Machine-Learning Approach for Automatic Detection of Wild Beluga Whales from Hand-Held Camera Pictures
A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel sur...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 11; p. 4107 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
28.05.2022
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert’s workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset’s annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall. |
|---|---|
| AbstractList | A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert’s workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset’s annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall. A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert's workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset's annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall.A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert's workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales (Delphinapterus leucas) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset's annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall. A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished using visual inspection and cameras from line-transect ships, small boats, and aircraft. However, marine mammal observation through vessel surveys requires significant workforce resources, including for the post-processing of pictures, and is further challenged due to animal bodies being partially hidden underwater, small-scale object size, occlusion among objects, and distracter objects (e.g., waves, sun glare, etc.). To relieve the human expert's workload while improving the observation accuracy, we propose a novel system for automating the detection of beluga whales ( ) in the wild from pictures. Our system relies on a dataset named Beluga-5k, containing more than 5.5 thousand pictures of belugas. First, to improve the dataset's annotation, we have designed a semi-manual strategy for annotating candidates in images with single (i.e., one beluga) and multiple (i.e., two or more belugas) candidate subjects efficiently. Second, we have studied the performance of three off-the-shelf object-detection algorithms, namely, Mask-RCNN, SSD, and YOLO v3-Tiny, on the Beluga-5k dataset. Afterward, we have set YOLO v3-Tiny as the detector, integrating single- and multiple-individual images into the model training. Our fine-tuned CNN-backbone detector trained with semi-manual annotations is able to detect belugas despite the presence of distracter objects with high accuracy (i.e., 97.05 mAP@0.5). Finally, our proposed method is able to detect overlapped/occluded multiple individuals in images (beluga whales that swim in groups). For instance, it is able to detect 688 out of 706 belugas encountered in 200 multiple images, achieving 98.29% precision and 99.14% recall. |
| Author | Chion, Clément Araújo, Voncarlos M. Gambs, Sébastien Shukla, Ankita Michaud, Robert |
| AuthorAffiliation | 3 Département d’Informatique, Université du Québec à Montréal (UQAM), Montreal, QC H2L 2C4, Canada; gambs.sebastien@uqam.ca 4 Groupe de Recherche et d’Éducation sur les Mammifères Marins (GREMM), Tadoussac, QC G0T 2A0, Canada; rmichaud@gremm.org 2 School of Arts, Media and Engineering, Arizona State University, Tempe, AZ 85281, USA; ashukl20@asu.edu 1 Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, QC J0V 1V0, Canada; clement.chion@uqo.ca |
| AuthorAffiliation_xml | – name: 2 School of Arts, Media and Engineering, Arizona State University, Tempe, AZ 85281, USA; ashukl20@asu.edu – name: 4 Groupe de Recherche et d’Éducation sur les Mammifères Marins (GREMM), Tadoussac, QC G0T 2A0, Canada; rmichaud@gremm.org – name: 1 Département des Sciences Naturelles, Université du Québec en Outaouais, Ripon, QC J0V 1V0, Canada; clement.chion@uqo.ca – name: 3 Département d’Informatique, Université du Québec à Montréal (UQAM), Montreal, QC H2L 2C4, Canada; gambs.sebastien@uqam.ca |
| Author_xml | – sequence: 1 givenname: Voncarlos M. orcidid: 0000-0002-7103-6882 surname: Araújo fullname: Araújo, Voncarlos M. – sequence: 2 givenname: Ankita surname: Shukla fullname: Shukla, Ankita – sequence: 3 givenname: Clément orcidid: 0000-0001-9618-0074 surname: Chion fullname: Chion, Clément – sequence: 4 givenname: Sébastien surname: Gambs fullname: Gambs, Sébastien – sequence: 5 givenname: Robert surname: Michaud fullname: Michaud, Robert |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35684729$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkklvEzEUxy3Uii5w4AsgS1zgMK338VyQQlhSKRUcQD1ajpfE0Ywd7Bkkvj0OaasuJ1vv_d_vrWfgKKboAHiD0QWlHboshGDMMGpfgFPMCGskIejowf8EnJWyRYhQSuVLcEK5kKwl3Snw19psQnTN0ukcQ1zD2W6XUzVCnzKcTWMa9BgM_OxGZ8aQIkwe3oTewk-un9Ya3mx07wr0OQ1woaNtFq4653pwWcMfwYxTduUVOPa6L-717XsOfn398nO-aJbfv13NZ8vGMNGNDdYMe88otxKh1nQec86pFc4QY4xEFHnGNFthgRgV0gtLCaPVVdvCK-7pObg6cG3SW7XLYdD5r0o6qP-GlNdK59pO75RnvrUrjE27zyrbjmLGrUGYYsmFNZX18cDaTavBWePimHX_CPrYE8NGrdMf1VUAJaIC3t8Ccvo9uTKqIRTj-l5Hl6aiiGi5wEhSVKXvnki3acqxjmqvYrSrM5FV9fZhRfel3K2zCi4PApNTKdl5ZcKo91urBYZeYaT2B6PuD6ZGfHgScQd9rv0HB5W9sw |
| CitedBy_id | crossref_primary_10_1016_j_ecoinf_2023_102388 crossref_primary_10_3390_electronics11172748 crossref_primary_10_1016_j_atech_2025_100770 crossref_primary_10_1016_j_oceaneng_2024_116796 |
| Cites_doi | 10.1109/CVPR.2017.685 10.1038/s41598-019-50795-9 10.1071/AM14023 10.1007/978-3-319-10599-4 10.1371/journal.pone.0212532 10.1016/j.marpolbul.2015.08.045 10.1109/TNNLS.2018.2876865 10.3389/fmars.2018.00271 10.1016/j.ecoinf.2019.01.006 10.1093/bioinformatics/btz259 10.1109/CVPR.2016.90 10.1080/01431160600746456 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2014.81 10.1111/j.1523-1739.2006.00338.x 10.1139/juvs-2021-0024 10.1007/978-3-030-30639-7_7 10.1111/mms.12141 10.1007/978-3-7908-2604-3 10.1016/S0964-5691(00)00028-4 10.1109/CVPR.2016.91 10.1109/WACVW.2015.10 10.1109/ICCV.2017.322 10.1109/ICCV.2015.169 10.3390/s20154276 10.1080/13880290701229838 10.1007/978-3-319-46448-0_2 10.1109/WACV.2017.105 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22114107 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_f4f7db11c71a418793145dc0131856dc PMC9185326 35684729 10_3390_s22114107 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Réseau Québec Maritime (RQM) - Programme Odyssée grantid: 2017-2022-39557 – fundername: Réseau Québec Maritime and Ministère de l’Économie et de l’Innovation du Québec grantid: 2017-2022-39557 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c469t-1a41ff435d8007c9f15553d6ec2ccc8030f44a4b1604368f6d3243ccc3381b5f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808720000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:59:36 EDT 2025 Tue Nov 04 01:53:09 EST 2025 Sun Nov 09 14:24:04 EST 2025 Tue Oct 07 07:47:13 EDT 2025 Wed Feb 19 02:25:59 EST 2025 Sat Nov 29 07:17:15 EST 2025 Tue Nov 18 21:50:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | deep learning beluga whale monitoring automatic object detection ocean protection |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-1a41ff435d8007c9f15553d6ec2ccc8030f44a4b1604368f6d3243ccc3381b5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9618-0074 0000-0002-7103-6882 |
| OpenAccessLink | https://doaj.org/article/f4f7db11c71a418793145dc0131856dc |
| PMID | 35684729 |
| PQID | 2674394358 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f4f7db11c71a418793145dc0131856dc pubmedcentral_primary_oai_pubmedcentral_nih_gov_9185326 proquest_miscellaneous_2675610830 proquest_journals_2674394358 pubmed_primary_35684729 crossref_citationtrail_10_3390_s22114107 crossref_primary_10_3390_s22114107 |
| PublicationCentury | 2000 |
| PublicationDate | 20220528 |
| PublicationDateYYYYMMDD | 2022-05-28 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220528 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Read (ref_4) 2006; 20 McCoy (ref_7) 2018; 5 Bloice (ref_38) 2019; 35 Guirado (ref_14) 2019; 9 Smith (ref_1) 2000; 43 ref_36 ref_13 ref_35 ref_12 ref_34 ref_33 ref_32 ref_31 Urian (ref_11) 2014; 31 Zhao (ref_30) 2019; 30 ref_19 ref_18 ref_17 ref_39 ref_15 ref_37 Wright (ref_3) 2015; 100 Ren (ref_22) 2015; Volume 1 ref_25 ref_24 ref_23 ref_21 ref_20 Harasyn (ref_27) 2022; 10 Weir (ref_2) 2007; 10 Parente (ref_5) 2011; 11 ref_29 ref_28 ref_26 Meek (ref_9) 2015; 37 Dimauro (ref_16) 2019; 50 ref_8 Lu (ref_10) 2007; 28 ref_6 |
| References_xml | – ident: ref_37 doi: 10.1109/CVPR.2017.685 – volume: 9 start-page: 14259 year: 2019 ident: ref_14 article-title: Whale counting in satellite and aerial images with deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-50795-9 – ident: ref_34 – volume: 37 start-page: 13 year: 2015 ident: ref_9 article-title: The pitfalls of wildlife camera trapping as a survey tool in Australia publication-title: Aust. Mammal. doi: 10.1071/AM14023 – volume: 11 start-page: 409 year: 2011 ident: ref_5 article-title: Effectiveness of Monitoring Marine Mammals during Marine Seismic Surveys off Northeast Brazil publication-title: J. Integr. Coast. Zone Manag. – ident: ref_26 doi: 10.1007/978-3-319-10599-4 – ident: ref_13 doi: 10.1371/journal.pone.0212532 – volume: 100 start-page: 231 year: 2015 ident: ref_3 article-title: JNCC guidelines for minimising the risk of injury and disturbance to marine mammals from seismic surveys: We can do better publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2015.08.045 – volume: 30 start-page: 3212 year: 2019 ident: ref_30 article-title: Object Detection with Deep Learning: A Review publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2876865 – volume: 5 start-page: 271 year: 2018 ident: ref_7 article-title: Long-Term Photo-Identification Reveals the Population Dynamics and Strong Site Fidelity of Adult Whale Sharks to the Coastal Waters of Donsol, Philippines publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2018.00271 – volume: 50 start-page: 95 year: 2019 ident: ref_16 article-title: A SIFT-based software system for the photo-identification of the Risso’s dolphin publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2019.01.006 – volume: 35 start-page: 4522 year: 2019 ident: ref_38 article-title: Biomedical image augmentation using Augmentor publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz259 – ident: ref_23 – ident: ref_33 doi: 10.1109/CVPR.2016.90 – volume: 28 start-page: 823 year: 2007 ident: ref_10 article-title: A survey of image classification methods and techniques for improving classification performance publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600746456 – ident: ref_32 doi: 10.1109/TPAMI.2016.2577031 – ident: ref_6 – ident: ref_8 – ident: ref_31 doi: 10.1109/CVPR.2014.81 – volume: 20 start-page: 163 year: 2006 ident: ref_4 article-title: Bycatch of marine mammals in U.S. and global fisheries publication-title: Conserv. Biol. J. Soc. Conserv. Biol. doi: 10.1111/j.1523-1739.2006.00338.x – ident: ref_25 – volume: 10 start-page: 77 year: 2022 ident: ref_27 article-title: Detection and tracking of belugas, kayaks and motorized boats in drone video using deep learning publication-title: Drone Syst. Appl. doi: 10.1139/juvs-2021-0024 – ident: ref_29 – ident: ref_19 doi: 10.1007/978-3-030-30639-7_7 – ident: ref_12 – volume: 31 start-page: 298 year: 2014 ident: ref_11 article-title: Recommendations for photo-identification methods used in capture-recapture models with cetaceans publication-title: Mar. Mammal Sci. doi: 10.1111/mms.12141 – ident: ref_39 doi: 10.1007/978-3-7908-2604-3 – volume: 43 start-page: 11 year: 2000 ident: ref_1 article-title: The industrialisation of the world ocean publication-title: Ocean. Coast. Manag. doi: 10.1016/S0964-5691(00)00028-4 – ident: ref_35 doi: 10.1109/CVPR.2016.91 – ident: ref_15 – ident: ref_18 doi: 10.1109/WACVW.2015.10 – ident: ref_20 doi: 10.1109/ICCV.2017.322 – ident: ref_21 doi: 10.1109/ICCV.2015.169 – ident: ref_17 – volume: Volume 1 start-page: 91 year: 2015 ident: ref_22 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: Proceedings of the 28th International Conference on Neural Information Processing Systems – ident: ref_36 doi: 10.3390/s20154276 – volume: 10 start-page: 1 year: 2007 ident: ref_2 article-title: Comparative Review of the Regional Marine Mammal Mitigation Guidelines Implemented During Industrial Seismic Surveys, and Guidance Towards a Worldwide Standard publication-title: J. Int. Wildl. Law Policy doi: 10.1080/13880290701229838 – ident: ref_28 doi: 10.1007/978-3-319-46448-0_2 – ident: ref_24 doi: 10.1109/WACV.2017.105 |
| SSID | ssj0023338 |
| Score | 2.415743 |
| Snippet | A key aspect of ocean protection consists in estimating the abundance of marine mammal population density within their habitat, which is usually accomplished... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 4107 |
| SubjectTerms | Algorithms Animals automatic object detection Automation beluga whale monitoring Cameras Datasets deep learning Dolphins & porpoises Estuaries Marine mammals Neural networks ocean protection Whales & whaling |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgywEO5U0DBRnEgYu1cew8fELbQlUkWu2BRzlFiR_blaqkbLL8fmYcb9hFFSeusQ-ejD3zjT3zDSFvneROFTxlrlaOycQKpowSrKi4MrngJvNVad8-5-fnxcWFmofy6C6kVW5sojfUA9sz5m2DEZ6aVuON-TTB3HkFrr54f_2TYQ8pfGsNDTVukz0k3iomZG_-6Wz-YwzABMRjA7uQgFB_2iUQ_UiOnWS3fJKn7r8Jb_6dNrnlh07u_18JHpD9gEfpbNhAD8kt2zwi97ZYCh8Td-YTLi0LXKwLOgtE5BQQL52t-9bzvtIPtveJXQ1tHQVzY-iRvVovKvr9EtxQR7GUhZ5WjWHg7Aw9rvBCjM6X_hWje0K-nnz8cnzKQnsGpiGm7hmvQM8OJDAAOnOtHECTVJjM6kRrXYD1cFJWsuaZp7l3mQHwJmAItMDr1ImnZNK0jT0gVADucrGpZSaRzz9XaR5bJWycO1dYGUfk3UZBpQ7c5dhC46qEGAZ1WY66jMibcer1QNhx06Qj1PI4ATm2_Yd2tSjDkS2ddLmpOdc5SgqLElymRiNBUZFmRkfkcKPnMhz8rvyj1oi8HofhyOI7TNXYdu3nIGotBMj1bNhS40rgTwBeSFRE8p3NtrPU3ZFmeelpwRVCryR7_u9lvSB3E6zgiFOWFIdk0q_W9iW5o3_1y271KpyY32xKJwE priority: 102 providerName: ProQuest |
| Title | Machine-Learning Approach for Automatic Detection of Wild Beluga Whales from Hand-Held Camera Pictures |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35684729 https://www.proquest.com/docview/2674394358 https://www.proquest.com/docview/2675610830 https://pubmed.ncbi.nlm.nih.gov/PMC9185326 https://doaj.org/article/f4f7db11c71a418793145dc0131856dc |
| Volume | 22 |
| WOSCitedRecordID | wos000808720000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiDeBpTKIA5do49iJ7WO7dLVItIoQj3KKEj92K61StEk58tsZO2nUopW4cMnBnoM9nvF8E9vfALxznDolaRa7WrmYp5bFyigWy4oqIxg1eXiV9u2TWC7laqWKvVJf_k5YTw_cK-7EcSdMTakWtOK-NDajPDPa08TILDfa776IenbJ1JBqMcy8eh4hhkn9SZtinsOprxm7F30CSf9NyPLvC5J7EefsITwYoCKZ9kN8BLds8xju7xEIPgG3CHchbTzQpF6Q6cARThCMkum22wRKVvLBduHOVUM2juBOYMjMXm0vKvL9EiNES_wrE3JeNSbGOGTIaeX_VZFiHQ4Y2qfw9Wz-5fQ8HionxBrT3S72qnIOkZBBPCi0cogaMmZyq1OttUTHdpxXvKZ5YKB3uUFcxbAL1UbrzLFncNRsGvsCCENI5BJT85x7qn2hMpFYxWwinJOWJxG832m01AOtuK9ucVVieuGVX47Kj-DtKPqz59K4SWjml2UU8PTXoQGNohyMovyXUURwvFvUcvDJtkz9ewuFSpERvBm70Zv8EUnV2M02yHhAKRnO63lvA-NIUBMYylMVgTiwjoOhHvY068vA2K08Kkrzl_9jbq_gXuqfYCRZnMpjOOqut_Y13NW_unV7PYHbYiXCV07gzmy-LD5Pgmvgd_F7jm3Fx0Xx4w_WixFw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwl44H4pDDAIJF6sxbETxw8IdRtTp3XVHgb0LSS-dJWmZDQtiD_Fb-TYTbsWTbztgdf4KDp2vpyLffwdgLdOMKcyllBXKkdFbDlVRnGaFUwZyZlJw620L305GGTDoTregN-LuzC-rHJhE4OhNrX2e-Tbsa-WV-jcs4_n36nvGuVPVxctNOawOLS_fmLK1nw42MPv-y6O9z-d7PZo21WAakwFp5QVqJ7DFxmMlaRWDj1qwk1qday1zhD0TohClCwN7OwuNRhzcBzCZI6VieP43mtwHe249CVkcniR4HEUmbMXca6i7SbG7Eow36l2xeeF1gCXxbN_l2Wu-Ln9u__bCt2DO21ETbrzX-A-bNjqAdxe4Vl8CO4olIxa2rLJjki3pVInGLOT7mxaB-ZasmenoTStIrUjaDAN2bFns1FBvp6iI22Iv4xDekVlKLprQ3YLv6VHjsfhHKZ5BJ-vZKKPYbOqK_sUCMfI0UWmFKnwHQmkSmRkFbeRdC6zIurA-wUEct2yr_smIGc5ZmEeLfkSLR14sxQ9n1OOXCa043G0FPAs4eFBPRnlrdHJnXDSlIxp6WeKSnEmEqM9xVKWpEZ3YGuBpLw1XU1-AaMOvF4Oo9HxJ0lFZetZkPFxd8ZxXk_moF1qgiuBEU-sOiDX4Lym6vpINT4NxObKB49x-uzfar2Cm72To37ePxgcPodbsb-PEiU0zrZgczqZ2RdwQ_-YjpvJy_B3Evh21WD_A7_FdVY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VghA98IYGChgEEhcr67V3vT4glDZErVqiHHjktmz8SCNVuyWbgPhr_DrGziZNUMWtB67rkTXe_TyP9fgbgNdOMKcyllA3Uo6K2HKqjOI0K5gykjOThltpX05kv58Nh2qwBb-Xd2F8WeXSJgZDbSrt_5G3Y18tr9C5Z23XlEUMur3359-p7yDlT1qX7TQWEDm2v35i-la_O-rit34Tx70Pnw4OadNhgGpMC2eUFaiqw0kNxk1SK4feNeEmtTrWWme4AZwQhRixNDC1u9Rg_MFxCBM7Nkocx3mvwXXJufRtI-TwItnjKLJgMuJcRe06xkxLMN-1ds3_hTYBl8W2f5dorvm83p3_-W3dhdtNpE06i61xD7ZseR921vgXH4D7GEpJLW1YZsek01CsE4zlSWc-qwKjLenaWShZK0nlCBpSQ_bt2XxckK-n6GBr4i_pkMOiNBTduCEHhf_VRwaTcD5TP4TPV7LQR7BdVqXdBcIxonSRGYlU-E4FUiUysorbSDqXWRG14O0SDrluWNl9c5CzHLMzj5x8hZwWvFqJni-oSC4T2veYWgl49vDwoJqO88YY5U44aUaMaelXikpxJhKjPfVSlqRGt2Bviaq8MWl1fgGpFrxcDaMx8idMRWmreZDx8XjGcV2PFwBeaYJvAiOhWLVAbkB7Q9XNkXJyGgjPlQ8q4_TJv9V6ATcR4_nJUf_4KdyK_TWVKKFxtgfbs-ncPoMb-sdsUk-fh41K4NtVY_0PS_Z-Cg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-Learning+Approach+for+Automatic+Detection+of+Wild+Beluga+Whales+from+Hand-Held+Camera+Pictures&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ara%C3%BAjo%2C+Voncarlos+M&rft.au=Shukla%2C+Ankita&rft.au=Chion%2C+Cl%C3%A9ment&rft.au=Gambs%2C+S%C3%A9bastien&rft.date=2022-05-28&rft.eissn=1424-8220&rft.volume=22&rft.issue=11&rft_id=info:doi/10.3390%2Fs22114107&rft_id=info%3Apmid%2F35684729&rft.externalDocID=35684729 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |