A Method for Medical Data Analysis Using the LogNNet for Clinical Decision Support Systems and Edge Computing in Healthcare
Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these met...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 21; no. 18; p. 6209 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
16.09.2021
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3–10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems. |
|---|---|
| AbstractList | Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3-10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems. Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3-10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems.Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3-10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems. |
| Author | Velichko, Andrei |
| AuthorAffiliation | Institute of Physics and Technology, Petrozavodsk State University, 31 Lenina Str., 185910 Petrozavodsk, Russia; velichko@petrsu.ru ; Tel.: +7-9114005773 |
| AuthorAffiliation_xml | – name: Institute of Physics and Technology, Petrozavodsk State University, 31 Lenina Str., 185910 Petrozavodsk, Russia; velichko@petrsu.ru ; Tel.: +7-9114005773 |
| Author_xml | – sequence: 1 givenname: Andrei orcidid: 0000-0002-9341-1831 surname: Velichko fullname: Velichko, Andrei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34577414$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1vVCEUhompsR-68A8YEje6GMsF7tfGZDJW22Ssi9o1ORe4d5gwcAWuycQ_LzNTJ23jigPn4ckhL-foxHmnEXpbkE-MteQy0qJoKkraF-is4JTPGkrJyaP6FJ3HuCaEMsaaV-iU8bKuecHP0J85_q7Tyivc-5BLZSRY_AUS4LkDu40m4vto3IDTSuOlH25vddqzC2vcAdbSROMdvpvG0YeE77Yx6U3E4BS-UoPGC78Zp7STGIevNdi0khD0a_SyBxv1m4f1At1_vfq5uJ4tf3y7WcyXM8mrNs0Y7wro-qojDDhIDm2dd6RTrJFVB1IrxVhfkK6TLDfLtlcK6parSle0qBW7QDcHr_KwFmMwGwhb4cGI_YEPg4CQjLRadErqUsmeElnyuu8bJRmAAtlwSUpCsuvzwTVO3UZn2qUA9on0aceZlRj8b9HwmnFeZcGHB0HwvyYdk9iYKLW14LSfoqC7ZMqWEp7R98_QtZ9CTmVPVbxtWtpm6t3jiY6j_Ms4Ax8PgAw-xqD7I1IQsfs_4vh_Mnv5jJUmQcrp5scY-58bfwHG_ciL |
| CitedBy_id | crossref_primary_10_1088_1742_6596_2094_3_032055 crossref_primary_10_1016_j_neucom_2024_128446 crossref_primary_10_1038_s41598_025_00274_1 crossref_primary_10_3390_fi16090329 crossref_primary_10_3390_e24111693 crossref_primary_10_1016_j_jcmg_2022_02_001 crossref_primary_10_3390_s22134820 crossref_primary_10_1088_2058_8585_ada03f crossref_primary_10_3390_jcm11020387 crossref_primary_10_3390_electronics13030640 |
| Cites_doi | 10.1038/s41598-020-62210-9 10.1038/s41746-020-00372-6 10.3390/ijerph18147660 10.1109/ACCESS.2019.2936714 10.1109/ACCESS.2020.3011503 10.3390/s21072502 10.1109/IACC.2016.25 10.1109/ICACSIS.2015.7415166 10.1016/j.cosrev.2009.03.005 10.1002/ett.3710 10.23919/FRUCT.2019.8711950 10.1109/ACCESS.2020.2996936 10.20953/1726-1678-2020-6-133-144 10.1155/2021/5584667 10.1088/1757-899X/1155/1/012056 10.1001/jamanetworkopen.2020.26750 10.1016/j.ijid.2021.02.004 10.1109/JIOT.2016.2579198 10.1038/s41563-020-00906-z 10.1101/2021.06.03.21255808 10.3390/electronics9091432 10.1016/j.neunet.2019.03.005 10.1109/CISP-BMEI.2017.8302314 10.4103/ijabmr.IJABMR_370_18 10.1186/s40537-020-00316-7 10.1016/j.imu.2019.100180 10.1109/ACCESS.2019.2955754 10.3389/fnins.2021.611300 10.3390/e23111432 10.1186/s40537-019-0268-2 10.1016/j.imu.2019.100200 10.1023/A:1016409317640 10.1109/JIOT.2020.3013710 10.1186/s12911-014-0111-9 10.1213/ANE.0000000000005247 10.1109/EHB47216.2019.8969926 10.1016/j.mejo.2019.104634 10.1088/1742-6596/2094/3/032015 10.1109/RoEduNet.2016.7753232 10.4236/jcc.2014.29005 |
| ContentType | Journal Article |
| Copyright | 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the author. 2021 |
| Copyright_xml | – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the author. 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s21186209 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_bdce5dcf20c547ff8dc3aadac84c0500 PMC8473446 34577414 10_3390_s21186209 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-34b1abf6b03a4ac4a97bf60bd38c6bacedd33f10bbc34a959fdda794d6e6217d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701209200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:03 EDT 2025 Tue Nov 04 02:01:42 EST 2025 Fri Sep 05 13:53:20 EDT 2025 Tue Oct 07 07:18:49 EDT 2025 Wed Feb 19 02:09:01 EST 2025 Tue Nov 18 22:07:14 EST 2025 Sat Nov 29 07:12:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | COVID-19 LogNNet edge computing neural networks perinatal risk clinical decision support systems artificial intelligence |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-34b1abf6b03a4ac4a97bf60bd38c6bacedd33f10bbc34a959fdda794d6e6217d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9341-1831 |
| OpenAccessLink | https://doaj.org/article/bdce5dcf20c547ff8dc3aadac84c0500 |
| PMID | 34577414 |
| PQID | 2576498929 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bdce5dcf20c547ff8dc3aadac84c0500 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8473446 proquest_miscellaneous_2577459204 proquest_journals_2576498929 pubmed_primary_34577414 crossref_primary_10_3390_s21186209 crossref_citationtrail_10_3390_s21186209 |
| PublicationCentury | 2000 |
| PublicationDate | 20210916 |
| PublicationDateYYYYMMDD | 2021-09-16 |
| PublicationDate_xml | – month: 9 year: 2021 text: 20210916 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Chaudhuri (ref_53) 2019; Volume 97 Xing (ref_17) 2019; 8 Podgorelec (ref_21) 2002; 26 ref_56 ref_11 ref_54 Saeed (ref_5) 2021; 2021 Pandey (ref_14) 2020; 20 ref_51 Schober (ref_19) 2021; 132 Li (ref_10) 2020; 8 Karabulut (ref_45) 2014; 2 Izotov (ref_35) 2021; 1155 Kumar (ref_1) 2019; 6 Malacova (ref_37) 2020; 10 ref_25 ref_24 Mohammad (ref_13) 2019; 93 ref_22 Rahman (ref_7) 2020; 8 ref_20 Hasan (ref_23) 2019; 9 Tanaka (ref_30) 2019; 115 Dy (ref_55) 2018; Volume 80 ref_29 ref_27 ref_26 Kevadiya (ref_41) 2021; 20 Shukla (ref_36) 2020; 3 Alam (ref_18) 2019; 15 ref_34 ref_33 Seong (ref_40) 2021; 104 ref_32 Choi (ref_28) 2020; 8 Precup (ref_52) 2017; Volume 70 Bikku (ref_15) 2020; 7 ref_39 ref_38 Battineni (ref_16) 2019; 16 Jaeger (ref_31) 2009; 3 Harjula (ref_12) 2019; 7 Zoabi (ref_43) 2021; 4 ref_47 ref_46 ref_44 Shi (ref_9) 2016; 3 ref_42 ref_2 Nawaz (ref_3) 2019; 150 ref_49 ref_48 ref_8 ref_4 ref_6 |
| References_xml | – volume: 10 start-page: 1 year: 2020 ident: ref_37 article-title: Stillbirth risk prediction using machine learning for a large cohort of births from Western Australia, 1980 publication-title: Sci. Rep. doi: 10.1038/s41598-020-62210-9 – volume: 4 start-page: 1 year: 2021 ident: ref_43 article-title: Machine learning-based prediction of COVID-19 diagnosis based on symptoms publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-00372-6 – ident: ref_50 doi: 10.3390/ijerph18147660 – ident: ref_26 – ident: ref_51 – volume: 7 start-page: 119856 year: 2019 ident: ref_12 article-title: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936714 – ident: ref_39 – volume: 8 start-page: 135479 year: 2020 ident: ref_10 article-title: A Secured Framework for SDN-Based Edge Computing in IoT-Enabled Healthcare System publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011503 – ident: ref_11 doi: 10.3390/s21072502 – ident: ref_32 doi: 10.1109/IACC.2016.25 – ident: ref_42 – ident: ref_46 doi: 10.1109/ICACSIS.2015.7415166 – volume: 3 start-page: 127 year: 2009 ident: ref_31 article-title: Reservoir computing approaches to recurrent neural network training publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.03.005 – ident: ref_8 doi: 10.1002/ett.3710 – volume: Volume 97 start-page: 2515 year: 2019 ident: ref_53 article-title: Memory-Optimal Direct Convolutions for Maximizing Classification Accuracy in Embedded Ap-plications publication-title: Proceedings of the 36th International Conference on Machine Learning – ident: ref_56 – ident: ref_27 – ident: ref_2 doi: 10.23919/FRUCT.2019.8711950 – volume: 8 start-page: 96963 year: 2020 ident: ref_28 article-title: Learning Sparse Low-Precision Neural Networks with Learnable Regularization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2996936 – ident: ref_38 doi: 10.20953/1726-1678-2020-6-133-144 – volume: 2021 start-page: 5584667 year: 2021 ident: ref_5 article-title: An IoT-Based Network for Smart Urbanization publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/5584667 – volume: 1155 start-page: 012056 year: 2021 ident: ref_35 article-title: Recognition of handwritten MNIST digits on low-memory 2 Kb RAM Arduino board using LogNNet reservoir neural network publication-title: IOP Conf. Series: Mater. Sci. Eng. doi: 10.1088/1757-899X/1155/1/012056 – volume: 3 start-page: e2026750 year: 2020 ident: ref_36 article-title: Predictive Modeling for Perinatal Mortality in Resource-Limited Settings publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.26750 – volume: 104 start-page: 742 year: 2021 ident: ref_40 article-title: Comparison of the second and third waves of the COVID-19 pandemic in South Korea: Importance of early public health intervention publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2021.02.004 – volume: 3 start-page: 637 year: 2016 ident: ref_9 article-title: Edge Computing: Vision and Challenges publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2579198 – volume: 20 start-page: 593 year: 2021 ident: ref_41 article-title: Diagnostics for SARS-CoV-2 infections publication-title: Nat. Mater. doi: 10.1038/s41563-020-00906-z – ident: ref_48 doi: 10.1101/2021.06.03.21255808 – ident: ref_29 doi: 10.3390/electronics9091432 – volume: 115 start-page: 100 year: 2019 ident: ref_30 article-title: Recent advances in physical reservoir computing: A review publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.03.005 – volume: 20 start-page: 1 year: 2020 ident: ref_14 article-title: A supervised machine learning approach to generate the auto rule for clinical decision support system publication-title: Trends Med. – ident: ref_49 doi: 10.1109/CISP-BMEI.2017.8302314 – ident: ref_47 – volume: 9 start-page: 226 year: 2019 ident: ref_23 article-title: Use of machine learning algorithms for prediction of fetal risk using cardiotocographic data publication-title: Int. J. Appl. Basic Med Res. doi: 10.4103/ijabmr.IJABMR_370_18 – volume: 7 start-page: 50 year: 2020 ident: ref_15 article-title: Multi-layered deep learning perceptron approach for health risk prediction publication-title: J. Big Data doi: 10.1186/s40537-020-00316-7 – volume: 15 start-page: 100180 year: 2019 ident: ref_18 article-title: A Random Forest based predictor for medical data classification using feature ranking publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2019.100180 – ident: ref_44 – volume: 8 start-page: 28808 year: 2019 ident: ref_17 article-title: Medical Health Big Data Classification Based on KNN Classification Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955754 – ident: ref_24 doi: 10.3389/fnins.2021.611300 – ident: ref_34 doi: 10.3390/e23111432 – volume: 6 start-page: 111 year: 2019 ident: ref_1 article-title: Internet of Things is a revolutionary approach for future technology enhancement: A review publication-title: J. Big Data doi: 10.1186/s40537-019-0268-2 – volume: 16 start-page: 100200 year: 2019 ident: ref_16 article-title: Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM) publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2019.100200 – ident: ref_6 – volume: 26 start-page: 445 year: 2002 ident: ref_21 article-title: Decision Trees: An Overview and Their Use in Medicine publication-title: J. Med. Syst. doi: 10.1023/A:1016409317640 – volume: 8 start-page: 9603 year: 2020 ident: ref_7 article-title: Adversarial Examples—Security Threats to COVID-19 Deep Learning Systems in Medical IoT Devices publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3013710 – ident: ref_22 doi: 10.1186/s12911-014-0111-9 – volume: 132 start-page: 365 year: 2021 ident: ref_19 article-title: Logistic Regression in Medical Research publication-title: Anesthesia Analg. doi: 10.1213/ANE.0000000000005247 – ident: ref_25 – ident: ref_54 – ident: ref_20 doi: 10.1109/EHB47216.2019.8969926 – volume: 93 start-page: 104634 year: 2019 ident: ref_13 article-title: Embedded memory options for ultra-low power IoT devices publication-title: Microelectron. J. doi: 10.1016/j.mejo.2019.104634 – ident: ref_33 doi: 10.1088/1742-6596/2094/3/032015 – ident: ref_4 doi: 10.1109/RoEduNet.2016.7753232 – volume: 2 start-page: 32 year: 2014 ident: ref_45 article-title: Analysis of Cardiotocogram Data for Fetal Distress Determination by Decision Tree Based Adaptive Boosting Approach publication-title: J. Comput. Commun. doi: 10.4236/jcc.2014.29005 – volume: Volume 80 start-page: 5806 year: 2018 ident: ref_55 article-title: Stabilizing Gradients for Deep Neural Networks via Efficient {SVD} Parameterization publication-title: Proceedings of the 35th International Conference on Machine Learning – volume: Volume 70 start-page: 1331 year: 2017 ident: ref_52 article-title: ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices publication-title: Proceedings of the 34th International Conference on Machine Learning – volume: 150 start-page: 644 year: 2019 ident: ref_3 article-title: Intelligence in the Internet of Medical Things era: A systematic review of current and future trends publication-title: Comput. Commun. |
| SSID | ssj0023338 |
| Score | 2.462909 |
| Snippet | Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6209 |
| SubjectTerms | Artificial Intelligence clinical decision support systems Coronaviruses COVID-19 Data Analysis Decision Support Systems, Clinical Delivery of Health Care edge computing Humans LogNNet Neural networks SARS-CoV-2 |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4UAPfEMDBRnEgUvU7NpJ7BMq0KqHsuIA0t4if25XQknZTbnw55lxvOkuqrhwTGYUWZoZ-008eg_g3TTYonRB5K7UdS6sqXJlpc8RjHJpZFV5HyN9Xs9mcj5XX9MPt3Uaq9zsiXGjdp2lf-RHBIyFkniaf7j8mZNqFN2uJgmN23CHZLMpz-v5dcPFsf8a2IQ4tvZHa2x2EMDT7OHWGRSp-m_Cl3-PSW6dO6cP_nfFD-F-QpzseEiRR3DLt49hf4uH8An8PmZfopI0QwjL0t0N-6x7zTakJSzOFjCEi-y8W8xmvo--iVYUnZNWDyOZUIT0LFGhM906duIWng36EfSRZcvOxrGzp_D99OTbp7M8qTLkFlvpPufCTLQJlSm4FtoKrWp8Kozj0lZGW-8c52FSGGM5GksVnNNY9a7yFfY_jj-DvbZr_QGwUsvAdU1q9xNhamMkN14Fy43yIgiVwftNnBqbKMtJOeNHg60LhbQZQ5rB29H1cuDpuMnpIwV7dCBq7fiiWy2aVKmNwXiXzoZpYUtRhyCd5Vo7baXAtC6KDA434W5Sva-b61hn8GY0Y6XS9YtufXcVfWpRqmkhMng-ZNa4Ei7IOEFLvZNzO0vdtbTLi8gGjvCCY0__4t_Legn3pjSNQ-IX1SHs9asr_wru2l_9cr16HcvmD9bDJlo priority: 102 providerName: ProQuest |
| Title | A Method for Medical Data Analysis Using the LogNNet for Clinical Decision Support Systems and Edge Computing in Healthcare |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34577414 https://www.proquest.com/docview/2576498929 https://www.proquest.com/docview/2577459204 https://pubmed.ncbi.nlm.nih.gov/PMC8473446 https://doaj.org/article/bdce5dcf20c547ff8dc3aadac84c0500 |
| Volume | 21 |
| WOSCitedRecordID | wos000701209200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEB3atIf2UNJvpanZlh56EZG9K-3uMUkdUoiFKS24J7GfiaHIJVZ6KfS3Z3a1FnYJ9NKLwJpBWmtm0XtoeA_gw8SborSe5bZUPGdGV7k0wuUIRqnQoqqci5W-4HUtFgs537L6CjNhvTxw_-COtDWutMZPClMy7r2whipllREM71JEtl5wuSFTiWpRZF69jhBFUn-0RpqD0D1MHW69faJI_13I8u8Bya03ztk-PElQkRz3S3wK91z7DB5vCQg-h9_HZBYtoAliT5I-upBPqlNkozZC4lAAQZxHLlaXde26mJv0QDE5meyQ4O-JWJwkDXOiWkum9tKR3vghXGTZkvNhXuwFfDubfj09z5OdQm6QA3c5ZXqstK90QRVThinJ8VehLRWm0so4ayn140JrQzFYSm-twu1qK1chcbH0Jey1q9a9BlIq4aniwaZ-zDTXWlDtpDdUS8c8kxl83DzmxiSt8WB58aNBzhEq0gwVyeD9kPqzF9i4K-kk1GpICJrY8QR2SpM6pflXp2RwuKl0kzbqugl8i0mBIDGDd0MYt1j4bqJat7qJOZyVclKwDF71jTGshLIQHGOE77TMzlJ3I-3yKsp4Iy6gSMYP_sd_ewOPJmHYJnhbVIew113fuLfw0PzqluvrEdznCx6PYgQPTqb1_Mso7hc8zv5M8dz882z-_RakHCCm |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQwCiUvUbOzEyQGhQltt1W3EoUh7S_1cVkJJ2U1BiP_Eb2TsPLqLKm49cExmFDnJ5_F88WQ-gNexVVGiLQt1InjIlEzDXGUmxGSUZjJLU2P8m57wosim0_zTBvzu_4VxZZV9TPSBWtfKfSPfdokxyzNczd-ffgudapTbXe0lNFpYHJqfP5CyLd8d7OL7fRPH-3vHH8dhpyoQKqSCTUiZHAlpUxlRwYRiIud4FElNM5VKoYzWlNpRJKWiaExyq7VA1OrUpJi_a4rXvQJXMY5zR_b49JzgUeR7bfciSvNoe4nkCgmDq3VcWfO8NMBF-ezfZZkr69z-7f_tCd2BW11GTXbaKXAXNkx1D26u9Fm8D792yJFXyiaYopNub4rsikaQvikL8bUTBNNhMqlnRWEa79u1TUXnTouIOBlUpCyka_VORKXJnp4Z0upjuIvMKzIeyuoewOdLufuHsFnVlXkMJBGZpYLjckJHTHIpMypNbhWVuWGW5QG87XFRqq4lu1MG-VoiNXMQKgcIBfBqcD1t-5Bc5PTBgWtwcK3D_Yl6MSu7SFRKxFeilY0jlTBubaYVFUILlTGctlEUwFYPr7KLZ8vyHFsBvBzMGInc9pKoTH3mfThL8jhiATxqkTyMhDJnHKGFr2F8bajrlmr-xXc7x_SJMpY--fewXsD18fHRpJwcFIdP4UbsKo-c0Ee6BZvN4sw8g2vqezNfLp77KUvg5LJnwB-GAIdS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIJC5WHO_6dUCokEaNmlo5gFROZp8hErJL4oIQ_4xfx6y9NgmquPXA0Z6Rtba_nf3GO54P4EVoZBApw3wV8cRnUsR-JlPtIxmlqUjjWOvmTc-SPE9PTrL5Dvzq_oWxZZVdTGwCtaqk_UY-tMSYZSmu5kPjyiLm48mb06--VZCyO62dnEYLkSP94zumb-vX0zG-65dhODl4_-7QdwoDvsS0sPYpEyMuTCwCyhmXjGcJHgVC0VTGgkutFKVmFAghKRqjzCjFEcEq1jFyeUXxupdgFyk5CwewO58ezz_26R7F7K_tZURpFgzXmGph-mArHzdWwEYo4Dx2-3eR5saqN7nxPz-vm3DdcW2y306OW7Cjy9twbaMD4x34uU-OGw1tguSduF0rMuY1J127FtJUVRAkymRWLfJc142va6iKzk6liFiBVExmiGsCT3ipyIFaaNIqZ9iLLEty2Bfc3YUPF3L392BQVqV-ACTiqaE8wYWGjphIhEip0JmRVGSaGZZ58KrDSCFds3arGfKlwKTNwqno4eTB8971tO1Qcp7TWwu03sE2FW9OVKtF4WJUIRBrkZImDGTEEmNSJSnnisuU4YQOAg_2OqgVLtKtiz848-BZb8YYZTeeeKmrs8YnYVEWBsyD-y2q-5FQZo0jtCRbeN8a6ralXH5u-qAjsaKMxQ__PayncAWBX8ym-dEjuBrakiSrABLvwaBenenHcFl-q5fr1RM3fwl8uugp8BsTcJGh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Medical+Data+Analysis+Using+the+LogNNet+for+Clinical+Decision+Support+Systems+and+Edge+Computing+in+Healthcare&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Velichko%2C+Andrei&rft.date=2021-09-16&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=18&rft_id=info:doi/10.3390%2Fs21186209&rft_id=info%3Apmid%2F34577414&rft.externalDocID=PMC8473446 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |