An Encoder–Decoder Architecture within a Classical Signal-Processing Framework for Real-Time Barcode Segmentation

In this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR) applications. These methods take the partial discrete Radon transform as a building block. The first proposed method uses overlapping tiles for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 23; číslo 13; s. 6109
Hlavní autori: Gómez-Cárdenes, Óscar, Marichal-Hernández, José Gil, Son, Jung-Young, Pérez Jiménez, Rafael, Rodríguez-Ramos, José Manuel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 03.07.2023
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR) applications. These methods take the partial discrete Radon transform as a building block. The first proposed method uses overlapping tiles for obtaining good angle precision while maintaining good spatial precision. The second one uses an encoder–decoder structure inspired by state-of-the-art convolutional neural networks for segmentation while maintaining a classical processing framework, thus not requiring training. It is shown that the second method’s processing time is lower than the video acquisition time with a 1024 × 1024 input on a CPU, which had not been previously achieved. The accuracy it obtained on datasets widely used by the scientific community was almost on par with that obtained using the most-recent state-of-the-art methods using deep learning. Beyond the challenges of those datasets, the method proposed is particularly well suited to image sequences taken with short exposure and exhibiting motion blur and lens blur, which are expected in a real-world AR scenario. Two implementations of the proposed methods are made available to the scientific community: one for easy prototyping and one optimised for parallel implementation, which can be run on desktop and mobile phone CPUs.
AbstractList In this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR) applications. These methods take the partial discrete Radon transform as a building block. The first proposed method uses overlapping tiles for obtaining good angle precision while maintaining good spatial precision. The second one uses an encoder–decoder structure inspired by state-of-the-art convolutional neural networks for segmentation while maintaining a classical processing framework, thus not requiring training. It is shown that the second method’s processing time is lower than the video acquisition time with a 1024 × 1024 input on a CPU, which had not been previously achieved. The accuracy it obtained on datasets widely used by the scientific community was almost on par with that obtained using the most-recent state-of-the-art methods using deep learning. Beyond the challenges of those datasets, the method proposed is particularly well suited to image sequences taken with short exposure and exhibiting motion blur and lens blur, which are expected in a real-world AR scenario. Two implementations of the proposed methods are made available to the scientific community: one for easy prototyping and one optimised for parallel implementation, which can be run on desktop and mobile phone CPUs.
In this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR) applications. These methods take the partial discrete Radon transform as a building block. The first proposed method uses overlapping tiles for obtaining good angle precision while maintaining good spatial precision. The second one uses an encoder-decoder structure inspired by state-of-the-art convolutional neural networks for segmentation while maintaining a classical processing framework, thus not requiring training. It is shown that the second method's processing time is lower than the video acquisition time with a 1024 × 1024 input on a CPU, which had not been previously achieved. The accuracy it obtained on datasets widely used by the scientific community was almost on par with that obtained using the most-recent state-of-the-art methods using deep learning. Beyond the challenges of those datasets, the method proposed is particularly well suited to image sequences taken with short exposure and exhibiting motion blur and lens blur, which are expected in a real-world AR scenario. Two implementations of the proposed methods are made available to the scientific community: one for easy prototyping and one optimised for parallel implementation, which can be run on desktop and mobile phone CPUs.In this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR) applications. These methods take the partial discrete Radon transform as a building block. The first proposed method uses overlapping tiles for obtaining good angle precision while maintaining good spatial precision. The second one uses an encoder-decoder structure inspired by state-of-the-art convolutional neural networks for segmentation while maintaining a classical processing framework, thus not requiring training. It is shown that the second method's processing time is lower than the video acquisition time with a 1024 × 1024 input on a CPU, which had not been previously achieved. The accuracy it obtained on datasets widely used by the scientific community was almost on par with that obtained using the most-recent state-of-the-art methods using deep learning. Beyond the challenges of those datasets, the method proposed is particularly well suited to image sequences taken with short exposure and exhibiting motion blur and lens blur, which are expected in a real-world AR scenario. Two implementations of the proposed methods are made available to the scientific community: one for easy prototyping and one optimised for parallel implementation, which can be run on desktop and mobile phone CPUs.
Audience Academic
Author Marichal-Hernández, José Gil
Rodríguez-Ramos, José Manuel
Pérez Jiménez, Rafael
Gómez-Cárdenes, Óscar
Son, Jung-Young
AuthorAffiliation 4 Research & Development Department, Wooptix S.L., 38204 La Laguna, Spain
1 Department of Industrial Engineering, Universidad de La Laguna, 38200 La Laguna, Spain; ogomezca@ull.edu.es (Ó.G.-C.); jmramos@ull.edu.es (J.M.R.-R.)
2 Biomedical Engineering Department, Konyang University, Nonsan-si 320-711, Republic of Korea; jyson@konyang.ac.kr
3 Institute for Technological Development and Innovation in Communications, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas, Spain; rafael.perez@ulpgc.es
AuthorAffiliation_xml – name: 1 Department of Industrial Engineering, Universidad de La Laguna, 38200 La Laguna, Spain; ogomezca@ull.edu.es (Ó.G.-C.); jmramos@ull.edu.es (J.M.R.-R.)
– name: 2 Biomedical Engineering Department, Konyang University, Nonsan-si 320-711, Republic of Korea; jyson@konyang.ac.kr
– name: 3 Institute for Technological Development and Innovation in Communications, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas, Spain; rafael.perez@ulpgc.es
– name: 4 Research & Development Department, Wooptix S.L., 38204 La Laguna, Spain
Author_xml – sequence: 1
  givenname: Óscar
  orcidid: 0000-0002-7951-982X
  surname: Gómez-Cárdenes
  fullname: Gómez-Cárdenes, Óscar
– sequence: 2
  givenname: José Gil
  orcidid: 0000-0003-2297-8483
  surname: Marichal-Hernández
  fullname: Marichal-Hernández, José Gil
– sequence: 3
  givenname: Jung-Young
  orcidid: 0000-0001-6099-0577
  surname: Son
  fullname: Son, Jung-Young
– sequence: 4
  givenname: Rafael
  orcidid: 0000-0002-8849-592X
  surname: Pérez Jiménez
  fullname: Pérez Jiménez, Rafael
– sequence: 5
  givenname: José Manuel
  surname: Rodríguez-Ramos
  fullname: Rodríguez-Ramos, José Manuel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37447960$$D View this record in MEDLINE/PubMed
BookMark eNpdks1uEzEUhS1URNvAghdAltjQRYp_Z-wVCmkLlSqBaFlbjufOxGHGLvaEih3vwBvyJDhJiVrkha17Px3fY59jdBBiAIReUnLKuSZvM-OUV5ToJ-iICiamijFy8OB8iI5zXhHCOOfqGTrktRC1rsgRyrOAz4OLDaQ_v36fwfaEZ8kt_QhuXCfAd35c-oAtnvc2Z-9sj699F2w__Zyig1IKHb5IdoC7mL7hNib8BUr3xg-A39u0kcTX0A0QRjv6GJ6jp63tM7y43yfo68X5zfzj9OrTh8v57GrqRKXHKatBtUpXglXQSKc1NIIvXMut0JxXROjaCUlJRRZaSCuVsoo0SirGm7puNJ-gy51uE-3K3CY_2PTTROvNthBTZ2wavevBUO4YkUQ0suhSRhUlQlZSKq5rWwMrWu92WrfrxQCNK16S7R-JPu4EvzRd_GEo4aJS5X8m6M29Qorf15BHM_jsoO9tgLjOhimumKBcyIK-_g9dxXUqL76lqmKfElWo0x3V2eLAhzaWi11ZDQzelYS0vtRntVRCcck2E7x66GE__L80FOBkB7gUc07Q7hFKzCZpZp80_hf8QMMK
Cites_doi 10.5220/0006508203210327
10.1109/CVPR.2015.7298965
10.1109/34.308479
10.3390/s22228788
10.1016/j.neucom.2019.11.118
10.1145/2897824.2925952
10.3390/app9163268
10.1109/ICCV.2017.324
10.1117/12.2261921
10.1145/3369555.3369559
10.1109/WACV.2015.39
10.1145/2541831.2541844
10.1145/2776880.2787664
10.1109/SITIS.2012.52
10.1016/0031-3203(96)00015-5
10.1137/S1064827595285718
10.1109/CYBER.2017.8446388
10.1109/5.726791
10.1145/3272127.3275055
10.1109/TPAMI.2016.2644615
10.1186/s40537-021-00444-8
10.1109/CVPR42600.2020.01079
10.1137/S0097539793256673
10.1109/ICIP.2016.7532881
10.1109/38.963459
10.1109/TPAMI.1986.4767776
10.1145/3306346.3322967
10.1109/TPAMI.2010.229
10.1007/s00138-010-0299-3
10.1109/SITIS.2012.53
10.1007/978-3-030-57058-3_34
10.1007/978-981-16-2336-3_4
10.1109/ACPR.2013.17
10.1109/ACCESS.2022.3143033
10.1109/ICDAR.2019.00139
10.1109/CVPR.2015.7298594
10.1145/2499370.2462176
10.1145/2833157.2833162
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23136109
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic


PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_13c20504d5604121810456558397a7e2
PMC10346831
A758483521
37447960
10_3390_s23136109
Genre Journal Article
GrantInformation_xml – fundername: Priority Research Centers Program through the National Research Foundation of Korea (NRF), Ministry of Education
  grantid: NRF-2018R1A6A1A03025542
– fundername: Government of the Canary Islands, and European Regional Development Fund
  grantid: Estrategia de Especialización inteligente de Canarias RIS-3, ProID2020010066
– fundername: Regional Ministry of Economy, Knowledge, and Employment, as well as the European Social Fund
  grantid: Catalina Ruiz training aid program for research personnel
– fundername: Wooptix, S.L.
  grantid: Research agreement on consumer electronics Wooptix-ULL, 2023
– fundername: Regional Ministry of Economy, Knowledge, and Employment
– fundername: Research agreement on consumer electronics Wooptix-ULL, 2023
– fundername: Korean government
  grantid: 2020-0-00537
– fundername: European Social Fund
– fundername: European Regional Development Fund
  grantid: ProID2020010066
– fundername: Ministry of Education
  grantid: NRF-2018R1A6A1A03025542
– fundername: Government of the Canary Islands
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-27e8f896426ed5c99ed43bcf3a493360497c451060b945a588a80d85823d77d93
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030981900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:26:33 EST 2025
Tue Nov 04 02:06:40 EST 2025
Sun Nov 09 10:48:23 EST 2025
Tue Oct 07 07:20:27 EDT 2025
Tue Nov 04 18:43:09 EST 2025
Wed Feb 19 02:22:51 EST 2025
Sat Nov 29 07:20:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords scale-space methods
classical signal processing
encoder–decoder
Radon transform
barcodes
multiscale DRT
pixelwise segmentation
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-27e8f896426ed5c99ed43bcf3a493360497c451060b945a588a80d85823d77d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8849-592X
0000-0003-2297-8483
0000-0002-7951-982X
0000-0001-6099-0577
OpenAccessLink https://www.proquest.com/docview/2836493108?pq-origsite=%requestingapplication%
PMID 37447960
PQID 2836493108
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_13c20504d5604121810456558397a7e2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10346831
proquest_miscellaneous_2838241345
proquest_journals_2836493108
gale_infotracacademiconefile_A758483521
pubmed_primary_37447960
crossref_primary_10_3390_s23136109
PublicationCentury 2000
PublicationDate 20230703
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 7
  year: 2023
  text: 20230703
  day: 3
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_13
Gallo (ref_5) 2011; 33
ref_12
ref_11
ref_10
ref_54
Lecun (ref_41) 1998; 86
ref_53
ref_51
Azuma (ref_2) 2001; 21
ref_19
ref_18
ref_17
ref_16
ref_15
Brandt (ref_38) 1999; 20
Kehtarnavaz (ref_33) 2022; Volume 12102
ref_25
ref_24
(ref_36) 1996; 29
ref_29
ref_28
Adams (ref_48) 2019; 38
ref_27
ref_26
ref_34
ref_32
ref_31
Alzubaidi (ref_21) 2021; 8
ref_30
ref_39
Nayar (ref_55) 1994; 16
Barnes (ref_47) 2013; 48
Javidi (ref_56) 2017; Volume 10219
Badrinarayanan (ref_23) 2017; 39
Hao (ref_22) 2020; 406
Wells (ref_52) 1986; PAMI-8
ref_46
ref_45
ref_44
ref_43
ref_42
ref_40
ref_1
ref_3
Lin (ref_6) 2011; 22
Radon (ref_35) 1917; 69
Li (ref_50) 2018; 37
ref_9
Wudhikarn (ref_20) 2022; 10
Brady (ref_37) 1998; 27
ref_8
ref_4
Mullapudi (ref_49) 2016; 35
ref_7
References_xml – ident: ref_18
  doi: 10.5220/0006508203210327
– ident: ref_43
  doi: 10.1109/CVPR.2015.7298965
– volume: Volume 12102
  start-page: 121020A
  year: 2022
  ident: ref_33
  article-title: A local real-time bar detector based on the multiscale Radon transform
  publication-title: Proceedings of the Real-Time Image Processing and Deep Learning, Orlando, FL, USA, 6–12 June 2022
– ident: ref_32
– ident: ref_51
– volume: 16
  start-page: 824
  year: 1994
  ident: ref_55
  article-title: Shape from focus
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.308479
– ident: ref_24
  doi: 10.3390/s22228788
– volume: 406
  start-page: 302
  year: 2020
  ident: ref_22
  article-title: A Brief Survey on Semantic Segmentation with Deep Learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.118
– volume: 35
  start-page: 1
  year: 2016
  ident: ref_49
  article-title: Automatically scheduling halide image processing pipelines
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2897824.2925952
– ident: ref_1
– ident: ref_15
  doi: 10.3390/app9163268
– ident: ref_27
  doi: 10.1109/ICCV.2017.324
– volume: Volume 10219
  start-page: 102190R
  year: 2017
  ident: ref_56
  article-title: Focus measurement in 3D focal stack using direct and inverse discrete radon transform
  publication-title: Proceedings of the Three-Dimensional Imaging, Visualization, and Display, Anaheim, CA, USA, 10–11 April 2017
  doi: 10.1117/12.2261921
– ident: ref_39
  doi: 10.1145/3369555.3369559
– ident: ref_10
  doi: 10.1109/WACV.2015.39
– ident: ref_4
– volume: 69
  start-page: 262
  year: 1917
  ident: ref_35
  article-title: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten
  publication-title: Akad. Wiss.
– ident: ref_9
  doi: 10.1145/2541831.2541844
– ident: ref_54
  doi: 10.1145/2776880.2787664
– ident: ref_8
  doi: 10.1109/SITIS.2012.52
– ident: ref_13
– volume: 29
  start-page: 711
  year: 1996
  ident: ref_36
  article-title: A fast digital Radon transform—An efficient means for evaluating the Hough transform
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(96)00015-5
– volume: 20
  start-page: 1417
  year: 1999
  ident: ref_38
  article-title: Fast calculation of multiple line integrals
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595285718
– ident: ref_14
  doi: 10.1109/CYBER.2017.8446388
– ident: ref_28
– ident: ref_53
– ident: ref_30
– ident: ref_3
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_41
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 37
  start-page: 1
  year: 2018
  ident: ref_50
  article-title: Differentiable programming for image processing and deep learning in Halide
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3272127.3275055
– ident: ref_34
– volume: 39
  start-page: 2481
  year: 2017
  ident: ref_23
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 8
  start-page: 1
  year: 2021
  ident: ref_21
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– ident: ref_26
  doi: 10.1109/CVPR42600.2020.01079
– volume: 27
  start-page: 107
  year: 1998
  ident: ref_37
  article-title: A fast discrete approximation algorithm for the Radon transform
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539793256673
– ident: ref_11
  doi: 10.1109/ICIP.2016.7532881
– ident: ref_40
– volume: 21
  start-page: 34
  year: 2001
  ident: ref_2
  article-title: Recent advances in augmented reality
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.963459
– volume: PAMI-8
  start-page: 234
  year: 1986
  ident: ref_52
  article-title: Efficient Synthesis of Gaussian Filters by Cascaded Uniform Filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767776
– ident: ref_44
– volume: 38
  start-page: 1
  year: 2019
  ident: ref_48
  article-title: Learning to optimize halide with tree search and random programs
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3306346.3322967
– volume: 33
  start-page: 1834
  year: 2011
  ident: ref_5
  article-title: Reading 1D Barcodes with Mobile Phones Using Deformable Templates
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.229
– volume: 22
  start-page: 409
  year: 2011
  ident: ref_6
  article-title: Real-time automatic recognition of omnidirectional multiple barcodes and DSP implementation
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-010-0299-3
– ident: ref_7
  doi: 10.1109/SITIS.2012.53
– ident: ref_25
– ident: ref_31
  doi: 10.1007/978-3-030-57058-3_34
– ident: ref_29
– ident: ref_19
  doi: 10.1007/978-981-16-2336-3_4
– ident: ref_46
– ident: ref_12
– ident: ref_16
  doi: 10.1109/ACPR.2013.17
– volume: 10
  start-page: 8049
  year: 2022
  ident: ref_20
  article-title: Deep Learning in Barcode Recognition: A Systematic Literature Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3143033
– ident: ref_17
  doi: 10.1109/ICDAR.2019.00139
– ident: ref_42
  doi: 10.1109/CVPR.2015.7298594
– volume: 48
  start-page: 519
  year: 2013
  ident: ref_47
  article-title: Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines
  publication-title: ACM Sigplan Not.
  doi: 10.1145/2499370.2462176
– ident: ref_45
  doi: 10.1145/2833157.2833162
SSID ssj0023338
Score 2.399055
Snippet In this work, two methods are proposed for solving the problem of one-dimensional barcode segmentation in images, with an emphasis on augmented reality (AR)...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6109
SubjectTerms Accuracy
Algorithms
Augmented Reality
Bar codes
barcodes
Camcorders
Cameras
Datasets
Deep learning
encoder–decoder
Image Processing, Computer-Assisted - methods
Localization
Machine learning
Methods
multiscale DRT
Neural networks
Neural Networks, Computer
pixelwise segmentation
Radon transform
scale-space methods
Semantics
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6higMcEOU3tEUGIXGKGsd2bB-30BWnClGQerMc_5Q94Fa7W868Q9-wT9Kxk11lxYELyiVKIsuez-OZL54ZA3zoXOBtj54ba5yoObU2r4NNTWPsuI-Oi74vh03IszN1caG_To76yjFhQ3ngQXDHlLm2EQ33aJo5zQapOCECDbu0MpTVt5F6Q6ZGqsWQeQ11hBiS-uMVejGsK1GHE-tTivT_vRRPbNFunOTE8MyfwpPRYySzoaf78CCkZ_B4UkfwOaxmiZymnJ2-vPtz-zmUOzKb7BGQ_L91kYgl5RTMjAw5X1xiw_WYKoANkfkmUougK0u-oQ9Z5xQRcoLagE2S83D5a8xVSi_gx_z0-6cv9XiaQu2QAq_rVgYVlUa-0QUvnNbBc9a7yCzXjKFwtURkkCE2vebCCqWsarwSqmVeSq_ZS9hLVym8BiJF9DQU9zByZlvVxVzoLarOO4pXBe83UjbXQ9EMg2QjQ2G2UFRwkuW__SDXuS4PEH0zom_-hX4FHzN6JmsjQuTsmFSA_cx1rcwM6RDPTiat4HADsBnVdGXQt-pw9LRRFbzbvkYFy7smNoWrm_KNypuPXFTwapgP2z4zyblEDliB2pkpO4PafZMWP0sRb9ow3ilG3_wPMRzAoxYnfQkjZoewt17ehCN46H6vF6vl26Ia9_S6ELM
  priority: 102
  providerName: Directory of Open Access Journals
Title An Encoder–Decoder Architecture within a Classical Signal-Processing Framework for Real-Time Barcode Segmentation
URI https://www.ncbi.nlm.nih.gov/pubmed/37447960
https://www.proquest.com/docview/2836493108
https://www.proquest.com/docview/2838241345
https://pubmed.ncbi.nlm.nih.gov/PMC10346831
https://doaj.org/article/13c20504d5604121810456558397a7e2
Volume 23
WOSCitedRecordID wos001030981900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL2CGRbMgvcjMFQGIbGKJont2FmhFlrBYqpqBqSyilzbKV2QzjQdloh_4A_5Eu51004qJDaoUlQlkeXo-Nrn2PcB8Dq3XmQzZG48sTIWqTE0DyZxWlW5cJUVcjYLxSbUeKyn02LSbrg1rVvldk4ME7VbWtojP8FlMBcFkhH99uIypqpRdLraltC4CYdUNpvGuZpeCy6O-muTTYijtD9pkMvwPPgedtagkKr_7wm5syLte0t2lp_R3f_t-D240xJP1t-MlPtww9cP4KiTjvAhNP2aDWsKcl_9_vnrvQ__WL9z1MBo23ZRM8NCMU0CmJ0v5thw3EYcYENstHX4YsiI2RlS0ZgiTdgAjQqbZOd-_q0NeaofwefR8NO7D3FblCG2qKTXcaa8rnSBsiX3Ttqi8E7wma24wY_kOQoOhQCj0ExmhZBGam104rTUGXdKuYI_hoN6WfunwJSsXOoDy6wEN5nOK8oXV-nc2RR_EbzawlRebHJvlKhZCMtyh2UEAwJw9wKlyw43lqt52VpfmXKbJTIRDvmdSInVBCYrkR0qo3wWwRuCvySjRoytaWMTsJ-UHqvso6oSxFXTCI63KJettTflNcQRvNw9RjulwxdT--VVeEfTGaaQETzZDKhdn7kSQqGUjEDvDbW9j9p_Ui--hlzgacJFrnn67N_9eg63M7SH4GfMj-FgvbryL-CW_b5eNKtesJpw1T04HAzHk7Ne2JzA6-mPId6bfDydfPkD0WQoEg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VBQk48A81FFgQiJNV27v2rg8IpbRRq5YI0SLltrXX65BDnRKnIG68A-_BQ_EkzKzt1BEStx5QLlFsrXadb2e-zzs_AC8TY0WUI3PjgYl9EWYZ2cHAD8syEUVpRJznrtmEHI3UeJx-WINfXS4MhVV2NtEZ6mJm6B35FrrBRKRIRtTbsy8-dY2i09WuhUYDiwP7_RtKtvrN_g7-v6-iaLh7_G7Pb7sK-Aal4MKPpFWlSpF3J7aITZraQvDclDzD4XmCjFniDFEpBXkq4ixWKlNBoWIV8ULKgoovocm_gnZcktiT4wuBx1HvNdWLOE-DrRq5E09crGPP57nWAH87gJ4HXI3O7Lm74a3_7UHdhpstsWaDZifcgTVb3YUbvXKL96AeVGy3oiT--e8fP3es-8YGvaMURq-lpxXLmGsWSgBmR9MJDuy3GRU4EBt2AW0MGT_7iFTbp0wato2LxiHZkZ2ctild1X34dCmrfgDr1ayyG8BkXBahdSy6FDyLVFJSPbxSJYUJ8ePBiw4W-qypLaJRkxF29BI7HmwTYJY3UDlw98NsPtGtddEhN1EQB6JA_ipCYm2OqcfIfmUmbeTBa4KbJqOFmDJZm3uB86TyX3qAqlEQFw892OxQpVtrVusLSHnwfHkZ7RAdLmWVnZ27exSd0YrYg4cNgJdz5lIIiVLZA7UC7ZVFrV6ppp9drfMw4CJRPHz073k9g2t7x-8P9eH-6OAxXI9wL7qYar4J64v5uX0CV83XxbSeP3U7lsHJZSP_Dx5Ke5M
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qUoRgwRtqKDAgECurtmdsjxcIpaQRUSGKKEhlNdjjcciiTolTEDv-gb_hc_gS7h0_cITErguUTRRbk5nkzL3neO4D4EmkjQgyZG7c06Er_DQlO-i5flFEIi-0CLPMNpuIp1N5fJzMtuBnmwtDYZWtTbSGOl9qeka-h24wEgmnrjVFExYxG41fnH52qYMUnbS27TRqiByab19RvlXPJyP8r58Gwfjg3ctXbtNhwNUoC9duEBtZyAQ5eGTyUCeJyQXPdMFT_CoeIXuOcbaomrwsEWEaSplKL5ehDHgexzkVYkLzv42UXAQD2J5N3sw-dHKPo_qraxlxnnh7FTIpHtnIx54HtI0C_nYHPX-4GavZc37jq__zz3YNrjSUmw3rPXIdtkx5Ay73CjHehGpYsoOS0vtXv77_GBn7jg17hyyMHlgvSpYy20aUoM2OFnMc2G1yLXAgNm5D3RhqAfYWSbhLOTZsHxeNQ7IjMz9pkr3KW_D-XFZ9GwblsjQ7wOKwyH1j-XUheBrIqKBKeYWMcu3jy4HHLUTUaV11RKFaIxypDkcO7BN4uhuoULj9YLmaq8buKJ_rwAs9kSOzFT7xOcvhQ-TFcRqbwIFnBD1F5gzxpdMmKwPnSYXB1BD1pCCW7juw2yJMNXauUn_g5cCj7jJaKDp2SkuzPLP3SDq9FaEDd2owd3PmsRAximgH5AbMNxa1eaVcfLJV0H2Pi0hy_-6_5_UQLiLg1evJ9PAeXApwW9pga74Lg_XqzNyHC_rLelGtHjTbl8HH84b-b2RaheI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Encoder-Decoder+Architecture+within+a+Classical+Signal-Processing+Framework+for+Real-Time+Barcode+Segmentation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=G%C3%B3mez-C%C3%A1rdenes%2C+%C3%93scar&rft.au=Marichal-Hern%C3%A1ndez%2C+Jos%C3%A9+Gil&rft.au=Son%2C+Jung-Young&rft.au=P%C3%A9rez+Jim%C3%A9nez%2C+Rafael&rft.date=2023-07-03&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=13&rft_id=info:doi/10.3390%2Fs23136109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon