Towards Real-Time Heartbeat Classification: Evaluation of Nonlinear Morphological Features and Voting Method
Abnormal heart rhythms are one of the significant health concerns worldwide. The current state-of-the-art to recognize and classify abnormal heartbeats is manually performed by visual inspection by an expert practitioner. This is not just a tedious task; it is also error prone and, because it is per...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 19; číslo 23; s. 5079 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
21.11.2019
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Abnormal heart rhythms are one of the significant health concerns worldwide. The current state-of-the-art to recognize and classify abnormal heartbeats is manually performed by visual inspection by an expert practitioner. This is not just a tedious task; it is also error prone and, because it is performed, post-recordings may add unnecessary delay to the care. The real key to the fight to cardiac diseases is real-time detection that triggers prompt action. The biggest hurdle to real-time detection is represented by the rare occurrences of abnormal heartbeats and even more are some rare typologies that are not fully represented in signal datasets; the latter is what makes it difficult for doctors and algorithms to recognize them. This work presents an automated heartbeat classification based on nonlinear morphological features and a voting scheme suitable for rare heartbeat morphologies. Although the algorithm is designed and tested on a computer, it is intended ultimately to run on a portable i.e., field-programmable gate array (FPGA) devices. Our algorithm tested on Massachusetts Institute of Technology- Beth Israel Hospital(MIT-BIH) database as per Association for the Advancement of Medical Instrumentation(AAMI) recommendations. The simulation results show the superiority of the proposed method, especially in predicting minority groups: the fusion and unknown classes with 90.4% and 100%. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s19235079 |