Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only

In type 1 diabetes management, the availability of algorithms capable of accurately forecasting future blood glucose (BG) concentrations and hypoglycemic episodes could enable proactive therapeutic actions, e.g., the consumption of carbohydrates to mitigate, or even avoid, an impending critical even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 21; H. 5; S. 1647
Hauptverfasser: Prendin, Francesco, Del Favero, Simone, Vettoretti, Martina, Sparacino, Giovanni, Facchinetti, Andrea
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 27.02.2021
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In type 1 diabetes management, the availability of algorithms capable of accurately forecasting future blood glucose (BG) concentrations and hypoglycemic episodes could enable proactive therapeutic actions, e.g., the consumption of carbohydrates to mitigate, or even avoid, an impending critical event. The only input of this kind of algorithm is often continuous glucose monitoring (CGM) sensor data, because other signals (such as injected insulin, ingested carbs, and physical activity) are frequently unavailable. Several predictive algorithms fed by CGM data only have been proposed in the literature, but they were assessed using datasets originated by different experimental protocols, making a comparison of their relative merits difficult. The aim of the present work was to perform a head-to-head comparison of thirty different linear and nonlinear predictive algorithms using the same dataset, given by 124 CGM traces collected over 10 days with the newest Dexcom G6 sensor available on the market and considering a 30-min prediction horizon. We considered the state-of-the art methods, investigating, in particular, linear black-box methods (autoregressive; autoregressive moving-average; and autoregressive integrated moving-average, ARIMA) and nonlinear machine-learning methods (support vector regression, SVR; regression random forest; feed-forward neural network, fNN; and long short-term memory neural network). For each method, the prediction accuracy and hypoglycemia detection capabilities were assessed using either population or individualized model parameters. As far as prediction accuracy is concerned, the results show that the best linear algorithm (individualized ARIMA) provides accuracy comparable to that of the best nonlinear algorithm (individualized fNN), with root mean square errors of 22.15 and 21.52 mg/dL, respectively. As far as hypoglycemia detection is concerned, the best linear algorithm (individualized ARIMA) provided precision = 64%, recall = 82%, and one false alarm/day, comparable to the best nonlinear technique (population SVR): precision = 63%, recall = 69%, and 0.5 false alarms/day. In general, the head-to-head comparison of the thirty algorithms fed by CGM data only made using a wide dataset shows that individualized linear models are more effective than population ones, while no significant advantages seem to emerge when employing nonlinear methodologies.
AbstractList In type 1 diabetes management, the availability of algorithms capable of accurately forecasting future blood glucose (BG) concentrations and hypoglycemic episodes could enable proactive therapeutic actions, e.g., the consumption of carbohydrates to mitigate, or even avoid, an impending critical event. The only input of this kind of algorithm is often continuous glucose monitoring (CGM) sensor data, because other signals (such as injected insulin, ingested carbs, and physical activity) are frequently unavailable. Several predictive algorithms fed by CGM data only have been proposed in the literature, but they were assessed using datasets originated by different experimental protocols, making a comparison of their relative merits difficult. The aim of the present work was to perform a head-to-head comparison of thirty different linear and nonlinear predictive algorithms using the same dataset, given by 124 CGM traces collected over 10 days with the newest Dexcom G6 sensor available on the market and considering a 30-min prediction horizon. We considered the state-of-the art methods, investigating, in particular, linear black-box methods (autoregressive; autoregressive moving-average; and autoregressive integrated moving-average, ARIMA) and nonlinear machine-learning methods (support vector regression, SVR; regression random forest; feed-forward neural network, fNN; and long short-term memory neural network). For each method, the prediction accuracy and hypoglycemia detection capabilities were assessed using either population or individualized model parameters. As far as prediction accuracy is concerned, the results show that the best linear algorithm (individualized ARIMA) provides accuracy comparable to that of the best nonlinear algorithm (individualized fNN), with root mean square errors of 22.15 and 21.52 mg/dL, respectively. As far as hypoglycemia detection is concerned, the best linear algorithm (individualized ARIMA) provided precision = 64%, recall = 82%, and one false alarm/day, comparable to the best nonlinear technique (population SVR): precision = 63%, recall = 69%, and 0.5 false alarms/day. In general, the head-to-head comparison of the thirty algorithms fed by CGM data only made using a wide dataset shows that individualized linear models are more effective than population ones, while no significant advantages seem to emerge when employing nonlinear methodologies.
In type 1 diabetes management, the availability of algorithms capable of accurately forecasting future blood glucose (BG) concentrations and hypoglycemic episodes could enable proactive therapeutic actions, e.g., the consumption of carbohydrates to mitigate, or even avoid, an impending critical event. The only input of this kind of algorithm is often continuous glucose monitoring (CGM) sensor data, because other signals (such as injected insulin, ingested carbs, and physical activity) are frequently unavailable. Several predictive algorithms fed by CGM data only have been proposed in the literature, but they were assessed using datasets originated by different experimental protocols, making a comparison of their relative merits difficult. The aim of the present work was to perform a head-to-head comparison of thirty different linear and nonlinear predictive algorithms using the same dataset, given by 124 CGM traces collected over 10 days with the newest Dexcom G6 sensor available on the market and considering a 30-min prediction horizon. We considered the state-of-the art methods, investigating, in particular, linear black-box methods (autoregressive; autoregressive moving-average; and autoregressive integrated moving-average, ARIMA) and nonlinear machine-learning methods (support vector regression, SVR; regression random forest; feed-forward neural network, fNN; and long short-term memory neural network). For each method, the prediction accuracy and hypoglycemia detection capabilities were assessed using either population or individualized model parameters. As far as prediction accuracy is concerned, the results show that the best linear algorithm (individualized ARIMA) provides accuracy comparable to that of the best nonlinear algorithm (individualized fNN), with root mean square errors of 22.15 and 21.52 mg/dL, respectively. As far as hypoglycemia detection is concerned, the best linear algorithm (individualized ARIMA) provided precision = 64%, recall = 82%, and one false alarm/day, comparable to the best nonlinear technique (population SVR): precision = 63%, recall = 69%, and 0.5 false alarms/day. In general, the head-to-head comparison of the thirty algorithms fed by CGM data only made using a wide dataset shows that individualized linear models are more effective than population ones, while no significant advantages seem to emerge when employing nonlinear methodologies.In type 1 diabetes management, the availability of algorithms capable of accurately forecasting future blood glucose (BG) concentrations and hypoglycemic episodes could enable proactive therapeutic actions, e.g., the consumption of carbohydrates to mitigate, or even avoid, an impending critical event. The only input of this kind of algorithm is often continuous glucose monitoring (CGM) sensor data, because other signals (such as injected insulin, ingested carbs, and physical activity) are frequently unavailable. Several predictive algorithms fed by CGM data only have been proposed in the literature, but they were assessed using datasets originated by different experimental protocols, making a comparison of their relative merits difficult. The aim of the present work was to perform a head-to-head comparison of thirty different linear and nonlinear predictive algorithms using the same dataset, given by 124 CGM traces collected over 10 days with the newest Dexcom G6 sensor available on the market and considering a 30-min prediction horizon. We considered the state-of-the art methods, investigating, in particular, linear black-box methods (autoregressive; autoregressive moving-average; and autoregressive integrated moving-average, ARIMA) and nonlinear machine-learning methods (support vector regression, SVR; regression random forest; feed-forward neural network, fNN; and long short-term memory neural network). For each method, the prediction accuracy and hypoglycemia detection capabilities were assessed using either population or individualized model parameters. As far as prediction accuracy is concerned, the results show that the best linear algorithm (individualized ARIMA) provides accuracy comparable to that of the best nonlinear algorithm (individualized fNN), with root mean square errors of 22.15 and 21.52 mg/dL, respectively. As far as hypoglycemia detection is concerned, the best linear algorithm (individualized ARIMA) provided precision = 64%, recall = 82%, and one false alarm/day, comparable to the best nonlinear technique (population SVR): precision = 63%, recall = 69%, and 0.5 false alarms/day. In general, the head-to-head comparison of the thirty algorithms fed by CGM data only made using a wide dataset shows that individualized linear models are more effective than population ones, while no significant advantages seem to emerge when employing nonlinear methodologies.
Author Prendin, Francesco
Vettoretti, Martina
Sparacino, Giovanni
Facchinetti, Andrea
Del Favero, Simone
AuthorAffiliation Department of Information Engineering, University of Padova, 35131 Padova, Italy; prendinf@dei.unipd.it (F.P.); vettore1@dei.unipd.it (M.V.); gianni@dei.unipd.it (G.S.); facchine@dei.unipd.it (A.F.)
AuthorAffiliation_xml – name: Department of Information Engineering, University of Padova, 35131 Padova, Italy; prendinf@dei.unipd.it (F.P.); vettore1@dei.unipd.it (M.V.); gianni@dei.unipd.it (G.S.); facchine@dei.unipd.it (A.F.)
Author_xml – sequence: 1
  givenname: Francesco
  surname: Prendin
  fullname: Prendin, Francesco
– sequence: 2
  givenname: Simone
  orcidid: 0000-0002-8214-2752
  surname: Del Favero
  fullname: Del Favero, Simone
– sequence: 3
  givenname: Martina
  surname: Vettoretti
  fullname: Vettoretti, Martina
– sequence: 4
  givenname: Giovanni
  orcidid: 0000-0002-3248-1393
  surname: Sparacino
  fullname: Sparacino, Giovanni
– sequence: 5
  givenname: Andrea
  orcidid: 0000-0001-8041-2280
  surname: Facchinetti
  fullname: Facchinetti, Andrea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33673415$$D View this record in MEDLINE/PubMed
BookMark eNptkstu1DAUhiNURC-w4AWQJTawCPUtTswCqUwvU2mgG1hHJ44z9cixp3Yy0rwUz4gzU0Ztxer48v2__nN0TrMj553OsvcEf2FM4vNICS6I4OWr7IRwyvOKUnz05Hycnca4wpgyxqo32TFjomScFCfZn2sftII4GLdEvkM3dlQ-arTQG20jAtei-Xbtl3ardG8UutpoN8SvaK6hzQefTxXNfL-GYKJ3k8XCOA1hJ_3pnd3fLmGA_DKYJEcXdumDGe77iL5D1C1Kupl3KcLox3iI8MM7MyQwBZvU6M7Z7dvsdQc26neP9Sz7fX31azbPF3c3t7OLRa64kEPOKIUO45JWbQeilYUmjWoaRmVTaaU0F4ypkqhWEkE6IKzilCnKQRUCKqHYWXa79209rOp1MD2Ebe3B1LsHH5Y1hMEoq2tKKMOEEC0UcAKlJLqUtALBO1GRCievb3uv9dj0ulVpgAHsM9PnP87c10u_qUtZCI5FMvj0aBD8w6jjUPcmKm0tOJ0GVlMuq4IQuUM_vkBXfgwujWqiSpoalyxRH54mOkT5txYJ-LwHVPAxBt0dEILraeXqw8ol9vwFq8wAg_FTM8b-R_EXM0zYxQ
CitedBy_id crossref_primary_10_1016_j_procs_2024_05_194
crossref_primary_10_1186_s12911_025_02856_5
crossref_primary_10_1016_j_ifacol_2025_06_015
crossref_primary_10_1186_s13098_022_00969_9
crossref_primary_10_3389_fpubh_2023_1044059
crossref_primary_10_1016_j_bspc_2023_105167
crossref_primary_10_3390_s22228682
crossref_primary_10_1038_s41598_024_82649_4
crossref_primary_10_2196_47833
crossref_primary_10_3389_fnut_2022_855223
crossref_primary_10_1177_19322968221093665
crossref_primary_10_3390_s23198269
crossref_primary_10_1002_idm2_12069
crossref_primary_10_1016_j_compbiomed_2025_110015
crossref_primary_10_1371_journal_pone_0310801
crossref_primary_10_3389_fbioe_2022_876672
crossref_primary_10_1016_j_bios_2023_115103
crossref_primary_10_7717_peerj_cs_1619
crossref_primary_10_1016_j_bspc_2025_108589
crossref_primary_10_1016_j_cmpb_2024_108179
crossref_primary_10_1109_ACCESS_2023_3237992
crossref_primary_10_1111_dom_14783
crossref_primary_10_3390_s25134038
crossref_primary_10_1177_19322968221147570
crossref_primary_10_1038_s41598_025_14599_4
crossref_primary_10_7717_peerj_cs_3001
crossref_primary_10_1016_S0140_6736_23_00223_4
crossref_primary_10_1109_JIOT_2022_3143375
crossref_primary_10_1177_19322968241267818
Cites_doi 10.1109/JBHI.2018.2823763
10.1371/journal.pone.0118432
10.15439/2019F159
10.1016/j.automatica.2014.01.001
10.1016/j.cmpb.2013.09.016
10.1109/ICMLA.2018.00227
10.1109/JBHI.2019.2908488
10.3390/s20236925
10.1109/EMBC.2019.8856940
10.1109/JBHI.2018.2887067
10.1080/02664760903002667
10.1089/dia.2018.0150
10.1089/dia.2019.0139
10.1016/j.diabres.2017.08.005
10.1089/dia.2012.0285
10.1089/dia.2005.7.3
10.1007/s10916-017-0788-2
10.3182/20110828-6-IT-1002.01929
10.1109/TBME.2015.2470521
10.1177/193229681300700314
10.1016/j.bios.2018.03.039
10.1177/193229681300700324
10.1089/dia.2010.0151
10.3390/s19040800
10.1109/JBHI.2018.2840690
10.1109/ACCESS.2019.2919184
10.1021/ci034160g
10.2337/dc09-1487
10.1109/TBME.2006.889774
10.1038/s41598-017-06478-4
10.1177/193229681200600519
10.1016/j.ecl.2019.10.006
10.3390/s19204482
10.1081/DDC-120018209
10.1109/NEUREL.2018.8586990
10.3390/diagnostics9010031
10.1177/193229680700100505
10.1007/s11517-015-1320-9
10.2337/dc09-2303
10.2337/dc12-0736
10.1089/dia.2009.0076
10.1109/TITB.2009.2034141
10.1177/1932296816654161
10.1109/ICMLA.2013.30
10.1177/193229681000400106
10.1016/j.ecl.2019.10.009
10.4093/dmj.2019.0121
10.1002/cnm.2833
10.1016/S0925-2312(02)00632-X
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21051647
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_21230111e6ca41a791e7928a64f68180
PMC7956406
33673415
10_3390_s21051647
Genre Journal Article
GrantInformation_xml – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca
  grantid: RBSI14JYM2
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-322af00728dfa6d95e1bcbb329b8ecce4633c71cd9161fa138423c24ac56a86c3
IEDL.DBID DOA
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000628579100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:32 EDT 2025
Tue Nov 04 01:58:59 EST 2025
Fri Sep 05 10:32:52 EDT 2025
Tue Oct 07 07:34:47 EDT 2025
Wed Feb 19 02:29:12 EST 2025
Sat Nov 29 07:11:50 EST 2025
Tue Nov 18 22:38:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords time series
glucose sensor
signal processing
data-driven modeling
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-322af00728dfa6d95e1bcbb329b8ecce4633c71cd9161fa138423c24ac56a86c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3248-1393
0000-0002-8214-2752
0000-0001-8041-2280
OpenAccessLink https://doaj.org/article/21230111e6ca41a791e7928a64f68180
PMID 33673415
PQID 2497246393
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_21230111e6ca41a791e7928a64f68180
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7956406
proquest_miscellaneous_2498511906
proquest_journals_2497246393
pubmed_primary_33673415
crossref_primary_10_3390_s21051647
crossref_citationtrail_10_3390_s21051647
PublicationCentury 2000
PublicationDate 20210227
PublicationDateYYYYMMDD 2021-02-27
PublicationDate_xml – month: 2
  year: 2021
  text: 20210227
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Camerlingo (ref_10) 2019; 21
ref_50
Zecchin (ref_17) 2014; 113
Cappon (ref_9) 2019; 43
Buckingham (ref_25) 2010; 33
Frandes (ref_28) 2017; 7
Pillonetto (ref_32) 2014; 50
Pillonetto (ref_36) 2011; 44
Allen (ref_22) 2019; 9
ref_55
ref_52
ref_51
Klonoff (ref_4) 2017; 133
ref_16
ref_15
Svetnik (ref_47) 2003; 43
Tang (ref_6) 2020; 20
Hidalgo (ref_18) 2017; 41
Zarkogianni (ref_27) 2015; 53
Facchinetti (ref_34) 2013; 36
Daskalaki (ref_54) 2013; 7
Sparacino (ref_33) 2007; 54
Georga (ref_39) 2013; 15
Zarkogianni (ref_23) 2015; 62
ref_29
Shivers (ref_7) 2013; 7
Ullah (ref_3) 2018; 110
Palerm (ref_13) 2007; 1
Cameron (ref_37) 2012; 6
Chatzigiannakis (ref_41) 2019; 19
Gani (ref_45) 2010; 37
Facchinetti (ref_42) 2010; 12
ref_31
ref_30
Dovc (ref_2) 2020; 49
Li (ref_21) 2019; 24
Sun (ref_11) 2018; 23
Palerm (ref_12) 2005; 7
Wadwa (ref_53) 2018; 20
Gadaleta (ref_38) 2018; 23
Oviedo (ref_19) 2017; 33
Mobashsher (ref_5) 2019; 19
Sathe (ref_48) 2003; 29
ref_44
Kravarusic (ref_1) 2020; 49
Zecchin (ref_20) 2016; 10
ref_40
Wang (ref_46) 2003; 55
Yang (ref_14) 2018; 23
Gani (ref_24) 2009; 14
ref_49
ref_8
Aliberti (ref_43) 2019; 7
Facchinetti (ref_35) 2011; 13
Dassau (ref_26) 2010; 33
References_xml – ident: ref_55
– volume: 23
  start-page: 650
  year: 2018
  ident: ref_38
  article-title: Prediction of adverse glycemic events from continuous glucose monitoring signal
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2823763
– ident: ref_52
  doi: 10.1371/journal.pone.0118432
– ident: ref_44
  doi: 10.15439/2019F159
– volume: 50
  start-page: 657
  year: 2014
  ident: ref_32
  article-title: Kernel methods in system identification, machine learning and function estimation: A survey
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.01.001
– volume: 113
  start-page: 144
  year: 2014
  ident: ref_17
  article-title: Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.09.016
– ident: ref_49
  doi: 10.1109/ICMLA.2018.00227
– volume: 24
  start-page: 603
  year: 2019
  ident: ref_21
  article-title: Convolutional recurrent neural networks for glucose prediction
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2908488
– volume: 20
  start-page: 6925
  year: 2020
  ident: ref_6
  article-title: Non-Invasive Blood Glucose Monitoring Technology: A Review
  publication-title: Sensors
  doi: 10.3390/s20236925
– ident: ref_51
  doi: 10.1109/EMBC.2019.8856940
– volume: 23
  start-page: 2633
  year: 2018
  ident: ref_11
  article-title: A dual mode adaptive basal-bolus advisor based on reinforcement learning
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2887067
– volume: 37
  start-page: 309
  year: 2010
  ident: ref_45
  article-title: Support vector regression based residual control charts
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760903002667
– volume: 20
  start-page: 395
  year: 2018
  ident: ref_53
  article-title: Accuracy of a factory-calibrated, real-time continuous glucose monitoring system during 10 days of use in youth and adults with diabetes
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2018.0150
– volume: 21
  start-page: 644
  year: 2019
  ident: ref_10
  article-title: A Real-Time Continuous Glucose Monitoring–Based Algorithm to Trigger Hypotreatments to Prevent/Mitigate Hypoglycemic Events
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2019.0139
– ident: ref_31
– volume: 133
  start-page: 178
  year: 2017
  ident: ref_4
  article-title: Continuous glucose monitoring: A review of the technology and clinical use
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2017.08.005
– volume: 15
  start-page: 634
  year: 2013
  ident: ref_39
  article-title: A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2012.0285
– volume: 7
  start-page: 3
  year: 2005
  ident: ref_12
  article-title: Hypoglycemia prediction and detection using optimal estimation
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2005.7.3
– volume: 41
  start-page: 142
  year: 2017
  ident: ref_18
  article-title: Data based prediction of blood glucose concentrations using evolutionary methods
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0788-2
– volume: 44
  start-page: 8340
  year: 2011
  ident: ref_36
  article-title: A novel nonparametric approach for the identification of the glucose-insulin system in Type 1 diabetic patients
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20110828-6-IT-1002.01929
– volume: 62
  start-page: 2735
  year: 2015
  ident: ref_23
  article-title: A review of emerging technologies for the management of diabetes mellitus
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2470521
– volume: 7
  start-page: 689
  year: 2013
  ident: ref_54
  article-title: An early warning system for hypoglycemic/hyperglycemic events based on fusion of adaptive prediction models
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681300700314
– volume: 110
  start-page: 175
  year: 2018
  ident: ref_3
  article-title: In-vitro model for assessing glucose diffusion through skin
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.03.039
– volume: 7
  start-page: 789
  year: 2013
  ident: ref_7
  article-title: “Turn it off!”: Diabetes device alarm fatigue considerations for the present and the future
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681300700324
– volume: 13
  start-page: 111
  year: 2011
  ident: ref_35
  article-title: A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2010.0151
– volume: 19
  start-page: 800
  year: 2019
  ident: ref_5
  article-title: The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors
  publication-title: Sensors
  doi: 10.3390/s19040800
– volume: 23
  start-page: 1251
  year: 2018
  ident: ref_14
  article-title: An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2840690
– volume: 7
  start-page: 69311
  year: 2019
  ident: ref_43
  article-title: A multi-patient data-driven approach to blood glucose prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919184
– volume: 43
  start-page: 1947
  year: 2003
  ident: ref_47
  article-title: Random forest: A classification and regression tool for compound classification and QSAR modeling
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034160g
– ident: ref_30
– volume: 33
  start-page: 1249
  year: 2010
  ident: ref_26
  article-title: Real-time hypoglycemia prediction suite using continuous glucose monitoring: A safety net for the artificial pancreas
  publication-title: Diabetes Care
  doi: 10.2337/dc09-1487
– volume: 54
  start-page: 931
  year: 2007
  ident: ref_33
  article-title: Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889774
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_28
  article-title: Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06478-4
– volume: 6
  start-page: 1142
  year: 2012
  ident: ref_37
  article-title: Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229681200600519
– volume: 49
  start-page: 37
  year: 2020
  ident: ref_1
  article-title: Diabetes Technology Use in Adults with Type 1 and Type 2 Diabetes
  publication-title: Endocrinol. Metab. Clin.
  doi: 10.1016/j.ecl.2019.10.006
– volume: 19
  start-page: 4482
  year: 2019
  ident: ref_41
  article-title: Utility of Big Data in Predicting Short-Term Blood Glucose Levels in Type 1 Diabetes Mellitus Through Machine Learning Techniques
  publication-title: Sensors
  doi: 10.3390/s19204482
– volume: 29
  start-page: 349
  year: 2003
  ident: ref_48
  article-title: Comparison of neural network and multiple linear regression as dissolution predictors
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1081/DDC-120018209
– ident: ref_16
  doi: 10.1109/NEUREL.2018.8586990
– volume: 9
  start-page: 31
  year: 2019
  ident: ref_22
  article-title: Current diabetes technology: Striving for the artificial pancreas
  publication-title: Diagnostics
  doi: 10.3390/diagnostics9010031
– volume: 1
  start-page: 624
  year: 2007
  ident: ref_13
  article-title: Hypoglycemia detection and prediction using continuous glucose monitoring-a study on hypoglycemic clamp data
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/193229680700100505
– volume: 53
  start-page: 1333
  year: 2015
  ident: ref_27
  article-title: Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-015-1320-9
– ident: ref_50
– ident: ref_29
– volume: 33
  start-page: 1013
  year: 2010
  ident: ref_25
  article-title: Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension
  publication-title: Diabetes Care
  doi: 10.2337/dc09-2303
– volume: 36
  start-page: 793
  year: 2013
  ident: ref_34
  article-title: Real-time improvement of continuous glucose monitoring accuracy: The smart sensor concept
  publication-title: Diabetes Care
  doi: 10.2337/dc12-0736
– ident: ref_15
– volume: 12
  start-page: 81
  year: 2010
  ident: ref_42
  article-title: Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2009.0076
– volume: 14
  start-page: 157
  year: 2009
  ident: ref_24
  article-title: Universal glucose models for predicting subcutaneous glucose concentration in humans
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2034141
– volume: 10
  start-page: 1149
  year: 2016
  ident: ref_20
  article-title: How much is short-term glucose prediction in type 1 diabetes improved by adding insulin delivery and meal content information to CGM data? A proof-of-concept study
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296816654161
– ident: ref_40
  doi: 10.1109/ICMLA.2013.30
– ident: ref_8
  doi: 10.1177/193229681000400106
– volume: 49
  start-page: 1
  year: 2020
  ident: ref_2
  article-title: Evolution of Diabetes Technology
  publication-title: Endocrinol. Metab. Clin.
  doi: 10.1016/j.ecl.2019.10.009
– volume: 43
  start-page: 383
  year: 2019
  ident: ref_9
  article-title: Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications
  publication-title: Diabetes Metab. J.
  doi: 10.4093/dmj.2019.0121
– volume: 33
  start-page: e2833
  year: 2017
  ident: ref_19
  article-title: A review of personalized blood glucose prediction strategies for T1DM patients
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2833
– volume: 55
  start-page: 643
  year: 2003
  ident: ref_46
  article-title: Determination of the spread parameter in the Gaussian kernel for classification and regression
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00632-X
SSID ssj0023338
Score 2.4861574
Snippet In type 1 diabetes management, the availability of algorithms capable of accurately forecasting future blood glucose (BG) concentrations and hypoglycemic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1647
SubjectTerms Algorithms
Blood Glucose - analysis
Blood Glucose Self-Monitoring
data-driven modeling
Datasets
Diabetes
Employment
Glucose monitoring
glucose sensor
Humans
Hypoglycemia - diagnosis
Insulin
Monte Carlo simulation
Neural networks
Parameter estimation
Population
Sensors
signal processing
time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZg4wAHfsMCAxnEgYu1OnZthwtat44eUJkQSLtFjuN0lUrS1SlS_yn-Rt5L0rCiiQunKo0dvabfe35f_PI9Qt5JlxUD8BtmkqJg0nHFMl4MmAWvtMoZ8HXTNJvQ06m5uEjOuwduoSur3MbEJlDnlcNn5EdAE3QsYT0VH5dXDLtG4e5q10LjNtlHpTLA-f5oPD3_2lMuAQys1RMSQO6PAhCcISpo7axCjVj_TRnm34WS11aeswf_a_NDcr_LOelxC5JH5JYvH5N715QIn5Bf2KLT2YBF0LQq6Ke2kp1-xpqiQG2Z08lmWc0WG4fV9HSMZZLhA50ARFhdMfykJ31PQ7wEsFzwombqtNXjgKNTW1t2usIQS48XMzC2vvwR6AjW0pzCPBTLmpfrah16E9qog2Y2s-mXcrF5Sr6fjb-dTFjXyoE54N81g7BhC1QpN3lhVZ4MPc9clok4yQyAyMNNEk5zl0O2ygvLhYE0z8XSuqGyRjnxjOyVVekPCAWOY632mJsKmakEN3KBlWVSSx9zMYzI--1fm7pO5xzbbSxS4DuIgrRHQUTe9kOXrbjHTYNGiI9-AOpxN19Uq1nauXeKCQBESu6Vs5JbnXCvk9hYJQuFb9NH5HCLkLQLEiH9A4-IvOlPg3vjno0tPdxrHIM5cTJQEXnegrG3RAilIQmBX6x3YLpj6u6Zcn7ZSIhroMWQyr34t1kvyd0YS3jwDX59SPbq1dq_Infcz3oeVq87X_sNRtw3Ig
  priority: 102
  providerName: ProQuest
Title Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only
URI https://www.ncbi.nlm.nih.gov/pubmed/33673415
https://www.proquest.com/docview/2497246393
https://www.proquest.com/docview/2498511906
https://pubmed.ncbi.nlm.nih.gov/PMC7956406
https://doaj.org/article/21230111e6ca41a791e7928a64f68180
Volume 21
WOSCitedRecordID wos000628579100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiOdSWCqDOHCxtolTP7htd7sUiS0VAqmcIsdxdiuVZNWkSL3wk_iNzCRp1KKVuHBJFMeOxpkZez5l8g3A28gl2QD9hmuTZTxygeRJkA24Ra-00mn0dV0Xm1DTqZ7PzWyn1BflhDX0wM2LO6alleqhe-lsFFhlAq9MqK2MMkn_KdPqO1BmC6ZaqCUQeTU8QgJB_XGJwGZIzFl7u09N0n9TZPl3guTOjnP-EB60oSI7aUR8BLd8_hju7xAIPoHfVFnT2ZJyl1mRsQ9NAjr7RKlAJbN5yiab6-JyuXGUBM_GlN1YvmcT1CyvCk5ndtqVIqRHIDhF46-HThsaDbw6s5XlZytaGdnJ8rJYLaqrHyUb4RaYMhxHHFeLfF2sy06EZrEgMevR7HO-3DyFb-fjr6cT3lZg4A5hc8XR221G5OI6zaxMzdAHiUsSEZpEo-59JIVwKnApBplBZgOhMTpzYWTdUFotnXgGB3mR--fAEJpYqzyFlCJKpKHvrwimkkhFPgzEsAfvtpqJXUtPTlUyljHCFFJi3CmxB2-6rtcNJ8dNnUak3q4D0WjXDWhccWtc8b-MqwdHW-OIW98uYwSsKsSZG9GD191t9Er61GJzj--a-lAoawayB4eNLXWSCCEVxg44Y7VnZXui7t_JF1c187dCNIsR2Iv_MbeXcC-k_Bz6PV8dwUG1WvtXcNf9rBblqg-31VzVR92HO6PxdPalX7sYHi9-jbFt9vFi9v0PUbwsHg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4ECiwIJC6rxl5n10ZCqG1aEjUNPRSpnMx6vU4jBTvEDih_qr-RGdsxDaq49cApSrzrzG7m9WXH3wC88UyUdNBuuB8kCfeMI3nkJB2u0Sq1ND7aul82m1CjkX96GhxvwPnqWRgqq1z5xNJRx5mh_8i3ESYo18N4Kj7OfnDqGkWnq6sWGpVaHNrlL4Rs-YdBD3_ft657sH-y1-d1VwFuEAoWHDVYJ0SY7ceJlnHQtU5koki4QeTjeix-hzDKMTEmTk6iHeFjxmFcT5uu1L40Au97DTY9VPZOCzaPB0fHXxuIJxDxVfxFQgSd7RwBVZcYu9aiXtkc4LKM9u_CzAuR7uDO_7ZHd-F2nVOzncoI7sGGTe_DrQtMiw_gnFqQGp1TkTfLEvapqtRnQ6qZyplOY9ZfzrLxdGnoaQG2T2Wg-XvWRxPgRcbple01PRvpFojicanl1FHFN4LverrQvDenEMJ2pmPcnOLse852MVeIGc4jMrBJusgWeSNC5VVJzHI2-5xOlw_hy5Vs2CNopVlqnwBDDKe1spR7Cy-SAR1UI-qMPOVZ1xHdNrxbqVJoah53aicyDRHPkdaFjda14XUzdFaRl1w2aJf0sRlAfOPlB9l8HNbuK6QEByOBY6XRnqNV4FgVuL6WXiKJLaANWyuNDGsnmId_1LENr5rL6L7oTEqnFveaxlDOH3RkGx5Xyt9IIoRUmGThitWaWayJun4lnZyVFOkKYT-mqk__LdZLuNE_ORqGw8Ho8BncdKlcidgK1Ba0ivnCPofr5mcxyecvajtn8O2qzeY3c26U5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAceD8MBRYEEpdV4teujYRQ2zSkahV6ACk3s16v00jBDrEDyp_iB_DrmPGrDaq49cApSrzr7G7mm50vO_4G4LWn47SPuOFBmKbc07bgsZ32uUJUKqEDxHpQFZuQ43EwmYQnW_C7fRaG0ipbn1g56iTX9B95D2mCdDzcT91e2qRFnAyGHxbfOVWQopPWtpxGbSJHZv0T6Vvx_nCAv_UbxxkefN4f8abCANdIC0uO1qxSEs8OklSJJPSNHes4dp0wDnBuBr_P1dLWCQZRdqpsN8DoQzue0r5QgdAu3vcKXCVJQXIKcnJG9lzkfrWSkeuG_V6B1Mon7a6N_a8qE3BRbPt3iua5PW94-39erTtwq4m02W4NjbuwZbJ7cPOc_uJ9-EWFSbUqKPWb5Sn7WOfvs2PKpCqYyhI2Wi_y6Xyt6RkCdkDJocU7NkJg8DLn9Mr2u0qOdAvk9jjVquu4ViHBdwNVKj5Y0sbCdudTXJzy9FvB9jCCSBj2I4mwWbbKV0U3hNrX0jCr3uxTNl8_gC-XsmAPYTvLM_MYGDI7paShiNz1YhHS8TVy0diTnnFs17fgbWtWkW7U3anIyDxClkcWGHUWaMGrrumiljS5qNEe2WbXgFTIqw_y5TRqnFpEYQ_uD7YRWnm2kqFtZOgESnipIA0BC3Za64wa11hEZ6ZpwcvuMjo1OqlSmcG1pjbEBMK-sOBRDYRuJIg1iaEXzlhuQGRjqJtXstlpJZwuQ19gAPvk38N6AdcRK9Hx4fjoKdxwKIeJJAzkDmyXy5V5Btf0j3JWLJ9XgGfw9bIx8wec-pwT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+of+Glucose+Levels+and+Hypoglycemic+Events%3A+Head-to-Head+Comparison+of+Linear+and+Nonlinear+Data-Driven+Algorithms+Based+on+Continuous+Glucose+Monitoring+Data+Only&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Prendin%2C+Francesco&rft.au=Del+Favero%2C+Simone&rft.au=Vettoretti%2C+Martina&rft.au=Sparacino%2C+Giovanni&rft.date=2021-02-27&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=5&rft_id=info:doi/10.3390%2Fs21051647&rft_id=info%3Apmid%2F33673415&rft.externalDocID=PMC7956406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon