An Investigation of Insider Threat Mitigation Based on EEG Signal Classification

This study proposes a scheme to identify insider threats in nuclear facilities through the detection of malicious intentions of potential insiders using subject-wise classification. Based on electroencephalography (EEG) signals, a classification model was developed to identify whether a subject has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 20; H. 21; S. 6365
Hauptverfasser: Kim, Jung Hwan, Kim, Chul Min, Yim, Man-Sung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 08.11.2020
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study proposes a scheme to identify insider threats in nuclear facilities through the detection of malicious intentions of potential insiders using subject-wise classification. Based on electroencephalography (EEG) signals, a classification model was developed to identify whether a subject has a malicious intention under scenarios of being forced to become an insider threat. The model also distinguishes insider threat scenarios from everyday conflict scenarios. To support model development, 21-channel EEG signals were measured on 25 healthy subjects, and sets of features were extracted from the time, time–frequency, frequency and nonlinear domains. To select the best use of the available features, automatic selection was performed by random-forest-based algorithms. The k-nearest neighbor, support vector machine with radial kernel, naïve Bayes, and multilayer perceptron algorithms were applied for the classification. By using EEG signals obtained while contemplating becoming an insider threat, the subject-wise model identified malicious intentions with 78.57% accuracy. The model also distinguished insider threat scenarios from everyday conflict scenarios with 93.47% accuracy. These findings could be utilized to support the development of insider threat mitigation systems along with existing trustworthiness assessments in the nuclear industry.
AbstractList This study proposes a scheme to identify insider threats in nuclear facilities through the detection of malicious intentions of potential insiders using subject-wise classification. Based on electroencephalography (EEG) signals, a classification model was developed to identify whether a subject has a malicious intention under scenarios of being forced to become an insider threat. The model also distinguishes insider threat scenarios from everyday conflict scenarios. To support model development, 21-channel EEG signals were measured on 25 healthy subjects, and sets of features were extracted from the time, time-frequency, frequency and nonlinear domains. To select the best use of the available features, automatic selection was performed by random-forest-based algorithms. The k-nearest neighbor, support vector machine with radial kernel, naïve Bayes, and multilayer perceptron algorithms were applied for the classification. By using EEG signals obtained while contemplating becoming an insider threat, the subject-wise model identified malicious intentions with 78.57% accuracy. The model also distinguished insider threat scenarios from everyday conflict scenarios with 93.47% accuracy. These findings could be utilized to support the development of insider threat mitigation systems along with existing trustworthiness assessments in the nuclear industry.This study proposes a scheme to identify insider threats in nuclear facilities through the detection of malicious intentions of potential insiders using subject-wise classification. Based on electroencephalography (EEG) signals, a classification model was developed to identify whether a subject has a malicious intention under scenarios of being forced to become an insider threat. The model also distinguishes insider threat scenarios from everyday conflict scenarios. To support model development, 21-channel EEG signals were measured on 25 healthy subjects, and sets of features were extracted from the time, time-frequency, frequency and nonlinear domains. To select the best use of the available features, automatic selection was performed by random-forest-based algorithms. The k-nearest neighbor, support vector machine with radial kernel, naïve Bayes, and multilayer perceptron algorithms were applied for the classification. By using EEG signals obtained while contemplating becoming an insider threat, the subject-wise model identified malicious intentions with 78.57% accuracy. The model also distinguished insider threat scenarios from everyday conflict scenarios with 93.47% accuracy. These findings could be utilized to support the development of insider threat mitigation systems along with existing trustworthiness assessments in the nuclear industry.
This study proposes a scheme to identify insider threats in nuclear facilities through the detection of malicious intentions of potential insiders using subject-wise classification. Based on electroencephalography (EEG) signals, a classification model was developed to identify whether a subject has a malicious intention under scenarios of being forced to become an insider threat. The model also distinguishes insider threat scenarios from everyday conflict scenarios. To support model development, 21-channel EEG signals were measured on 25 healthy subjects, and sets of features were extracted from the time, time–frequency, frequency and nonlinear domains. To select the best use of the available features, automatic selection was performed by random-forest-based algorithms. The k-nearest neighbor, support vector machine with radial kernel, naïve Bayes, and multilayer perceptron algorithms were applied for the classification. By using EEG signals obtained while contemplating becoming an insider threat, the subject-wise model identified malicious intentions with 78.57% accuracy. The model also distinguished insider threat scenarios from everyday conflict scenarios with 93.47% accuracy. These findings could be utilized to support the development of insider threat mitigation systems along with existing trustworthiness assessments in the nuclear industry.
Author Kim, Chul Min
Kim, Jung Hwan
Yim, Man-Sung
AuthorAffiliation Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, Daejeon 34141, Korea; poxc@kaist.ac.kr (J.H.K.); usekim00@kaist.ac.kr (C.M.K.)
AuthorAffiliation_xml – name: Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, Daejeon 34141, Korea; poxc@kaist.ac.kr (J.H.K.); usekim00@kaist.ac.kr (C.M.K.)
Author_xml – sequence: 1
  givenname: Jung Hwan
  orcidid: 0000-0001-6903-6771
  surname: Kim
  fullname: Kim, Jung Hwan
– sequence: 2
  givenname: Chul Min
  orcidid: 0000-0002-7405-6600
  surname: Kim
  fullname: Kim, Chul Min
– sequence: 3
  givenname: Man-Sung
  surname: Yim
  fullname: Yim, Man-Sung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33171609$$D View this record in MEDLINE/PubMed
BookMark eNplkktPGzEQx62KqjzaQ79AtVIv7SHF7_VeKkEUaCQQlYCzNX4FR5s1tTdI_fY1CURATx7N_OY_45k5RHtDGjxCnwn-wViHjwvFlEgmxTt0QDjlE0Up3nth76PDUpYYU8aY-oD2GSMtkbg7QL9PhmY-PPgyxgWMMQ1NCtVRovO5ubnLHsbmMu6Cp1C8a6oxm50313ExQN9Meyglhmg3yEf0PkBf_Ken9wjdns1upr8mF1fn8-nJxcRy2Y0TZgG3mDDjjVMuEOY7I1vLwUCrDHggRvDQVXeQVFBhW6Kcs0aAwMB8YEdovtV1CZb6PscV5L86QdQbR8oLDXmMtvcagnGcEwHOYC5rRaxaElSHlTdGelu1fm617tdm5Z31w5ihfyX6OjLEO71ID7qVkkulqsC3J4Gc_qzrMPUqFuv7Hgaf1kVTLrr6DcZERb--QZdpnescKyUE5rTljFTqy8uOdq08L64Cx1vA5lRK9kHbOG4WUBuMvSZYP56G3p1Gzfj-JuNZ9H_2H7sYuJw
CitedBy_id crossref_primary_10_3390_su14042163
crossref_primary_10_1080_13803395_2024_2364403
crossref_primary_10_1109_ACCESS_2021_3078470
crossref_primary_10_3389_fncom_2020_596531
crossref_primary_10_1016_j_trf_2025_02_025
crossref_primary_10_3390_s23031255
crossref_primary_10_1080_00295450_2020_1837583
Cites_doi 10.1109/TCYB.2015.2479240
10.1016/j.patrec.2015.06.013
10.1016/j.jneumeth.2003.10.009
10.1016/0013-4694(70)90143-4
10.1016/j.anucene.2017.05.006
10.1016/j.neuroimage.2009.02.006
10.1109/ROSE.2014.6952983
10.1080/00036810500130539
10.1109/ACCESS.2018.2857450
10.1109/JSYST.2015.2424677
10.1109/ICENCO.2016.7856467
10.1016/j.pnucene.2017.08.006
10.1016/j.neunet.2020.06.018
10.1109/TNSRE.2018.2850308
10.1016/j.anucene.2017.11.030
10.1145/2808783.2808792
10.1109/HICSS.2012.309
10.1117/12.820300
10.3389/fnhum.2019.00063
10.1080/00295450.2020.1837583
10.1086/209170
10.1145/3139923.3139930
10.2172/1452870
10.1109/JTEHM.2016.2609927
10.1080/17470919.2015.1059362
10.7591/9781501705946
10.1007/978-3-642-69746-3_2
10.1109/SPW.2018.00035
10.3389/fnagi.2018.00184
10.1109/CCWC.2018.8301639
10.1145/2659651.2659654
10.1016/j.seizure.2015.01.012
10.1007/s10916-008-9231-z
10.1109/IJCNN48605.2020.9207280
10.1007/978-3-642-02937-0
10.1016/j.neuron.2006.03.015
10.3389/fnins.2014.00376
10.1186/1471-2105-8-328
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s20216365
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_afbd4415adb046beb0871f8908ebb6ec
PMC7664688
33171609
10_3390_s20216365
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-3ca07013bebd8df13e9b67c4aba78baea1b54f93e9f62525c718ddcb5a50a3ef3
IEDL.DBID BENPR
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593550600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:08:40 EDT 2025
Tue Nov 04 01:57:22 EST 2025
Fri Sep 05 11:06:22 EDT 2025
Tue Oct 07 07:27:59 EDT 2025
Wed Feb 19 02:27:57 EST 2025
Tue Nov 18 22:21:04 EST 2025
Sat Nov 29 07:10:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords electroencephalography
insider threat
nuclear security
implicit intention
machine learning
subject-wise classification
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-3ca07013bebd8df13e9b67c4aba78baea1b54f93e9f62525c718ddcb5a50a3ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
ORCID 0000-0001-6903-6771
0000-0002-7405-6600
OpenAccessLink https://www.proquest.com/docview/2550427431?pq-origsite=%requestingapplication%
PMID 33171609
PQID 2550427431
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_afbd4415adb046beb0871f8908ebb6ec
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7664688
proquest_miscellaneous_2459625335
proquest_journals_2550427431
pubmed_primary_33171609
crossref_citationtrail_10_3390_s20216365
crossref_primary_10_3390_s20216365
PublicationCentury 2000
PublicationDate 20201108
PublicationDateYYYYMMDD 2020-11-08
PublicationDate_xml – month: 11
  year: 2020
  text: 20201108
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hjorth (ref_43) 1970; 29
ref_14
ref_58
ref_57
ref_12
ref_56
ref_11
Deng (ref_33) 2018; 26
Subha (ref_42) 2010; 34
ref_55
ref_10
ref_54
ref_51
ref_19
ref_18
ref_17
(ref_47) 2015; 9
Kim (ref_31) 2019; 13
ref_25
ref_24
ref_22
ref_20
ref_27
Kim (ref_6) 2017; 108
Sheppard (ref_37) 1988; 15
Bulea (ref_29) 2014; 8
Koessler (ref_53) 2009; 46
Suh (ref_15) 2018; 113
Hunker (ref_13) 2011; 2
Shah (ref_34) 2020; 130
Almehmadi (ref_23) 2018; 60
ref_36
ref_35
Delorme (ref_39) 2004; 134
Almehmadi (ref_16) 2015; 11
ref_30
Faust (ref_46) 2015; 26
Dong (ref_26) 2015; 46
Dong (ref_50) 2016; 11
Goldberg (ref_52) 2006; 50
Zhang (ref_21) 2005; 22
ref_45
Zou (ref_7) 2018; 104
ref_44
ref_41
Joe (ref_38) 2000; 8
ref_40
ref_1
ref_3
Zoubi (ref_32) 2018; 10
ref_2
ref_49
ref_48
ref_9
ref_8
ref_5
ref_4
Kang (ref_28) 2015; 66
References_xml – volume: 46
  start-page: 2535
  year: 2015
  ident: ref_26
  article-title: EEG-based classification of implicit intention during self-relevant sentence reading
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2479240
– volume: 66
  start-page: 144
  year: 2015
  ident: ref_28
  article-title: Human implicit intent recognition based on the phase synchrony of EEG signals
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.06.013
– volume: 134
  start-page: 9
  year: 2004
  ident: ref_39
  article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 29
  start-page: 306
  year: 1970
  ident: ref_43
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(70)90143-4
– ident: ref_9
– ident: ref_5
– volume: 2
  start-page: 4
  year: 2011
  ident: ref_13
  article-title: Insiders and insider threats-an overview of definitions and mitigation techniques
  publication-title: J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl.
– volume: 108
  start-page: 301
  year: 2017
  ident: ref_6
  article-title: A study of insider threat in nuclear security analysis using game theoretic modeling
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2017.05.006
– volume: 8
  start-page: 72
  year: 2000
  ident: ref_38
  article-title: Standardization of Korean version of daily stress inventory (K-DSI)
  publication-title: Korean J. Psychosom. Med.
– volume: 46
  start-page: 64
  year: 2009
  ident: ref_53
  article-title: Automated cortical projection of EEG sensors: Anatomical correlation via the international 10–10 system
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.006
– ident: ref_1
– ident: ref_44
  doi: 10.1109/ROSE.2014.6952983
– volume: 22
  start-page: 107
  year: 2005
  ident: ref_21
  article-title: Harmony, hierarchy and conservatism: A cross-cultural comparison of Confucian values in China, Korea, Japan, and Taiwan
  publication-title: Commun. Res. Rep.
  doi: 10.1080/00036810500130539
– volume: 60
  start-page: 40626
  year: 2018
  ident: ref_23
  article-title: Micromovement behavior as an intention detection measurement for preventing insider threats
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2857450
– volume: 11
  start-page: 373
  year: 2015
  ident: ref_16
  article-title: On the possibility of insider threat prevention using intent-based access control (IBAC)
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2015.2424677
– ident: ref_8
– ident: ref_4
– ident: ref_45
  doi: 10.1109/ICENCO.2016.7856467
– volume: 104
  start-page: 8
  year: 2018
  ident: ref_7
  article-title: Insider threats of physical protection systems in nuclear power plants: Prevention and evaluation
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2017.08.006
– volume: 130
  start-page: 75
  year: 2020
  ident: ref_34
  article-title: Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.06.018
– ident: ref_27
– volume: 26
  start-page: 1481
  year: 2018
  ident: ref_33
  article-title: Transductive joint-knowledge-transfer TSK FS for recognition of epileptic EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2850308
– ident: ref_10
– volume: 113
  start-page: 308
  year: 2018
  ident: ref_15
  article-title: “High risk non-initiating insider” identification based on EEG analysis for enhancing nuclear security
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2017.11.030
– ident: ref_24
  doi: 10.1145/2808783.2808792
– volume: 9
  start-page: 2309
  year: 2015
  ident: ref_47
  article-title: Analysis of EEG signals using nonlinear dynamics and chaos: A review
  publication-title: Appl. Math. Inf. Sci.
– ident: ref_41
– ident: ref_17
– ident: ref_14
  doi: 10.1109/HICSS.2012.309
– ident: ref_57
  doi: 10.1117/12.820300
– ident: ref_30
– volume: 13
  start-page: 63
  year: 2019
  ident: ref_31
  article-title: Classification of movement intention using independent components of premovement EEG
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00063
– ident: ref_58
  doi: 10.1080/00295450.2020.1837583
– ident: ref_3
– ident: ref_11
– volume: 15
  start-page: 325
  year: 1988
  ident: ref_37
  article-title: The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research
  publication-title: J. Consum. Res.
  doi: 10.1086/209170
– ident: ref_51
  doi: 10.1145/3139923.3139930
– ident: ref_40
– ident: ref_25
  doi: 10.2172/1452870
– ident: ref_55
  doi: 10.1109/JTEHM.2016.2609927
– volume: 11
  start-page: 221
  year: 2016
  ident: ref_50
  article-title: Implicit agreeing/disagreeing intention while reading self-relevant sentences: A human fMRI study
  publication-title: Soc. Neurosci.
  doi: 10.1080/17470919.2015.1059362
– ident: ref_18
– ident: ref_20
  doi: 10.7591/9781501705946
– ident: ref_36
  doi: 10.1007/978-3-642-69746-3_2
– ident: ref_12
  doi: 10.1109/SPW.2018.00035
– volume: 10
  start-page: 184
  year: 2018
  ident: ref_32
  article-title: Predicting age from brain EEG signals—A machine learning approach
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00184
– ident: ref_56
  doi: 10.1109/CCWC.2018.8301639
– ident: ref_54
– ident: ref_2
– ident: ref_22
  doi: 10.1145/2659651.2659654
– volume: 26
  start-page: 56
  year: 2015
  ident: ref_46
  article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis
  publication-title: Seizure
  doi: 10.1016/j.seizure.2015.01.012
– volume: 34
  start-page: 195
  year: 2010
  ident: ref_42
  article-title: EEG signal analysis: A survey
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9231-z
– ident: ref_35
  doi: 10.1109/IJCNN48605.2020.9207280
– ident: ref_49
  doi: 10.1007/978-3-642-02937-0
– volume: 50
  start-page: 329
  year: 2006
  ident: ref_52
  article-title: When the brain loses its self: Prefrontal inactivation during sensorimotor processing
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.03.015
– ident: ref_19
– volume: 8
  start-page: 376
  year: 2014
  ident: ref_29
  article-title: Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00376
– ident: ref_48
  doi: 10.1186/1471-2105-8-328
SSID ssj0023338
Score 2.396468
Snippet This study proposes a scheme to identify insider threats in nuclear facilities through the detection of malicious intentions of potential insiders using...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6365
SubjectTerms Access control
Algorithms
Bayes Theorem
Behavior
Criminal investigations
Cybersecurity
Electroencephalography
Employment
Humans
implicit intention
insider threat
machine learning
Nuclear Power Plants
Nuclear security
Security systems
Signal Processing, Computer-Assisted
subject-wise classification
Support Vector Machine
Surveillance
Terrorism
Threats
Workers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-RAEC1E9qCHxe_NOitx8eAlmEknnc7RWcbdiyLogrdQ_aUDS0accX-_VZ1MyIiwl72F7iJ0qlKp95LOK4AzW-qS_7lMrCzyJFfaJBUSkFOVsV6k6KVXodlEeXOjHh6q20GrL94T1soDt467QK8tY360mqicdjoliO9VlSqntXSGn76EelZkqqNagphXqyMkiNRfLIjiE_DgCjKoPkGk_yNk-X6D5KDiXO3A5w4qxpftEndhwzV7sD0QENyH28smHihlzJt47mkgtOCM758YEMbXs35yQiXLxnQwnf6M72aPfPrQFZP3CwWTA_h9Nb3_8SvpeiQkhojtMhEGKWnHghxjlfVj4SotS5OjxlJpdDjWRe4rGvbEdLLCUC2y1ugCixSF8-IQNpt5475ALDBH9GnmtMly6RGlKWVhZVZRYjufRXC-8l1tOgFx7mPxpyYiwW6uezdH8L03fW5VMz4ymnAAegMWug4DFP66C3_9r_BHMFqFr-6yb1ETTeIWIoSNIjjtpylv-GMINm7-SjY59x0isEvrOGqj3a9ECBYRSqsIyrX7YG2p6zPN7Cloc5dS5lKpr__j2o5hK2N2H15ij2Bz-fLqvsEn83c5W7ychBv-DYkACZw
  priority: 102
  providerName: Directory of Open Access Journals
Title An Investigation of Insider Threat Mitigation Based on EEG Signal Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/33171609
https://www.proquest.com/docview/2550427431
https://www.proquest.com/docview/2459625335
https://pubmed.ncbi.nlm.nih.gov/PMC7664688
https://doaj.org/article/afbd4415adb046beb0871f8908ebb6ec
Volume 20
WOSCitedRecordID wos000593550600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlAMcKK-CoUQGceBi1fGud9cn1FQucEhkQZHCydpnGwnZJUk58tuZ3ThuUlVcuFjW7sgae3Y8D6-_D-C94Yr7fy4Tw3KaUKF0UkhM5EShjSOpdMyJQDbBp1MxmxVV13BbdtsqN-_E8KI2rfY98mNMfT0tBMa7j1e_Es8a5b-udhQae7DvkcroAPbH5bT62pdcBCuwNZ4QweL-eImlPiYgPpJsRaEA1n9Xhnl7o-RW5Dk7-F-dH8OjLueMT9aL5Ancs81TeLiFRPgMqpMm3oLcaJu4dTgQuDzj80ufWcaTeT85xthnYjwpy0_xt_mFv3yg1_Qbj4LIc_h-Vp6ffk46soVEY4W8SoiW6P0joqwywrgRsYViXFOpJBdKWjlSOXUFDjssmbJcY1AzRqtc5qkk1pFDGDRtY19CTCSV0qWZVTqjzEnJNGe5YVmBT8O6LIIPm4df6w6J3BNi_KyxIvF2qns7RfCuF71aw2_cJTT2FuwFPGJ2GGgXF3XngLV0yvjaURqVUoZ3mWKp6ESRCqsUszqCo40N686Nl_WNASN420-jA_qvKrKx7TXKUE9ghFkz6vFivVx6TQjxaERpEQHfWUg7qu7ONPPLAPLNGaNMiFf_Vus1PMh8AyD0uY9gsFpc2zdwX_9ezZeLIezxGQ9HMew8YxiaDnic_ClxrPoyqX78BfCpHQY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJw4P0IFAgIJC5Rs7Hj2AeEWtjSVburlVik9hT8bFdCSdndgvhT_EbGebGLKm49cIvskeUkn2fmc5z5AF6ZTGX-n8vIsJRGlCsdCYmJHBfaOBJLxxyvxCay8ZgfHYnJBvxq_4Xxxypbn1g5alNqv0e-jamvl4XAePfu7FvkVaP819VWQqOGxYH9-QMp2-Lt8AO-39dJsjeYvt-PGlWBSCMVXEZES4R5nyirDDeuT6xQLNNUKplxJa3sq5Q6gc0OuUGSavTexmiVyjSWxDqC416BTYpg5z3YnAxHk-OO4hFkfHX9IkJEvL1IMIQy4iPXStSrxAEuymj_Ppi5Eun2bv1vz-g23Gxy6nCnXgR3YMMWd-HGSqXFezDZKcKVkiJlEZYOGyqt0nB66jPncDTrOncxtpsQLwaDj-Gn2YkfvpIP9QerKpP78PlSbukB9IqysI8gJJJK6eLEKp1Q5qRkOmOpYYnAp29dEsCb9mXnuqm07gU_vubIuDwu8g4XAbzsTM_q8iIXGe16xHQGviJ41VDOT_LGweTSKeO5sTQqpgzvMkYq7LiIuVWKWR3AVouZvHFTi_wPYAJ40XWjg_FfjWRhy3O0oV6gCVkBzuNhDc9uJoT4akuxCCBbA-7aVNd7itlpVcQ8Y4wyzh__e1rP4dr-dHSYHw7HB0_geuI3O6o9_S3oLefn9ilc1d-Xs8X8WbMSQ_hy2cD-DXvTeAM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE48H4EChgEEpdos7HjOAeEWroLq9JVJIpUTsHPdiWUlN0tiL_Gr2OcF7uo4tYDt8geRU78eWY-x5kP4IVJVer_uQwNT1jIhNJhJjGRE5k2jkbScSdqsYl0OhVHR1m-Ab-6f2H8scrOJ9aO2lTa75EPMPX1shAY7wauPRaR743fnH4LvYKU_9LayWk0ENm3P38gfVu8nuzhXL-M4_Ho8O37sFUYCDXSwmVItUTID6myygjjhtRmiqeaSSVToaSVQ5Uwl2GzQ54QJxo9uTFaJTKJJLWO4n0vwRam5AzX2FY-Ocg_93SPIvtrahlRmkWDRYzhlFMfxVYiYC0UcF52-_chzZWoN77xP7-vm3C9zbXJTrM4bsGGLW_DtZUKjHcg3ynJSqmRqiSVw4Zaw5QcnviMmhzM-s5djPmG4MVo9I58nB3729eyov7AVW1yFz5dyCPdg82yKu0DIFQyKV0UW6Vjxp2UXKc8MTzOcCasiwN41U18odsK7F4I5GuBTMxjpOgxEsDz3vS0KTtyntGuR09v4CuF1w3V_LhoHU8hnTKeM0ujIsbxKSOkyE5kkbBKcasD2O7wU7Tua1H8AU8Az_pudDz-a5IsbXWGNswLNyFbwHHcb6Daj4RSX4UpygJI10C8NtT1nnJ2Uhc3TzlnXIiH_x7WU7iCaC4-TKb7j-Bq7PdA6q3-bdhczs_sY7isvy9ni_mTdlES-HLRuP4NrZCAww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Investigation+of+Insider+Threat+Mitigation+Based+on+EEG+Signal+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kim%2C+Jung+Hwan&rft.au=Kim%2C+Chul+Min&rft.au=Yim%2C+Man-Sung&rft.date=2020-11-08&rft.eissn=1424-8220&rft.volume=20&rft.issue=21&rft_id=info:doi/10.3390%2Fs20216365&rft_id=info%3Apmid%2F33171609&rft.externalDocID=33171609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon