A Decoupled Calibration Method Based on the Multi-Output Support Vector Regression Algorithm for Three-Dimensional Electric-Field Sensors

Aiming at the problem that the measured accuracy of the electric field intensity which is affected by the coupling interference by sensor output signal from the component of a three dimensional electric field, the causes of the coupling error was analyzed, and a decoupled calibration method based on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 21; číslo 24; s. 8196
Hlavní autoři: Zhao, Wei, Li, Zhizhong, Zhang, Haitao, Yuan, Yuan, Zhao, Ziwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 08.12.2021
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Aiming at the problem that the measured accuracy of the electric field intensity which is affected by the coupling interference by sensor output signal from the component of a three dimensional electric field, the causes of the coupling error was analyzed, and a decoupled calibration method based on support vector regression algorithm for three-dimensional electric field sensor is proposed. The solution of the decoupled calibration matrix was regarded as a multi-objective optimization process, and the optimal decoupling calibration matrix was obtained by the ν-SVR algorithm. The complex inverse calculation of the matrix was avoided, and the calculation error was reduced. A rotary calibration device was designed to accurately measure the angle between the induction electrode of the sensor and the electric-field vector, and an accurate calculation model of the theoretical electric field was established. The experimental results showed that the error between the calculated and theoretical values of the electric-field components obtained by the proposed method were smaller than those obtained by the traditional inverse matrix calibration method, the accuracy of the calibration was improved, the rationality of the calibration method was proven, and the accuracy of the three-dimensional electric-field intensity measurements was further improved.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21248196