Model based control of a liquid swelling constrained batch reactor subject to recipe uncertainties

This work presents the application of nonlinear model predictive control (NMPC) to a simulated industrial batch reactor subject to safety constraint due to reactor level swelling, which can occur with relatively fast dynamics. Uncertainties in the implementation of recipes in batch process operation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical engineering journal (Lausanne, Switzerland : 1996) Ročník 153; číslo 1; s. 151 - 158
Hlavní autoři: Simon, Levente L., Nagy, Zoltan K., Hungerbuhler, Konrad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier B.V 01.11.2009
Elsevier
Témata:
ISSN:1385-8947, 1873-3212
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work presents the application of nonlinear model predictive control (NMPC) to a simulated industrial batch reactor subject to safety constraint due to reactor level swelling, which can occur with relatively fast dynamics. Uncertainties in the implementation of recipes in batch process operation are of significant industrial relevance. The paper describes a novel control-relevant formulation of the excessive liquid rise problem for a two-phase batch reactor subject to recipe uncertainties. The control simulations are carried out using a dedicated NMPC and optimization software toolbox OptCon which implements efficient numerical algorithms. The open-loop optimal control problem is computed using the multiple-shooting technique and the arising nonlinear programming problem is solved using a sequential quadratic programming (SQP) algorithm tailored for large-scale problems, based on the freeware optimization environment HQP. The fast response of the NMPC controller is guaranteed by the initial value embedding and real-time iteration technologies. It is concluded that the OptCon implementation allows small sampling times and the controller is able to maintain safe and optimal operation conditions, with good control performance despite significant uncertainties in the implementation of the batch recipe.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1385-8947
1873-3212
DOI:10.1016/j.cej.2009.06.003