Partial Boolean Functions With Exact Quantum Query Complexity One

We provide two sufficient and necessary conditions to characterize any n-bit partial Boolean function with exact quantum query complexity 1. Using the first characterization, we present all n-bit partial Boolean functions that depend on n bits and can be computed exactly by a 1-query quantum algorit...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Vol. 23; no. 2; p. 189
Main Authors: Xu, Guoliang, Qiu, Daowen
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 03.02.2021
MDPI
Subjects:
ISSN:1099-4300, 1099-4300
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We provide two sufficient and necessary conditions to characterize any n-bit partial Boolean function with exact quantum query complexity 1. Using the first characterization, we present all n-bit partial Boolean functions that depend on n bits and can be computed exactly by a 1-query quantum algorithm. Due to the second characterization, we construct a function F that maps any n-bit partial Boolean function to some integer, and if an n-bit partial Boolean function f depends on k bits and can be computed exactly by a 1-query quantum algorithm, then F(f) is non-positive. In addition, we show that the number of all n-bit partial Boolean functions that depend on k bits and can be computed exactly by a 1-query quantum algorithm is not bigger than an upper bound depending on n and k. Most importantly, the upper bound is far less than the number of all n-bit partial Boolean functions for all efficiently big n.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1099-4300
1099-4300
DOI:10.3390/e23020189