Structural Health Monitoring of Dams Based on Acoustic Monitoring, Deep Neural Networks, Fuzzy Logic and a CUSUM Control Algorithm

Internal erosion is the most important failure mechanism of earth and rockfill dams. Since this type of erosion develops internally and silently, methodologies of data acquisition and processing for dam monitoring are crucial to guarantee a safe operation during the lifespan of these structures. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 22; H. 7; S. 2482
Hauptverfasser: Ozelim, Luan Carlos de Sena Monteiro, Borges, Lucas Parreira de Faria, Cavalcante, André Luís Brasil, Albuquerque, Enzo Aldo Cunha, Diniz, Mariana dos Santos, Góis, Manuelle Santos, Costa, Katherin Rocio Cano Bezerra da, Sousa, Patrícia Figuereido de, Dantas, Ana Paola do Nascimento, Jorge, Rafael Mendes, Moreira, Gabriela Rodrigues, Barros, Matheus Lima de, Aquino, Fernando Rodrigo de
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 24.03.2022
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Internal erosion is the most important failure mechanism of earth and rockfill dams. Since this type of erosion develops internally and silently, methodologies of data acquisition and processing for dam monitoring are crucial to guarantee a safe operation during the lifespan of these structures. In this context, artificial intelligence techniques show up as tools that can simplify the analysis and verification process not of the internal erosion itself, but of the effects that this pathology causes in the response of the dam to external stimuli. Therefore, within the scope of this paper, a methodological framework for monitoring internal erosion in the body of earth and rockfill dams will be proposed. For that, artificial intelligence methods, especially deep neural autoencoders, will be used to treat the acoustic data collected by geophones installed on a dam. The sensor data is processed to identify patterns and anomalies as well as to classify the dam’s structural health status. In short, the acoustic dataset is preprocessed to reduce its dimensionality. In this process, for each second of acquired data, three parameters are calculated (Hjorth parameters). For each parameter, the data from all the available sensors are used to calibrate an autoencoder. Then, the reconstruction error of each autoencoder is used to monitor how far from the original (normal) state the acoustic signature of the dam is. The time series of reconstruction errors are combined with a cumulative sum (CUSUM) algorithm, which indicates changes in the sequential data collected. Additionally, the outputs of the CUSUM algorithms are treated by a fuzzy logic framework to predict the status of the structure. A scale model is built and monitored to check the effectiveness of the methodology hereby developed, showing that the existence of anomalies is promptly detected by the algorithm. The framework introduced in the present paper aims to detect internal erosion inside dams by combining different techniques in a novel context and methodological workflow. Therefore, this paper seeks to close gaps in prior studies, which mostly treated just parts of the data acquisition–processing workflow.
AbstractList Internal erosion is the most important failure mechanism of earth and rockfill dams. Since this type of erosion develops internally and silently, methodologies of data acquisition and processing for dam monitoring are crucial to guarantee a safe operation during the lifespan of these structures. In this context, artificial intelligence techniques show up as tools that can simplify the analysis and verification process not of the internal erosion itself, but of the effects that this pathology causes in the response of the dam to external stimuli. Therefore, within the scope of this paper, a methodological framework for monitoring internal erosion in the body of earth and rockfill dams will be proposed. For that, artificial intelligence methods, especially deep neural autoencoders, will be used to treat the acoustic data collected by geophones installed on a dam. The sensor data is processed to identify patterns and anomalies as well as to classify the dam’s structural health status. In short, the acoustic dataset is preprocessed to reduce its dimensionality. In this process, for each second of acquired data, three parameters are calculated (Hjorth parameters). For each parameter, the data from all the available sensors are used to calibrate an autoencoder. Then, the reconstruction error of each autoencoder is used to monitor how far from the original (normal) state the acoustic signature of the dam is. The time series of reconstruction errors are combined with a cumulative sum (CUSUM) algorithm, which indicates changes in the sequential data collected. Additionally, the outputs of the CUSUM algorithms are treated by a fuzzy logic framework to predict the status of the structure. A scale model is built and monitored to check the effectiveness of the methodology hereby developed, showing that the existence of anomalies is promptly detected by the algorithm. The framework introduced in the present paper aims to detect internal erosion inside dams by combining different techniques in a novel context and methodological workflow. Therefore, this paper seeks to close gaps in prior studies, which mostly treated just parts of the data acquisition–processing workflow.
Internal erosion is the most important failure mechanism of earth and rockfill dams. Since this type of erosion develops internally and silently, methodologies of data acquisition and processing for dam monitoring are crucial to guarantee a safe operation during the lifespan of these structures. In this context, artificial intelligence techniques show up as tools that can simplify the analysis and verification process not of the internal erosion itself, but of the effects that this pathology causes in the response of the dam to external stimuli. Therefore, within the scope of this paper, a methodological framework for monitoring internal erosion in the body of earth and rockfill dams will be proposed. For that, artificial intelligence methods, especially deep neural autoencoders, will be used to treat the acoustic data collected by geophones installed on a dam. The sensor data is processed to identify patterns and anomalies as well as to classify the dam's structural health status. In short, the acoustic dataset is preprocessed to reduce its dimensionality. In this process, for each second of acquired data, three parameters are calculated (Hjorth parameters). For each parameter, the data from all the available sensors are used to calibrate an autoencoder. Then, the reconstruction error of each autoencoder is used to monitor how far from the original (normal) state the acoustic signature of the dam is. The time series of reconstruction errors are combined with a cumulative sum (CUSUM) algorithm, which indicates changes in the sequential data collected. Additionally, the outputs of the CUSUM algorithms are treated by a fuzzy logic framework to predict the status of the structure. A scale model is built and monitored to check the effectiveness of the methodology hereby developed, showing that the existence of anomalies is promptly detected by the algorithm. The framework introduced in the present paper aims to detect internal erosion inside dams by combining different techniques in a novel context and methodological workflow. Therefore, this paper seeks to close gaps in prior studies, which mostly treated just parts of the data acquisition-processing workflow.Internal erosion is the most important failure mechanism of earth and rockfill dams. Since this type of erosion develops internally and silently, methodologies of data acquisition and processing for dam monitoring are crucial to guarantee a safe operation during the lifespan of these structures. In this context, artificial intelligence techniques show up as tools that can simplify the analysis and verification process not of the internal erosion itself, but of the effects that this pathology causes in the response of the dam to external stimuli. Therefore, within the scope of this paper, a methodological framework for monitoring internal erosion in the body of earth and rockfill dams will be proposed. For that, artificial intelligence methods, especially deep neural autoencoders, will be used to treat the acoustic data collected by geophones installed on a dam. The sensor data is processed to identify patterns and anomalies as well as to classify the dam's structural health status. In short, the acoustic dataset is preprocessed to reduce its dimensionality. In this process, for each second of acquired data, three parameters are calculated (Hjorth parameters). For each parameter, the data from all the available sensors are used to calibrate an autoencoder. Then, the reconstruction error of each autoencoder is used to monitor how far from the original (normal) state the acoustic signature of the dam is. The time series of reconstruction errors are combined with a cumulative sum (CUSUM) algorithm, which indicates changes in the sequential data collected. Additionally, the outputs of the CUSUM algorithms are treated by a fuzzy logic framework to predict the status of the structure. A scale model is built and monitored to check the effectiveness of the methodology hereby developed, showing that the existence of anomalies is promptly detected by the algorithm. The framework introduced in the present paper aims to detect internal erosion inside dams by combining different techniques in a novel context and methodological workflow. Therefore, this paper seeks to close gaps in prior studies, which mostly treated just parts of the data acquisition-processing workflow.
Author Costa, Katherin Rocio Cano Bezerra da
Dantas, Ana Paola do Nascimento
Sousa, Patrícia Figuereido de
Moreira, Gabriela Rodrigues
Jorge, Rafael Mendes
Albuquerque, Enzo Aldo Cunha
Aquino, Fernando Rodrigo de
Ozelim, Luan Carlos de Sena Monteiro
Góis, Manuelle Santos
Barros, Matheus Lima de
Diniz, Mariana dos Santos
Borges, Lucas Parreira de Faria
Cavalcante, André Luís Brasil
AuthorAffiliation Department of Civil and Environmental Engineering, University of Brasilia, Brasilia 70910-900, Brazil; lucaspdfborges@gmail.com (L.P.d.F.B.); abrasil@unb.br (A.L.B.C.); enzo.aldo@aluno.unb.br (E.A.C.A.); diniz.santos@aluno.unb.br (M.d.S.D.); manuellegeo@unb.br (M.S.G.); katherin.cano@aluno.unb.br (K.R.C.B.d.C.); figuereido.patricia@aluno.unb.br (P.F.d.S.); ana.paola@aluno.unb.br (A.P.d.N.D.); jorge.rafael@aluno.unb.br (R.M.J.); moreira.gabriela@aluno.unb.br (G.R.M.); barros.lima@aluno.unb.br (M.L.d.B.); fernando.aquino@aluno.unb.br (F.R.d.A.)
AuthorAffiliation_xml – name: Department of Civil and Environmental Engineering, University of Brasilia, Brasilia 70910-900, Brazil; lucaspdfborges@gmail.com (L.P.d.F.B.); abrasil@unb.br (A.L.B.C.); enzo.aldo@aluno.unb.br (E.A.C.A.); diniz.santos@aluno.unb.br (M.d.S.D.); manuellegeo@unb.br (M.S.G.); katherin.cano@aluno.unb.br (K.R.C.B.d.C.); figuereido.patricia@aluno.unb.br (P.F.d.S.); ana.paola@aluno.unb.br (A.P.d.N.D.); jorge.rafael@aluno.unb.br (R.M.J.); moreira.gabriela@aluno.unb.br (G.R.M.); barros.lima@aluno.unb.br (M.L.d.B.); fernando.aquino@aluno.unb.br (F.R.d.A.)
Author_xml – sequence: 1
  givenname: Luan Carlos de Sena Monteiro
  orcidid: 0000-0002-2581-0486
  surname: Ozelim
  fullname: Ozelim, Luan Carlos de Sena Monteiro
– sequence: 2
  givenname: Lucas Parreira de Faria
  orcidid: 0000-0003-4443-3310
  surname: Borges
  fullname: Borges, Lucas Parreira de Faria
– sequence: 3
  givenname: André Luís Brasil
  orcidid: 0000-0003-4980-1450
  surname: Cavalcante
  fullname: Cavalcante, André Luís Brasil
– sequence: 4
  givenname: Enzo Aldo Cunha
  surname: Albuquerque
  fullname: Albuquerque, Enzo Aldo Cunha
– sequence: 5
  givenname: Mariana dos Santos
  surname: Diniz
  fullname: Diniz, Mariana dos Santos
– sequence: 6
  givenname: Manuelle Santos
  orcidid: 0000-0002-6327-408X
  surname: Góis
  fullname: Góis, Manuelle Santos
– sequence: 7
  givenname: Katherin Rocio Cano Bezerra da
  surname: Costa
  fullname: Costa, Katherin Rocio Cano Bezerra da
– sequence: 8
  givenname: Patrícia Figuereido de
  orcidid: 0000-0002-4551-4940
  surname: Sousa
  fullname: Sousa, Patrícia Figuereido de
– sequence: 9
  givenname: Ana Paola do Nascimento
  surname: Dantas
  fullname: Dantas, Ana Paola do Nascimento
– sequence: 10
  givenname: Rafael Mendes
  surname: Jorge
  fullname: Jorge, Rafael Mendes
– sequence: 11
  givenname: Gabriela Rodrigues
  surname: Moreira
  fullname: Moreira, Gabriela Rodrigues
– sequence: 12
  givenname: Matheus Lima de
  surname: Barros
  fullname: Barros, Matheus Lima de
– sequence: 13
  givenname: Fernando Rodrigo de
  surname: Aquino
  fullname: Aquino, Fernando Rodrigo de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35408097$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v0zAYgCM0xD7gwB9AlriAtDJ_xUkuSKVjbFI3DqNny3HepC5OXGwHtB355XjtNnXjZMt-3kfv12G2N7gBsuwtwZ8Yq_BJoBQXlJf0RXZAOOWTMj3s7dz3s8MQVhhTxlj5KttnOcclroqD7O919KOOo1cWnYOycYku3WCi82bokGvRqeoD-qICNMgNaKrdGKLRO9AxOgVYoyvYOK4g_nH-ZzhGZ-Pt7Q2auy7RamiQQrPF9eISzdwQvbNoarsUH5f96-xlq2yAN_fnUbY4-_pjdj6Zf_92MZvOJ5qLKk4YUCoqXdaiJooUoDAVedOSltZ1kVNWCMFYDg0u66YCBrgGDk3L60JooLpiR9nF1ts4tZJrb3rlb6RTRm4enO-k8qk2C5ISnnykpkWpeVuRkjCihaobrZXgbZNcn7eu9Vj30GhINSn7RPr0ZzBL2bnfssKY4UIkwYd7gXe_RghR9iZosFYNkFosqeBVXhac44S-f4au3OiH1KoNRXDCWKLe7Wb0mMrDqBNwsgW0dyF4aKU2UUVzNw5lrCRY3i2TfFymFPHxWcSD9H_2H9LIySQ
CitedBy_id crossref_primary_10_1111_mice_13431
crossref_primary_10_1016_j_jmsy_2025_01_007
crossref_primary_10_3390_buildings15152803
crossref_primary_10_1007_s42107_025_01474_w
crossref_primary_10_1177_14759217231199569
crossref_primary_10_3390_s23094480
crossref_primary_10_3390_su151310543
crossref_primary_10_1109_TIM_2024_3428610
crossref_primary_10_3390_s23229292
crossref_primary_10_3390_s25051424
crossref_primary_10_3390_rs14225818
crossref_primary_10_1007_s11831_025_10244_5
Cites_doi 10.1139/t00-030
10.1134/S2075108717010035
10.1016/j.procs.2020.03.359
10.1098/rsta.2015.0202
10.1109/ICMLA.2015.9
10.1016/0013-4694(70)90143-4
10.1029/2010WR010247
10.1016/j.procs.2016.05.339
10.1111/j.2517-6161.1995.tb02052.x
10.1016/j.jocs.2016.11.016
10.5194/esurf-6-1219-2018
10.1016/0893-6080(89)90014-2
10.1016/j.enggeo.2018.02.015
10.1093/biomet/41.1-2.100
10.1007/BF00332918
10.1142/9789812562531_0015
10.1155/2021/6658575
10.1214/aoms/1177731118
10.1109/JSTSP.2012.2233713
10.1145/3097983.3098052
10.1016/B978-1-78548-229-8.50001-7
10.1785/0220180251
10.1145/235815.235821
10.3390/s20092517
10.1080/14786440109462720
10.1002/qre.2723
10.1214/aoms/1177693055
10.1680/jgeot.14.P.268
10.1016/j.ymssp.2021.108247
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22072482
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2143761b278c4f918131c6abdcca64fd
PMC9003076
35408097
10_3390_s22072482
Genre Journal Article
GrantInformation_xml – fundername: Neoenergia/CEB Distribuição S.A.
  grantid: PD-05160-1904/2019, CEBD782/2019
– fundername: Coordenação de Aperfeicoamento de Pessoal de Nível Superior
  grantid: 001
– fundername: National Council for Scientific and Technological Development
  grantid: 305484/2020-6
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-3e2269c8b6b1a17ea0265df1f2bb7523766335ed08bd9e3e0be4edf4b76ce2c93
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000781905500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 18:56:34 EDT 2025
Tue Nov 04 01:54:42 EST 2025
Wed Oct 01 14:37:22 EDT 2025
Tue Oct 07 07:11:03 EDT 2025
Wed Feb 19 02:26:41 EST 2025
Tue Nov 18 22:07:14 EST 2025
Sat Nov 29 07:09:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords deep learning
autoencoder
structural monitoring
fuzzy logic
CUSUM algorithm
geotechnical engineering
dams
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-3e2269c8b6b1a17ea0265df1f2bb7523766335ed08bd9e3e0be4edf4b76ce2c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6327-408X
0000-0003-4980-1450
0000-0002-2581-0486
0000-0003-4443-3310
0000-0002-4551-4940
OpenAccessLink https://doaj.org/article/2143761b278c4f918131c6abdcca64fd
PMID 35408097
PQID 2649108743
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2143761b278c4f918131c6abdcca64fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9003076
proquest_miscellaneous_2649587440
proquest_journals_2649108743
pubmed_primary_35408097
crossref_citationtrail_10_3390_s22072482
crossref_primary_10_3390_s22072482
PublicationCentury 2000
PublicationDate 20220324
PublicationDateYYYYMMDD 2022-03-24
PublicationDate_xml – month: 3
  year: 2022
  text: 20220324
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ikard (ref_8) 2012; 48
Page (ref_31) 1954; 41
Lafitte (ref_5) 1993; 45
Mooney (ref_12) 2016; 66
ref_13
ref_34
Chu (ref_36) 2019; 2019
ref_11
ref_33
Fisher (ref_14) 2017; 20
ref_17
ref_16
Grover (ref_25) 2020; 167
Jolliffe (ref_19) 2016; 374
Lai (ref_27) 1995; 57
Pearson (ref_20) 1901; 2
Sahki (ref_26) 2020; 36
Hjorth (ref_23) 1970; 29
Wald (ref_30) 1945; 16
Foster (ref_6) 2000; 37
Frongia (ref_10) 2018; 237
Lorden (ref_32) 1971; 42
Cocconcelli (ref_24) 2022; 164
ref_1
ref_3
Tartakovsky (ref_29) 2013; 7
ref_2
Fisher (ref_15) 2016; 80
Rastin (ref_18) 2021; 2021
Barber (ref_38) 1996; 22
ref_9
Bourlard (ref_21) 1988; 59
(ref_28) 2017; 8
ref_4
Baldi (ref_22) 1989; 2
ref_7
Manconi (ref_35) 2018; 6
Anthony (ref_37) 2018; 90
References_xml – volume: 37
  start-page: 1000
  year: 2000
  ident: ref_6
  article-title: The statistics of embankment dam failures and accidents
  publication-title: Can. Geotech. J.
  doi: 10.1139/t00-030
– ident: ref_7
– ident: ref_9
– volume: 8
  start-page: 1
  year: 2017
  ident: ref_28
  article-title: Comprehensive overview of quickest detection theory and its application to GNSS threat detection
  publication-title: Gyroscopy Navig.
  doi: 10.1134/S2075108717010035
– volume: 167
  start-page: 1484
  year: 2020
  ident: ref_25
  article-title: Rolling Element Bearing Fault Diagnosis using Empirical Mode Decomposition and Hjorth Parameters
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.359
– volume: 374
  start-page: 20150202
  year: 2016
  ident: ref_19
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2015.0202
– ident: ref_3
– ident: ref_13
  doi: 10.1109/ICMLA.2015.9
– ident: ref_11
– volume: 29
  start-page: 306
  year: 1970
  ident: ref_23
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(70)90143-4
– volume: 48
  start-page: W04201
  year: 2012
  ident: ref_8
  article-title: Saline pulse test monitoring with the self-potential method to nonintrusively determine the velocity of the pore water in leaking areas of earth dams and embankments
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR010247
– volume: 80
  start-page: 577
  year: 2016
  ident: ref_15
  article-title: Crack Detection in Earth Dam and Levee Passive Seismic Data Using Support Vector Machines
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.05.339
– volume: 57
  start-page: 613
  year: 1995
  ident: ref_27
  article-title: Sequential Changepoint Detection in Quality Control and Dynamical Systems
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1995.tb02052.x
– volume: 20
  start-page: 143
  year: 2017
  ident: ref_14
  article-title: Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.11.016
– volume: 6
  start-page: 1219
  year: 2018
  ident: ref_35
  article-title: Short Communication: Monitoring rockfalls with the Raspberry Shake
  publication-title: Earth Surf. Dyn.
  doi: 10.5194/esurf-6-1219-2018
– volume: 2
  start-page: 53
  year: 1989
  ident: ref_22
  article-title: Neural networks and principal component analysis: Learning from examples without local minima
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90014-2
– volume: 237
  start-page: 129
  year: 2018
  ident: ref_10
  article-title: Internal characterization of embankment dams using ground penetrating radar (GPR) and thermographic analysis: A case study of the Medau Zirimilis Dam (Sardinia, Italy)
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.02.015
– volume: 41
  start-page: 100
  year: 1954
  ident: ref_31
  article-title: Continuous Inspection Schemes
  publication-title: Biometrika
  doi: 10.1093/biomet/41.1-2.100
– ident: ref_4
– ident: ref_33
– volume: 2019
  start-page: H11H-1565
  year: 2019
  ident: ref_36
  article-title: The Implementation of Debris Flow Seismic Detector With Raspberry Shake
  publication-title: AGU Fall Meet. Abstr.
– ident: ref_2
– volume: 59
  start-page: 291
  year: 1988
  ident: ref_21
  article-title: Auto-association by multilayer perceptrons and singular value decomposition
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00332918
– volume: 45
  start-page: 13
  year: 1993
  ident: ref_5
  article-title: Probabilistic risk analysis of large dams. Its value and limits
  publication-title: Int. Water Power Dam Constr.
– ident: ref_34
  doi: 10.1142/9789812562531_0015
– volume: 2021
  start-page: 6658575
  year: 2021
  ident: ref_18
  article-title: Unsupervised Structural Damage Detection Technique Based on a Deep Convolutional Autoencoder
  publication-title: Shock Vib.
  doi: 10.1155/2021/6658575
– volume: 16
  start-page: 117
  year: 1945
  ident: ref_30
  article-title: Sequential Tests of Statistical Hypotheses
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731118
– volume: 7
  start-page: 4
  year: 2013
  ident: ref_29
  article-title: Efficient Computer Network Anomaly Detection by Changepoint Detection Methods
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2012.2233713
– ident: ref_16
  doi: 10.1145/3097983.3098052
– ident: ref_1
  doi: 10.1016/B978-1-78548-229-8.50001-7
– volume: 90
  start-page: 219
  year: 2018
  ident: ref_37
  article-title: Do Low-Cost Seismographs Perform Well Enough for Your Network? An Overview of Laboratory Tests and Field Observations of the OSOP Raspberry Shake 4D
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220180251
– volume: 22
  start-page: 469
  year: 1996
  ident: ref_38
  article-title: The Quickhull Algorithm for Convex Hulls
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/235815.235821
– ident: ref_17
  doi: 10.3390/s20092517
– volume: 2
  start-page: 559
  year: 1901
  ident: ref_20
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
– volume: 36
  start-page: 2699
  year: 2020
  ident: ref_26
  article-title: Performance study of change-point detection thresholds for cumulative sum statistic in a sequential context
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.2723
– volume: 42
  start-page: 1897
  year: 1971
  ident: ref_32
  article-title: Procedures for Reacting to a Change in Distribution
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177693055
– volume: 66
  start-page: 301
  year: 2016
  ident: ref_12
  article-title: Time-lapse monitoring of internal erosion in earthen dams and levees using ambient seismic noise
  publication-title: Géotechnique
  doi: 10.1680/jgeot.14.P.268
– volume: 164
  start-page: 108247
  year: 2022
  ident: ref_24
  article-title: Detectivity: A combination of Hjorth’s parameters for condition monitoring of ball bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108247
SSID ssj0023338
Score 2.4381695
Snippet Internal erosion is the most important failure mechanism of earth and rockfill dams. Since this type of erosion develops internally and silently, methodologies...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2482
SubjectTerms 20th century
Acoustics
Algorithms
Artificial Intelligence
autoencoder
Civil engineering
Concrete
Construction
Control algorithms
dams
deep learning
Engineering firms
Failure
Fuzzy Logic
geotechnical engineering
Neural Networks, Computer
Sensors
Soil erosion
structural monitoring
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BygEOUB4FQ4sWxIFDrax3Ha_3VKUpERyIIkGlcrK8D7eVWjvUAYke-eWdsR2ToIoTV-_YWntmZ3bWM98H8M4rpY1UPLSCWnIs6sII50KX24hLqxPPbUM2oWaz9OREz7v26Lorq1z5xMZRt2jPVLeNTnjoKksn5kMM4xjnUgx_B4vvIXFI0b_WjlDjLmwR8BYfwNb80-f5tz4Bk5iPtehCElP9YS0EVyJOxUZMaqD7b9tv_l02uRaHpo_-7xtsw8NuP8rGrQE9hju-fAIP1lAKn8LvLw3GLOFzsLZribWegIZZVbCj_LJmhxgOHatKNrZVwxC2JrTPjrxfMAICwWfM2srzep9Nf1xf_2JE92xZXjqWs8kxunk2aevn2fjiFO9fnl0-g-Pph6-Tj2FH3RBazLeXofS4rdM2NYmJ8kj5HFO9kSuiQhijRlSJk0g58o6nxmkvPTc-9q6IjSKGMqvlDgzKqvQvgEW-yBXXinNTxFZJnYhCR3EhEmdSZ6IA3q-Ul9kO15zoNS4yzG9Iz1mv5wDe9qKLFszjNqFDsoBegPC3mwvV1WnWLedM4DZTJZERKrUxTieNZGST3DhcEElcuAB2VzaQdU6hzv6oPIA3_TAuZ_pHk5cetdPIjIiSgAfwvDW3fiZ0RJfilwhAbRjixlQ3R8rzswYyXDfOPHn572m9gvuCuju4DEW8CwO0Lr8H9-zP5Xl99bpbTTfbOTNx
  priority: 102
  providerName: ProQuest
Title Structural Health Monitoring of Dams Based on Acoustic Monitoring, Deep Neural Networks, Fuzzy Logic and a CUSUM Control Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/35408097
https://www.proquest.com/docview/2649108743
https://www.proquest.com/docview/2649587440
https://pubmed.ncbi.nlm.nih.gov/PMC9003076
https://doaj.org/article/2143761b278c4f918131c6abdcca64fd
Volume 22
WOSCitedRecordID wos000781905500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeBpTKIA4eN1rHTOD623VZw2KoCViqnKH7trrSbrkhBYg8c-OWM7TRq0UpcuPhgTxLHM-OZScbfALyzQkjFBU0180dyNPJCMWNSU-uMci0LS3UoNiHm83K5lIutUl8-JyzCA8eFO2Ro0DHUVkyUOncSDRLPdFErg48ucmf87kuF3ARTXajFMfKKOEIcg_rDliENy0u2Y30CSP9NnuXfCZJbFmf2EB50riIZxSk-glu2eQz3twAEn8DvzwH-1UNnkHigiEQl9cNk5chRfdmSMVoqQ1YNGelVKN61RXRAjqy9Ih6jA-8xj0nh7QGZfb--_kl8JWZN6saQmkxOcAcmk5jaTkYXp3j9-uzyKZzMpl8mH9KuqkKqMRRep9yixyV1qQqV1ZmwNUZhQ-Myx5QSQ58kU3A-tIaWykjLLVU2t8blSvjiYVryZ7DXrBr7AkhmXS2oFJQql2vBZcGQQ7ljhVGlUVkC7zerXekOctxXvrioMPTwjKl6xiTwtie9ijgbNxGNPct6Ag-NHTpQYKpOYKp_CUwC-xuGV52-thW6heg3lehOJfCmH0ZN879P6sYidwLN0FcLoAk8j_LRz8R_PStxJRIQO5KzM9Xdkeb8LKB5y7DPFi__x7u9gnvMH8-gPGX5PuyhDNrXcFf_WJ-33wZwWyxFaMsB3BlP54tPg6A22B7_mmLf4uPx4usfzW0eww
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRJw4P0wFFgQSBxqdR-O1z4glCZEjdpGkWil9mS8D7eVWjvUAdQe-UH8RmZtxySo4tYDV-_YWu1-O7Pj3fk-gLdWylgJSX3NXUmOxrlQ3BjfpJpRoePQUl2JTcjxODo4iCcr8GteC-OuVc59YuWoTaHdP_INDNwY2SIMeB-nX32nGuVOV-cSGjUstu3FD0zZyg-jAc7vO86Hn_b6W36jKuBrTAVnvrC444h1pELFUiZtillI12Qs40rJrrskEgrRtYZGysRWWKpsYE0WKOnEs7QjX0KXvxog2GkHViej3clhm-IJzPhq_iIhYrpRck4lDyK-FPUqcYCrdrR_X8xciHTDu__bGN2DO82emvTqRXAfVmz-AG4vMC0-hJ-fK55cxzFC6sorUnsz10yKjAzSs5JsYkg3pMhJTxeVytmC0ToZWDsljswEvzGub8-X62T47fLygjjJak3S3JCU9PcxVJF-XQNAeqdH-P7s-OwR7F_LIDyGTl7k9ikQZrNU0lhSqrJASxGHPItZkPHQqMgo5sH7OTwS3XCzO4mQ0wRzNIekpEWSB29a02lNSHKV0abDWGvgOMSrB8X5UdK4pITjVlmGTHEZ6QC7EzHBdJgqg4s6DDLjwdocZUnj2MrkD8Q8eN02o0ty50xpbnF2Kpuuk1WgHjypAd32xP1mjHAkPJBLUF_q6nJLfnJc0Z7HVUAKn_27W6_g5tbe7k6yMxpvP4db3FWrUOHzYA06iDT7Am7o77OT8vxls3YJfLnupfAbrmCGWw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4TgUN4QKGAQSBwarWNn4-SA0D66oiqKVkCl3tL4kbZSm2ybBdQe-Vn8OsZ5sYsqbj1wXU9Wlv15xpPMfB_AGyNEJLmgrmK2JUfhXkimtatT5VGuosBQVYlNiDgO9_ej2Rr8anthbFll6xMrR60LZd-R9zFwY2QLMeD1s6YsYjaZfpifuVZByn5pbeU0aojsmosfmL6V73cmuNdvGZtufx1_dBuFAVdhWrhwucHbR6RCGUgv9YRJMSMZ6MzLmJRiYAtGAs4HRtNQ6shwQ6Xxjc58KayQlrJETOj-1wXHpKcH66PtePa5S_c4Zn81lxHnEe2XjFHB_JCtRMBKKOCq2-3fRZpLUW96539er7uw0dy1ybA-HPdgzeT34fYSA-MD-Pml4s-13COk7sgitZezw6TIyCQ9LckIQ70mRU6GqqjUz5aMtsjEmDmxJCf4H3FdVV9ukem3y8sLYqWsFUlzTVIy3sMQRsZ1bwAZnhzi84uj04ewdy2L8Ah6eZGbJ0A8k6WCRoJSmfkKYRSwLPL8jAVahlp6DrxroZKohrPdSoecJJi7WVQlHaoceN2ZzmuikquMRhZvnYHlFq9-KM4Pk8ZVJQyv0CLwJBOh8nE6occ9FaRS42EP_Ew7sNkiLmkcXpn8gZsDr7phdFX2-1OaG9ydymZg5RaoA49rcHczsa8fQ1wJB8QK7FemujqSHx9VdOhRFaiCp_-e1ku4ifhPPu3Eu8_gFrNNLJS7zN-EHgLNPIcb6vviuDx_0RxjAgfXfRJ-A1CmjvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Health+Monitoring+of+Dams+Based+on+Acoustic+Monitoring%2C+Deep+Neural+Networks%2C+Fuzzy+Logic+and+a+CUSUM+Control+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Luan+Carlos+de+Sena+Monteiro+Ozelim&rft.au=Lucas+Parreira+de+Faria+Borges&rft.au=Andr%C3%A9+Lu%C3%ADs+Brasil+Cavalcante&rft.au=Enzo+Aldo+Cunha+Albuquerque&rft.date=2022-03-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=7&rft.spage=2482&rft_id=info:doi/10.3390%2Fs22072482&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2143761b278c4f918131c6abdcca64fd
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon