Machine-Learning Approach for Automatic Detection of Wild Beluga Whales from Hand-Held Camera Pictures

A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel sur...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 11; p. 4107
Main Authors: Araújo, Voncarlos M., Shukla, Ankita, Chion, Clément, Gambs, Sébastien, Michaud, Robert
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 28.05.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert’s workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset’s annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall.
AbstractList A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert’s workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset’s annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall.
A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert's workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset's annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall.A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert's workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset's annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall.
A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert's workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales ( ) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset's annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall.
Author Chion, Clément
Araújo, Voncarlos M.
Gambs, Sébastien
Shukla, Ankita
Michaud, Robert
AuthorAffiliation 3 Département d’Informatique, Université du Québec à Montréal (UQAM), Montreal, QC H2L 2C4, Canada; gambs.sebastien@uqam.ca
4 Groupe de Recherche et d’Éducation sur les Mammifères Marins (GREMM), Tadoussac, QC G0T 2A0, Canada; rmichaud@gremm.org
2 School of Arts, Media and Engineering, Arizona State University, Tempe, AZ 85281, USA; ashukl20@asu.edu
1 Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, QC J0V 1V0, Canada; clement.chion@uqo.ca
AuthorAffiliation_xml – name: 2 School of Arts, Media and Engineering, Arizona State University, Tempe, AZ 85281, USA; ashukl20@asu.edu
– name: 4 Groupe de Recherche et d’Éducation sur les Mammifères Marins (GREMM), Tadoussac, QC G0T 2A0, Canada; rmichaud@gremm.org
– name: 1 Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, QC J0V 1V0, Canada; clement.chion@uqo.ca
– name: 3 Département d’Informatique, Université du Québec à Montréal (UQAM), Montreal, QC H2L 2C4, Canada; gambs.sebastien@uqam.ca
Author_xml – sequence: 1
  givenname: Voncarlos M.
  orcidid: 0000-0002-7103-6882
  surname: Araújo
  fullname: Araújo, Voncarlos M.
– sequence: 2
  givenname: Ankita
  surname: Shukla
  fullname: Shukla, Ankita
– sequence: 3
  givenname: Clément
  orcidid: 0000-0001-9618-0074
  surname: Chion
  fullname: Chion, Clément
– sequence: 4
  givenname: Sébastien
  surname: Gambs
  fullname: Gambs, Sébastien
– sequence: 5
  givenname: Robert
  surname: Michaud
  fullname: Michaud, Robert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35684729$$D View this record in MEDLINE/PubMed
BookMark eNplkklvEzEUxy3Uii5w4AsgS1zgMK338VyQQlhSKRUcQD1ajpfE0Ywd7Bkkvj0OaasuJ1vv_d_vrWfgKKboAHiD0QWlHboshGDMMGpfgFPMCGskIejowf8EnJWyRYhQSuVLcEK5kKwl3Snw19psQnTN0ukcQ1zD2W6XUzVCnzKcTWMa9BgM_OxGZ8aQIkwe3oTewk-un9Ya3mx07wr0OQ1woaNtFq4653pwWcMfwYxTduUVOPa6L-717XsOfn398nO-aJbfv13NZ8vGMNGNDdYMe88otxKh1nQec86pFc4QY4xEFHnGNFthgRgV0gtLCaPVVdvCK-7pObg6cG3SW7XLYdD5r0o6qP-GlNdK59pO75RnvrUrjE27zyrbjmLGrUGYYsmFNZX18cDaTavBWePimHX_CPrYE8NGrdMf1VUAJaIC3t8Ccvo9uTKqIRTj-l5Hl6aiiGi5wEhSVKXvnki3acqxjmqvYrSrM5FV9fZhRfel3K2zCi4PApNTKdl5ZcKo91urBYZeYaT2B6PuD6ZGfHgScQd9rv0HB5W9sw
CitedBy_id crossref_primary_10_1016_j_ecoinf_2023_102388
crossref_primary_10_3390_electronics11172748
crossref_primary_10_1016_j_atech_2025_100770
crossref_primary_10_1016_j_oceaneng_2024_116796
Cites_doi 10.1109/CVPR.2017.685
10.1038/s41598-019-50795-9
10.1071/AM14023
10.1007/978-3-319-10599-4
10.1371/journal.pone.0212532
10.1016/j.marpolbul.2015.08.045
10.1109/TNNLS.2018.2876865
10.3389/fmars.2018.00271
10.1016/j.ecoinf.2019.01.006
10.1093/bioinformatics/btz259
10.1109/CVPR.2016.90
10.1080/01431160600746456
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2014.81
10.1111/j.1523-1739.2006.00338.x
10.1139/juvs-2021-0024
10.1007/978-3-030-30639-7_7
10.1111/mms.12141
10.1007/978-3-7908-2604-3
10.1016/S0964-5691(00)00028-4
10.1109/CVPR.2016.91
10.1109/WACVW.2015.10
10.1109/ICCV.2017.322
10.1109/ICCV.2015.169
10.3390/s20154276
10.1080/13880290701229838
10.1007/978-3-319-46448-0_2
10.1109/WACV.2017.105
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22114107
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f4f7db11c71a418793145dc0131856dc
PMC9185326
35684729
10_3390_s22114107
Genre Journal Article
GrantInformation_xml – fundername: Réseau Québec Maritime (RQM) - Programme Odyssée
  grantid: 2017-2022-39557
– fundername: Réseau Québec Maritime and Ministère de l’Économie et de l’Innovation du Québec
  grantid: 2017-2022-39557
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c469t-1a41ff435d8007c9f15553d6ec2ccc8030f44a4b1604368f6d3243ccc3381b5f3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808720000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 18:59:36 EDT 2025
Tue Nov 04 01:53:09 EST 2025
Sun Nov 09 14:24:04 EST 2025
Tue Oct 07 07:47:13 EDT 2025
Wed Feb 19 02:25:59 EST 2025
Sat Nov 29 07:17:15 EST 2025
Tue Nov 18 21:50:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords deep learning
beluga whale monitoring
automatic object detection
ocean protection
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-1a41ff435d8007c9f15553d6ec2ccc8030f44a4b1604368f6d3243ccc3381b5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9618-0074
0000-0002-7103-6882
OpenAccessLink https://doaj.org/article/f4f7db11c71a418793145dc0131856dc
PMID 35684729
PQID 2674394358
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f4f7db11c71a418793145dc0131856dc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9185326
proquest_miscellaneous_2675610830
proquest_journals_2674394358
pubmed_primary_35684729
crossref_citationtrail_10_3390_s22114107
crossref_primary_10_3390_s22114107
PublicationCentury 2000
PublicationDate 20220528
PublicationDateYYYYMMDD 2022-05-28
PublicationDate_xml – month: 5
  year: 2022
  text: 20220528
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Read (ref_4) 2006; 20
McCoy (ref_7) 2018; 5
Bloice (ref_38) 2019; 35
Guirado (ref_14) 2019; 9
Smith (ref_1) 2000; 43
ref_36
ref_13
ref_35
ref_12
ref_34
ref_33
ref_32
ref_31
Urian (ref_11) 2014; 31
Zhao (ref_30) 2019; 30
ref_19
ref_18
ref_17
ref_39
ref_15
ref_37
Wright (ref_3) 2015; 100
Ren (ref_22) 2015; Volume 1
ref_25
ref_24
ref_23
ref_21
ref_20
Harasyn (ref_27) 2022; 10
Weir (ref_2) 2007; 10
Parente (ref_5) 2011; 11
ref_29
ref_28
ref_26
Meek (ref_9) 2015; 37
Dimauro (ref_16) 2019; 50
ref_8
Lu (ref_10) 2007; 28
ref_6
References_xml – ident: ref_37
  doi: 10.1109/CVPR.2017.685
– volume: 9
  start-page: 14259
  year: 2019
  ident: ref_14
  article-title: Whale counting in satellite and aerial images with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50795-9
– ident: ref_34
– volume: 37
  start-page: 13
  year: 2015
  ident: ref_9
  article-title: The pitfalls of wildlife camera trapping as a survey tool in Australia
  publication-title: Aust. Mammal.
  doi: 10.1071/AM14023
– volume: 11
  start-page: 409
  year: 2011
  ident: ref_5
  article-title: Effectiveness of Monitoring Marine Mammals during Marine Seismic Surveys off Northeast Brazil
  publication-title: J. Integr. Coast. Zone Manag.
– ident: ref_26
  doi: 10.1007/978-3-319-10599-4
– ident: ref_13
  doi: 10.1371/journal.pone.0212532
– volume: 100
  start-page: 231
  year: 2015
  ident: ref_3
  article-title: JNCC guidelines for minimising the risk of injury and disturbance to marine mammals from seismic surveys: We can do better
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.08.045
– volume: 30
  start-page: 3212
  year: 2019
  ident: ref_30
  article-title: Object Detection with Deep Learning: A Review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 5
  start-page: 271
  year: 2018
  ident: ref_7
  article-title: Long-Term Photo-Identification Reveals the Population Dynamics and Strong Site Fidelity of Adult Whale Sharks to the Coastal Waters of Donsol, Philippines
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2018.00271
– volume: 50
  start-page: 95
  year: 2019
  ident: ref_16
  article-title: A SIFT-based software system for the photo-identification of the Risso’s dolphin
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2019.01.006
– volume: 35
  start-page: 4522
  year: 2019
  ident: ref_38
  article-title: Biomedical image augmentation using Augmentor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz259
– ident: ref_23
– ident: ref_33
  doi: 10.1109/CVPR.2016.90
– volume: 28
  start-page: 823
  year: 2007
  ident: ref_10
  article-title: A survey of image classification methods and techniques for improving classification performance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600746456
– ident: ref_32
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_6
– ident: ref_8
– ident: ref_31
  doi: 10.1109/CVPR.2014.81
– volume: 20
  start-page: 163
  year: 2006
  ident: ref_4
  article-title: Bycatch of marine mammals in U.S. and global fisheries
  publication-title: Conserv. Biol. J. Soc. Conserv. Biol.
  doi: 10.1111/j.1523-1739.2006.00338.x
– ident: ref_25
– volume: 10
  start-page: 77
  year: 2022
  ident: ref_27
  article-title: Detection and tracking of belugas, kayaks and motorized boats in drone video using deep learning
  publication-title: Drone Syst. Appl.
  doi: 10.1139/juvs-2021-0024
– ident: ref_29
– ident: ref_19
  doi: 10.1007/978-3-030-30639-7_7
– ident: ref_12
– volume: 31
  start-page: 298
  year: 2014
  ident: ref_11
  article-title: Recommendations for photo-identification methods used in capture-recapture models with cetaceans
  publication-title: Mar. Mammal Sci.
  doi: 10.1111/mms.12141
– ident: ref_39
  doi: 10.1007/978-3-7908-2604-3
– volume: 43
  start-page: 11
  year: 2000
  ident: ref_1
  article-title: The industrialisation of the world ocean
  publication-title: Ocean. Coast. Manag.
  doi: 10.1016/S0964-5691(00)00028-4
– ident: ref_35
  doi: 10.1109/CVPR.2016.91
– ident: ref_15
– ident: ref_18
  doi: 10.1109/WACVW.2015.10
– ident: ref_20
  doi: 10.1109/ICCV.2017.322
– ident: ref_21
  doi: 10.1109/ICCV.2015.169
– ident: ref_17
– volume: Volume 1
  start-page: 91
  year: 2015
  ident: ref_22
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems
– ident: ref_36
  doi: 10.3390/s20154276
– volume: 10
  start-page: 1
  year: 2007
  ident: ref_2
  article-title: Comparative Review of the Regional Marine Mammal Mitigation Guidelines Implemented During Industrial Seismic Surveys, and Guidance Towards a Worldwide Standard
  publication-title: J. Int. Wildl. Law Policy
  doi: 10.1080/13880290701229838
– ident: ref_28
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref_24
  doi: 10.1109/WACV.2017.105
SSID ssj0023338
Score 2.415743
Snippet A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4107
SubjectTerms Algorithms
Animals
automatic object detection
Automation
beluga whale monitoring
Cameras
Datasets
deep learning
Dolphins & porpoises
Estuaries
Marine mammals
Neural networks
ocean protection
Whales & whaling
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgywEO5U0DBRnEgYu1cew8fELbQlUkWu2BRzlFiR_blaqkbLL8fmYcb9hFFSeusQ-ejD3zjT3zDSFvneROFTxlrlaOycQKpowSrKi4MrngJvNVad8-5-fnxcWFmofy6C6kVW5sojfUA9sz5m2DEZ6aVuON-TTB3HkFrr54f_2TYQ8pfGsNDTVukz0k3iomZG_-6Wz-YwzABMRjA7uQgFB_2iUQ_UiOnWS3fJKn7r8Jb_6dNrnlh07u_18JHpD9gEfpbNhAD8kt2zwi97ZYCh8Td-YTLi0LXKwLOgtE5BQQL52t-9bzvtIPtveJXQ1tHQVzY-iRvVovKvr9EtxQR7GUhZ5WjWHg7Aw9rvBCjM6X_hWje0K-nnz8cnzKQnsGpiGm7hmvQM8OJDAAOnOtHECTVJjM6kRrXYD1cFJWsuaZp7l3mQHwJmAItMDr1ImnZNK0jT0gVADucrGpZSaRzz9XaR5bJWycO1dYGUfk3UZBpQ7c5dhC46qEGAZ1WY66jMibcer1QNhx06Qj1PI4ATm2_Yd2tSjDkS2ddLmpOdc5SgqLElymRiNBUZFmRkfkcKPnMhz8rvyj1oi8HofhyOI7TNXYdu3nIGotBMj1bNhS40rgTwBeSFRE8p3NtrPU3ZFmeelpwRVCryR7_u9lvSB3E6zgiFOWFIdk0q_W9iW5o3_1y271KpyY32xKJwE
  priority: 102
  providerName: ProQuest
Title Machine-Learning Approach for Automatic Detection of Wild Beluga Whales from Hand-Held Camera Pictures
URI https://www.ncbi.nlm.nih.gov/pubmed/35684729
https://www.proquest.com/docview/2674394358
https://www.proquest.com/docview/2675610830
https://pubmed.ncbi.nlm.nih.gov/PMC9185326
https://doaj.org/article/f4f7db11c71a418793145dc0131856dc
Volume 22
WOSCitedRecordID wos000808720000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeBpTKIA5do49iJ7WO7dLVItIoQj3KKEj92K61StEk58tsZO2nUopW4cMnBnoM9nvF8E9vfALxznDolaRa7WrmYp5bFyigWy4oqIxg1eXiV9u2TWC7laqWKvVJf_k5YTw_cK-7EcSdMTakWtOK-NDajPDPa08TILDfa776IenbJ1JBqMcy8eh4hhkn9SZtinsOprxm7F30CSf9NyPLvC5J7EefsITwYoCKZ9kN8BLds8xju7xEIPgG3CHchbTzQpF6Q6cARThCMkum22wRKVvLBduHOVUM2juBOYMjMXm0vKvL9EiNES_wrE3JeNSbGOGTIaeX_VZFiHQ4Y2qfw9Wz-5fQ8HionxBrT3S72qnIOkZBBPCi0cogaMmZyq1OttUTHdpxXvKZ5YKB3uUFcxbAL1UbrzLFncNRsGvsCCENI5BJT85x7qn2hMpFYxWwinJOWJxG832m01AOtuK9ucVVieuGVX47Kj-DtKPqz59K4SWjml2UU8PTXoQGNohyMovyXUURwvFvUcvDJtkz9ewuFSpERvBm70Zv8EUnV2M02yHhAKRnO63lvA-NIUBMYylMVgTiwjoOhHvY068vA2K08Kkrzl_9jbq_gXuqfYCRZnMpjOOqut_Y13NW_unV7PYHbYiXCV07gzmy-LD5Pgmvgd_F7jm3Fx0Xx4w_WixFw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwl44H4pDDAIJF6sxbETxw8IdRtTp3XVHgb0LSS-dJWmZDQtiD_Fb-TYTbsWTbztgdf4KDp2vpyLffwdgLdOMKcyllBXKkdFbDlVRnGaFUwZyZlJw620L305GGTDoTregN-LuzC-rHJhE4OhNrX2e-Tbsa-WV-jcs4_n36nvGuVPVxctNOawOLS_fmLK1nw42MPv-y6O9z-d7PZo21WAakwFp5QVqJ7DFxmMlaRWDj1qwk1qday1zhD0TohClCwN7OwuNRhzcBzCZI6VieP43mtwHe249CVkcniR4HEUmbMXca6i7SbG7Eow36l2xeeF1gCXxbN_l2Wu-Ln9u__bCt2DO21ETbrzX-A-bNjqAdxe4Vl8CO4olIxa2rLJjki3pVInGLOT7mxaB-ZasmenoTStIrUjaDAN2bFns1FBvp6iI22Iv4xDekVlKLprQ3YLv6VHjsfhHKZ5BJ-vZKKPYbOqK_sUCMfI0UWmFKnwHQmkSmRkFbeRdC6zIurA-wUEct2yr_smIGc5ZmEeLfkSLR14sxQ9n1OOXCa043G0FPAs4eFBPRnlrdHJnXDSlIxp6WeKSnEmEqM9xVKWpEZ3YGuBpLw1XU1-AaMOvF4Oo9HxJ0lFZetZkPFxd8ZxXk_moF1qgiuBEU-sOiDX4Lym6vpINT4NxObKB49x-uzfar2Cm72To37ePxgcPodbsb-PEiU0zrZgczqZ2RdwQ_-YjpvJy_B3Evh21WD_A7_FdVY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VghA98IYGChgEEhcr67V3vT4glDZErVqiHHjktmz8SCNVuyWbgPhr_DrGziZNUMWtB67rkTXe_TyP9fgbgNdOMKcyllA3Uo6K2HKqjOI0K5gykjOThltpX05kv58Nh2qwBb-Xd2F8WeXSJgZDbSrt_5G3Y18tr9C5Z23XlEUMur3359-p7yDlT1qX7TQWEDm2v35i-la_O-rit34Tx70Pnw4OadNhgGpMC2eUFaiqw0kNxk1SK4feNeEmtTrWWme4AZwQhRixNDC1u9Rg_MFxCBM7Nkocx3mvwXXJufRtI-TwItnjKLJgMuJcRe06xkxLMN-1ds3_hTYBl8W2f5dorvm83p3_-W3dhdtNpE06i61xD7ZseR921vgXH4D7GEpJLW1YZsek01CsE4zlSWc-qwKjLenaWShZK0nlCBpSQ_bt2XxckK-n6GBr4i_pkMOiNBTduCEHhf_VRwaTcD5TP4TPV7LQR7BdVqXdBcIxonSRGYlU-E4FUiUysorbSDqXWRG14O0SDrluWNl9c5CzHLMzj5x8hZwWvFqJni-oSC4T2veYWgl49vDwoJqO88YY5U44aUaMaelXikpxJhKjPfVSlqRGt2Bviaq8MWl1fgGpFrxcDaMx8idMRWmreZDx8XjGcV2PFwBeaYJvAiOhWLVAbkB7Q9XNkXJyGgjPlQ8q4_TJv9V6ATcR4_nJUf_4KdyK_TWVKKFxtgfbs-ncPoMb-sdsUk-fh41K4NtVY_0PS_Z-Cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-Learning+Approach+for+Automatic+Detection+of+Wild+Beluga+Whales+from+Hand-Held+Camera+Pictures&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ara%C3%BAjo%2C+Voncarlos+M&rft.au=Shukla%2C+Ankita&rft.au=Chion%2C+Cl%C3%A9ment&rft.au=Gambs%2C+S%C3%A9bastien&rft.date=2022-05-28&rft.eissn=1424-8220&rft.volume=22&rft.issue=11&rft_id=info:doi/10.3390%2Fs22114107&rft_id=info%3Apmid%2F35684729&rft.externalDocID=35684729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon