A Method for Medical Data Analysis Using the LogNNet for Clinical Decision Support Systems and Edge Computing in Healthcare

Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these met...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 21; no. 18; p. 6209
Main Author: Velichko, Andrei
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 16.09.2021
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3–10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems.
AbstractList Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3-10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems.
Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3-10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems.Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the complexity and high resource intensity of the most known neural network data analysis methods and algorithms. The difficulty of implementing these methods on low-power microcontrollers with small memory size calls for the development of new effective algorithms for neural networks. This study presents a new method for analyzing medical data based on the LogNNet neural network, which uses chaotic mappings to transform input information. The method effectively solves classification problems and calculates risk factors for the presence of a disease in a patient according to a set of medical health indicators. The efficiency of LogNNet in assessing perinatal risk is illustrated on cardiotocogram data obtained from the UC Irvine machine learning repository. The classification accuracy reaches ~91% with the~3-10 kB of RAM used on the Arduino microcontroller. Using the LogNNet network trained on a publicly available database of the Israeli Ministry of Health, a service concept for COVID-19 express testing is provided. A classification accuracy of ~95% is achieved, and~0.6 kB of RAM is used. In all examples, the model is tested using standard classification quality metrics: precision, recall, and F1-measure. The LogNNet architecture allows the implementation of artificial intelligence on medical peripherals of the Internet of Things with low RAM resources and can be used in clinical decision support systems.
Author Velichko, Andrei
AuthorAffiliation Institute of Physics and Technology, Petrozavodsk State University, 31 Lenina Str., 185910 Petrozavodsk, Russia; velichko@petrsu.ru ; Tel.: +7-9114005773
AuthorAffiliation_xml – name: Institute of Physics and Technology, Petrozavodsk State University, 31 Lenina Str., 185910 Petrozavodsk, Russia; velichko@petrsu.ru ; Tel.: +7-9114005773
Author_xml – sequence: 1
  givenname: Andrei
  orcidid: 0000-0002-9341-1831
  surname: Velichko
  fullname: Velichko, Andrei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34577414$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vVCEUhompsR-68A8YEje6GMsF7tfGZDJW22Ssi9o1ORe4d5gwcAWuycQ_LzNTJ23jigPn4ckhL-foxHmnEXpbkE-MteQy0qJoKkraF-is4JTPGkrJyaP6FJ3HuCaEMsaaV-iU8bKuecHP0J85_q7Tyivc-5BLZSRY_AUS4LkDu40m4vto3IDTSuOlH25vddqzC2vcAdbSROMdvpvG0YeE77Yx6U3E4BS-UoPGC78Zp7STGIevNdi0khD0a_SyBxv1m4f1At1_vfq5uJ4tf3y7WcyXM8mrNs0Y7wro-qojDDhIDm2dd6RTrJFVB1IrxVhfkK6TLDfLtlcK6parSle0qBW7QDcHr_KwFmMwGwhb4cGI_YEPg4CQjLRadErqUsmeElnyuu8bJRmAAtlwSUpCsuvzwTVO3UZn2qUA9on0aceZlRj8b9HwmnFeZcGHB0HwvyYdk9iYKLW14LSfoqC7ZMqWEp7R98_QtZ9CTmVPVbxtWtpm6t3jiY6j_Ms4Ax8PgAw-xqD7I1IQsfs_4vh_Mnv5jJUmQcrp5scY-58bfwHG_ciL
CitedBy_id crossref_primary_10_1088_1742_6596_2094_3_032055
crossref_primary_10_1016_j_neucom_2024_128446
crossref_primary_10_1038_s41598_025_00274_1
crossref_primary_10_3390_fi16090329
crossref_primary_10_3390_e24111693
crossref_primary_10_1016_j_jcmg_2022_02_001
crossref_primary_10_3390_s22134820
crossref_primary_10_1088_2058_8585_ada03f
crossref_primary_10_3390_jcm11020387
crossref_primary_10_3390_electronics13030640
Cites_doi 10.1038/s41598-020-62210-9
10.1038/s41746-020-00372-6
10.3390/ijerph18147660
10.1109/ACCESS.2019.2936714
10.1109/ACCESS.2020.3011503
10.3390/s21072502
10.1109/IACC.2016.25
10.1109/ICACSIS.2015.7415166
10.1016/j.cosrev.2009.03.005
10.1002/ett.3710
10.23919/FRUCT.2019.8711950
10.1109/ACCESS.2020.2996936
10.20953/1726-1678-2020-6-133-144
10.1155/2021/5584667
10.1088/1757-899X/1155/1/012056
10.1001/jamanetworkopen.2020.26750
10.1016/j.ijid.2021.02.004
10.1109/JIOT.2016.2579198
10.1038/s41563-020-00906-z
10.1101/2021.06.03.21255808
10.3390/electronics9091432
10.1016/j.neunet.2019.03.005
10.1109/CISP-BMEI.2017.8302314
10.4103/ijabmr.IJABMR_370_18
10.1186/s40537-020-00316-7
10.1016/j.imu.2019.100180
10.1109/ACCESS.2019.2955754
10.3389/fnins.2021.611300
10.3390/e23111432
10.1186/s40537-019-0268-2
10.1016/j.imu.2019.100200
10.1023/A:1016409317640
10.1109/JIOT.2020.3013710
10.1186/s12911-014-0111-9
10.1213/ANE.0000000000005247
10.1109/EHB47216.2019.8969926
10.1016/j.mejo.2019.104634
10.1088/1742-6596/2094/3/032015
10.1109/RoEduNet.2016.7753232
10.4236/jcc.2014.29005
ContentType Journal Article
Copyright 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the author. 2021
Copyright_xml – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the author. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21186209
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bdce5dcf20c547ff8dc3aadac84c0500
PMC8473446
34577414
10_3390_s21186209
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-34b1abf6b03a4ac4a97bf60bd38c6bacedd33f10bbc34a959fdda794d6e6217d3
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701209200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:03 EDT 2025
Tue Nov 04 02:01:42 EST 2025
Fri Sep 05 13:53:20 EDT 2025
Tue Oct 07 07:18:49 EDT 2025
Wed Feb 19 02:09:01 EST 2025
Tue Nov 18 22:07:14 EST 2025
Sat Nov 29 07:12:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords COVID-19
LogNNet
edge computing
neural networks
perinatal risk
clinical decision support systems
artificial intelligence
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-34b1abf6b03a4ac4a97bf60bd38c6bacedd33f10bbc34a959fdda794d6e6217d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9341-1831
OpenAccessLink https://doaj.org/article/bdce5dcf20c547ff8dc3aadac84c0500
PMID 34577414
PQID 2576498929
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_bdce5dcf20c547ff8dc3aadac84c0500
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8473446
proquest_miscellaneous_2577459204
proquest_journals_2576498929
pubmed_primary_34577414
crossref_primary_10_3390_s21186209
crossref_citationtrail_10_3390_s21186209
PublicationCentury 2000
PublicationDate 20210916
PublicationDateYYYYMMDD 2021-09-16
PublicationDate_xml – month: 9
  year: 2021
  text: 20210916
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Chaudhuri (ref_53) 2019; Volume 97
Xing (ref_17) 2019; 8
Podgorelec (ref_21) 2002; 26
ref_56
ref_11
ref_54
Saeed (ref_5) 2021; 2021
Pandey (ref_14) 2020; 20
ref_51
Schober (ref_19) 2021; 132
Li (ref_10) 2020; 8
Karabulut (ref_45) 2014; 2
Izotov (ref_35) 2021; 1155
Kumar (ref_1) 2019; 6
Malacova (ref_37) 2020; 10
ref_25
ref_24
Mohammad (ref_13) 2019; 93
ref_22
Rahman (ref_7) 2020; 8
ref_20
Hasan (ref_23) 2019; 9
Tanaka (ref_30) 2019; 115
Dy (ref_55) 2018; Volume 80
ref_29
ref_27
ref_26
Kevadiya (ref_41) 2021; 20
Shukla (ref_36) 2020; 3
Alam (ref_18) 2019; 15
ref_34
ref_33
Seong (ref_40) 2021; 104
ref_32
Choi (ref_28) 2020; 8
Precup (ref_52) 2017; Volume 70
Bikku (ref_15) 2020; 7
ref_39
ref_38
Battineni (ref_16) 2019; 16
Jaeger (ref_31) 2009; 3
Harjula (ref_12) 2019; 7
Zoabi (ref_43) 2021; 4
ref_47
ref_46
ref_44
Shi (ref_9) 2016; 3
ref_42
ref_2
Nawaz (ref_3) 2019; 150
ref_49
ref_48
ref_8
ref_4
ref_6
References_xml – volume: 10
  start-page: 1
  year: 2020
  ident: ref_37
  article-title: Stillbirth risk prediction using machine learning for a large cohort of births from Western Australia, 1980
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62210-9
– volume: 4
  start-page: 1
  year: 2021
  ident: ref_43
  article-title: Machine learning-based prediction of COVID-19 diagnosis based on symptoms
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-020-00372-6
– ident: ref_50
  doi: 10.3390/ijerph18147660
– ident: ref_26
– ident: ref_51
– volume: 7
  start-page: 119856
  year: 2019
  ident: ref_12
  article-title: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936714
– ident: ref_39
– volume: 8
  start-page: 135479
  year: 2020
  ident: ref_10
  article-title: A Secured Framework for SDN-Based Edge Computing in IoT-Enabled Healthcare System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011503
– ident: ref_11
  doi: 10.3390/s21072502
– ident: ref_32
  doi: 10.1109/IACC.2016.25
– ident: ref_42
– ident: ref_46
  doi: 10.1109/ICACSIS.2015.7415166
– volume: 3
  start-page: 127
  year: 2009
  ident: ref_31
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
– ident: ref_8
  doi: 10.1002/ett.3710
– volume: Volume 97
  start-page: 2515
  year: 2019
  ident: ref_53
  article-title: Memory-Optimal Direct Convolutions for Maximizing Classification Accuracy in Embedded Ap-plications
  publication-title: Proceedings of the 36th International Conference on Machine Learning
– ident: ref_56
– ident: ref_27
– ident: ref_2
  doi: 10.23919/FRUCT.2019.8711950
– volume: 8
  start-page: 96963
  year: 2020
  ident: ref_28
  article-title: Learning Sparse Low-Precision Neural Networks with Learnable Regularization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2996936
– ident: ref_38
  doi: 10.20953/1726-1678-2020-6-133-144
– volume: 2021
  start-page: 5584667
  year: 2021
  ident: ref_5
  article-title: An IoT-Based Network for Smart Urbanization
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/5584667
– volume: 1155
  start-page: 012056
  year: 2021
  ident: ref_35
  article-title: Recognition of handwritten MNIST digits on low-memory 2 Kb RAM Arduino board using LogNNet reservoir neural network
  publication-title: IOP Conf. Series: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/1155/1/012056
– volume: 3
  start-page: e2026750
  year: 2020
  ident: ref_36
  article-title: Predictive Modeling for Perinatal Mortality in Resource-Limited Settings
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.26750
– volume: 104
  start-page: 742
  year: 2021
  ident: ref_40
  article-title: Comparison of the second and third waves of the COVID-19 pandemic in South Korea: Importance of early public health intervention
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2021.02.004
– volume: 3
  start-page: 637
  year: 2016
  ident: ref_9
  article-title: Edge Computing: Vision and Challenges
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2016.2579198
– volume: 20
  start-page: 593
  year: 2021
  ident: ref_41
  article-title: Diagnostics for SARS-CoV-2 infections
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00906-z
– ident: ref_48
  doi: 10.1101/2021.06.03.21255808
– ident: ref_29
  doi: 10.3390/electronics9091432
– volume: 115
  start-page: 100
  year: 2019
  ident: ref_30
  article-title: Recent advances in physical reservoir computing: A review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.03.005
– volume: 20
  start-page: 1
  year: 2020
  ident: ref_14
  article-title: A supervised machine learning approach to generate the auto rule for clinical decision support system
  publication-title: Trends Med.
– ident: ref_49
  doi: 10.1109/CISP-BMEI.2017.8302314
– ident: ref_47
– volume: 9
  start-page: 226
  year: 2019
  ident: ref_23
  article-title: Use of machine learning algorithms for prediction of fetal risk using cardiotocographic data
  publication-title: Int. J. Appl. Basic Med Res.
  doi: 10.4103/ijabmr.IJABMR_370_18
– volume: 7
  start-page: 50
  year: 2020
  ident: ref_15
  article-title: Multi-layered deep learning perceptron approach for health risk prediction
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00316-7
– volume: 15
  start-page: 100180
  year: 2019
  ident: ref_18
  article-title: A Random Forest based predictor for medical data classification using feature ranking
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.100180
– ident: ref_44
– volume: 8
  start-page: 28808
  year: 2019
  ident: ref_17
  article-title: Medical Health Big Data Classification Based on KNN Classification Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955754
– ident: ref_24
  doi: 10.3389/fnins.2021.611300
– ident: ref_34
  doi: 10.3390/e23111432
– volume: 6
  start-page: 111
  year: 2019
  ident: ref_1
  article-title: Internet of Things is a revolutionary approach for future technology enhancement: A review
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0268-2
– volume: 16
  start-page: 100200
  year: 2019
  ident: ref_16
  article-title: Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM)
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2019.100200
– ident: ref_6
– volume: 26
  start-page: 445
  year: 2002
  ident: ref_21
  article-title: Decision Trees: An Overview and Their Use in Medicine
  publication-title: J. Med. Syst.
  doi: 10.1023/A:1016409317640
– volume: 8
  start-page: 9603
  year: 2020
  ident: ref_7
  article-title: Adversarial Examples—Security Threats to COVID-19 Deep Learning Systems in Medical IoT Devices
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3013710
– ident: ref_22
  doi: 10.1186/s12911-014-0111-9
– volume: 132
  start-page: 365
  year: 2021
  ident: ref_19
  article-title: Logistic Regression in Medical Research
  publication-title: Anesthesia Analg.
  doi: 10.1213/ANE.0000000000005247
– ident: ref_25
– ident: ref_54
– ident: ref_20
  doi: 10.1109/EHB47216.2019.8969926
– volume: 93
  start-page: 104634
  year: 2019
  ident: ref_13
  article-title: Embedded memory options for ultra-low power IoT devices
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2019.104634
– ident: ref_33
  doi: 10.1088/1742-6596/2094/3/032015
– ident: ref_4
  doi: 10.1109/RoEduNet.2016.7753232
– volume: 2
  start-page: 32
  year: 2014
  ident: ref_45
  article-title: Analysis of Cardiotocogram Data for Fetal Distress Determination by Decision Tree Based Adaptive Boosting Approach
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2014.29005
– volume: Volume 80
  start-page: 5806
  year: 2018
  ident: ref_55
  article-title: Stabilizing Gradients for Deep Neural Networks via Efficient {SVD} Parameterization
  publication-title: Proceedings of the 35th International Conference on Machine Learning
– volume: Volume 70
  start-page: 1331
  year: 2017
  ident: ref_52
  article-title: ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 150
  start-page: 644
  year: 2019
  ident: ref_3
  article-title: Intelligence in the Internet of Medical Things era: A systematic review of current and future trends
  publication-title: Comput. Commun.
SSID ssj0023338
Score 2.462909
Snippet Edge computing is a fast-growing and much needed technology in healthcare. The problem of implementing artificial intelligence on edge devices is the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6209
SubjectTerms Artificial Intelligence
clinical decision support systems
Coronaviruses
COVID-19
Data Analysis
Decision Support Systems, Clinical
Delivery of Health Care
edge computing
Humans
LogNNet
Neural networks
SARS-CoV-2
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4UAPfEMDBRnEgUvU7NpJ7BMq0KqHsuIA0t4if25XQknZTbnw55lxvOkuqrhwTGYUWZoZ-008eg_g3TTYonRB5K7UdS6sqXJlpc8RjHJpZFV5HyN9Xs9mcj5XX9MPt3Uaq9zsiXGjdp2lf-RHBIyFkniaf7j8mZNqFN2uJgmN23CHZLMpz-v5dcPFsf8a2IQ4tvZHa2x2EMDT7OHWGRSp-m_Cl3-PSW6dO6cP_nfFD-F-QpzseEiRR3DLt49hf4uH8An8PmZfopI0QwjL0t0N-6x7zTakJSzOFjCEi-y8W8xmvo--iVYUnZNWDyOZUIT0LFGhM906duIWng36EfSRZcvOxrGzp_D99OTbp7M8qTLkFlvpPufCTLQJlSm4FtoKrWp8Kozj0lZGW-8c52FSGGM5GksVnNNY9a7yFfY_jj-DvbZr_QGwUsvAdU1q9xNhamMkN14Fy43yIgiVwftNnBqbKMtJOeNHg60LhbQZQ5rB29H1cuDpuMnpIwV7dCBq7fiiWy2aVKmNwXiXzoZpYUtRhyCd5Vo7baXAtC6KDA434W5Sva-b61hn8GY0Y6XS9YtufXcVfWpRqmkhMng-ZNa4Ei7IOEFLvZNzO0vdtbTLi8gGjvCCY0__4t_Legn3pjSNQ-IX1SHs9asr_wru2l_9cr16HcvmD9bDJlo
  priority: 102
  providerName: ProQuest
Title A Method for Medical Data Analysis Using the LogNNet for Clinical Decision Support Systems and Edge Computing in Healthcare
URI https://www.ncbi.nlm.nih.gov/pubmed/34577414
https://www.proquest.com/docview/2576498929
https://www.proquest.com/docview/2577459204
https://pubmed.ncbi.nlm.nih.gov/PMC8473446
https://doaj.org/article/bdce5dcf20c547ff8dc3aadac84c0500
Volume 21
WOSCitedRecordID wos000701209200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9tAEB3atIf2UNJvpanZlh56EZG9K-3uMUkdUoiFKS24J7GfiaHIJVZ6KfS3Z3a1FnYJ9NKLwJpBWmtm0XtoeA_gw8SborSe5bZUPGdGV7k0wuUIRqnQoqqci5W-4HUtFgs537L6CjNhvTxw_-COtDWutMZPClMy7r2whipllREM71JEtl5wuSFTiWpRZF69jhBFUn-0RpqD0D1MHW69faJI_13I8u8Bya03ztk-PElQkRz3S3wK91z7DB5vCQg-h9_HZBYtoAliT5I-upBPqlNkozZC4lAAQZxHLlaXde26mJv0QDE5meyQ4O-JWJwkDXOiWkum9tKR3vghXGTZkvNhXuwFfDubfj09z5OdQm6QA3c5ZXqstK90QRVThinJ8VehLRWm0so4ayn140JrQzFYSm-twu1qK1chcbH0Jey1q9a9BlIq4aniwaZ-zDTXWlDtpDdUS8c8kxl83DzmxiSt8WB58aNBzhEq0gwVyeD9kPqzF9i4K-kk1GpICJrY8QR2SpM6pflXp2RwuKl0kzbqugl8i0mBIDGDd0MYt1j4bqJat7qJOZyVclKwDF71jTGshLIQHGOE77TMzlJ3I-3yKsp4Iy6gSMYP_sd_ewOPJmHYJnhbVIew113fuLfw0PzqluvrEdznCx6PYgQPTqb1_Mso7hc8zv5M8dz882z-_RakHCCm
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBQwCiUvUbOzEyQGhQltt1W3EoUh7S_1cVkJJ2U1BiP_Eb2TsPLqLKm49cExmFDnJ5_F88WQ-gNexVVGiLQt1InjIlEzDXGUmxGSUZjJLU2P8m57wosim0_zTBvzu_4VxZZV9TPSBWtfKfSPfdokxyzNczd-ffgudapTbXe0lNFpYHJqfP5CyLd8d7OL7fRPH-3vHH8dhpyoQKqSCTUiZHAlpUxlRwYRiIud4FElNM5VKoYzWlNpRJKWiaExyq7VA1OrUpJi_a4rXvQJXMY5zR_b49JzgUeR7bfciSvNoe4nkCgmDq3VcWfO8NMBF-ezfZZkr69z-7f_tCd2BW11GTXbaKXAXNkx1D26u9Fm8D792yJFXyiaYopNub4rsikaQvikL8bUTBNNhMqlnRWEa79u1TUXnTouIOBlUpCyka_VORKXJnp4Z0upjuIvMKzIeyuoewOdLufuHsFnVlXkMJBGZpYLjckJHTHIpMypNbhWVuWGW5QG87XFRqq4lu1MG-VoiNXMQKgcIBfBqcD1t-5Bc5PTBgWtwcK3D_Yl6MSu7SFRKxFeilY0jlTBubaYVFUILlTGctlEUwFYPr7KLZ8vyHFsBvBzMGInc9pKoTH3mfThL8jhiATxqkTyMhDJnHKGFr2F8bajrlmr-xXc7x_SJMpY--fewXsD18fHRpJwcFIdP4UbsKo-c0Ee6BZvN4sw8g2vqezNfLp77KUvg5LJnwB-GAIdS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIJC5WHO_6dUCokEaNmlo5gFROZp8hErJL4oIQ_4xfx6y9NgmquPXA0Z6Rtba_nf3GO54P4EVoZBApw3wV8cRnUsR-JlPtIxmlqUjjWOvmTc-SPE9PTrL5Dvzq_oWxZZVdTGwCtaqk_UY-tMSYZSmu5kPjyiLm48mb06--VZCyO62dnEYLkSP94zumb-vX0zG-65dhODl4_-7QdwoDvsS0sPYpEyMuTCwCyhmXjGcJHgVC0VTGgkutFKVmFAghKRqjzCjFEcEq1jFyeUXxupdgFyk5CwewO58ezz_26R7F7K_tZURpFgzXmGph-mArHzdWwEYo4Dx2-3eR5saqN7nxPz-vm3DdcW2y306OW7Cjy9twbaMD4x34uU-OGw1tguSduF0rMuY1J127FtJUVRAkymRWLfJc142va6iKzk6liFiBVExmiGsCT3ipyIFaaNIqZ9iLLEty2Bfc3YUPF3L392BQVqV-ACTiqaE8wYWGjphIhEip0JmRVGSaGZZ58KrDSCFds3arGfKlwKTNwqno4eTB8971tO1Qcp7TWwu03sE2FW9OVKtF4WJUIRBrkZImDGTEEmNSJSnnisuU4YQOAg_2OqgVLtKtiz848-BZb8YYZTeeeKmrs8YnYVEWBsyD-y2q-5FQZo0jtCRbeN8a6ralXH5u-qAjsaKMxQ__PayncAWBX8ym-dEjuBrakiSrABLvwaBenenHcFl-q5fr1RM3fwl8uugp8BsTcJGh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Medical+Data+Analysis+Using+the+LogNNet+for+Clinical+Decision+Support+Systems+and+Edge+Computing+in+Healthcare&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Velichko%2C+Andrei&rft.date=2021-09-16&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=18&rft_id=info:doi/10.3390%2Fs21186209&rft_id=info%3Apmid%2F34577414&rft.externalDocID=PMC8473446
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon