kfYl176OfVTQwNNcC51SCXOKUscomwOvCG4RmTDEVKKrSgyUk5qBRV2FvJpzZDcOHNSoiirbVkR_IOXAs-Y2WiVKNenM5qtyDc16RPbpwP4awI3MAkk97Tc6oLagvfVS23ey2dey8zn1jlJC8Yf_luspXEOQR6Ph-OQR7HGkocQ2eHgAreViZR_D1eT7clYsnlQqy-DLZcP9NznNgw4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PE-MCAT%3A+Leveraging+Image+Sensor+Fusion+and+Adaptive+Thresholds+for+Semi-Supervised+3D+Object+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Bohao&rft.au=Song%2C+Shaojing&rft.au=Ai%2C+Luxia&rft.date=2024-10-29&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=21&rft.spage=6940&rft_id=info:doi/10.3390%2Fs24216940&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24216940 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |