The Prediction of the Remaining Useful Life of Rotating Machinery Based on an Adaptive Maximum Second-Order Cyclostationarity Blind Deconvolution and a Convolutional LSTM Autoencoder
The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 24; no. 8; p. 2382 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
09.04.2024
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery. |
|---|---|
| AbstractList | The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery. The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery.The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery. |
| Audience | Academic |
| Author | Ahmad, Zahoor Kim, Jong-Myon Gao, Yangde |
| AuthorAffiliation | Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; gaoyangdephd@gmail.com (Y.G.); zahooruou@mail.ulsan.ac.kr (Z.A.) |
| AuthorAffiliation_xml | – name: Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; gaoyangdephd@gmail.com (Y.G.); zahooruou@mail.ulsan.ac.kr (Z.A.) |
| Author_xml | – sequence: 1 givenname: Yangde surname: Gao fullname: Gao, Yangde – sequence: 2 givenname: Zahoor orcidid: 0000-0002-3571-8907 surname: Ahmad fullname: Ahmad, Zahoor – sequence: 3 givenname: Jong-Myon orcidid: 0000-0002-5185-1062 surname: Kim fullname: Kim, Jong-Myon |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38675999$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkl1v0zAUhiM0xD7ggj-ALHEDFx2O7TTxFSrla1Knoa27jk7s49ZVYhc7qdgf4_fhrKNsKBeO3vOcx3ZyTrMj5x1m2eucnnMu6YfIBK0Yr9iz7CQXTEwqxujRo_fj7DTGDaWMc169yI55NS0LKeVJ9nu5RvIjoLaqt94Rb0ifkmvswDrrVuQ2ohlasrAGx-K176Ef80tQa-sw3JFPEFGT1AuOzDRse7vDVP5lu6EjN6i805OroDGQ-Z1qfRwF3kGwfeptrdPk8wjtfDvcHwFSAmT-L4G0_c3yksyG3qNTPqleZs8NtBFfPaxn2e3XL8v598ni6tvFfLaYKDGV_SSHfNoUOTRVIyuOlTQMJW0YK7nhQklFy7ypNGeIUksNghttGiyVwhxog_wsu9h7tYdNvQ22g3BXe7D1feDDqobQW9VijVIJAwiCmUZQxYFyaaZVTiVqSpsiuT7uXduh6VArdH2A9on0acXZdb3yuzrPaSF4USXDuwdD8D8HjH3d2aiwbcGhH2LNqSilmKZpSOjb_9CNH0L6lHsqCXMqEnW-p1aQbmCd8WljlR6NnU3_BI1N-ayUvCgkq8aGN4_vcDj834FKwPs9oIKPMaA5IDmtx2GtD8PK_wCypN7F |
| Cites_doi | 10.1016/j.mechmachtheory.2014.06.013 10.3390/wevj13110208 10.3390/s23229212 10.3390/en16073291 10.3390/mi13091471 10.3390/s22124549 10.3390/s24010256 10.3390/s22114156 10.3390/e25050798 10.3390/s20247109 10.3390/lubricants10080170 10.3390/app9245313 10.1109/TIE.2023.3301546 10.1007/s40436-023-00464-y 10.1016/j.ymssp.2021.108018 10.3390/app112311516 10.3390/machines11070678 10.3390/e25030543 10.1109/TII.2022.3217758 10.1109/ACCESS.2020.2985617 10.1109/ACCESS.2020.2976868 10.1016/j.ress.2024.109928 10.20944/preprints202011.0591.v1 10.3390/app12115747 10.1115/1.4062731 10.1016/j.ymssp.2021.107736 10.3390/math9233035 10.3390/machines11020279 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s24082382 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_e9c4faea42fb40c3a039f68109ed00b5 PMC11054358 A793559284 38675999 10_3390_s24082382 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Ministry of Trade, Industry and Energy grantid: 20023566 – fundername: University of Ulsan |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c469t-1a16b51ab8b983e89f2e90b2273f34c9c071b8d32ee9d9da43fdfbe7cce1a0be3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001210294200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:35:49 EST 2025 Tue Nov 04 02:05:36 EST 2025 Fri Sep 05 11:16:05 EDT 2025 Tue Oct 07 07:36:49 EDT 2025 Tue Nov 04 18:22:35 EST 2025 Mon Jul 21 05:45:49 EDT 2025 Sat Nov 29 07:19:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | health index analysis convolutional LSTM autoencoder remaining useful life |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c469t-1a16b51ab8b983e89f2e90b2273f34c9c071b8d32ee9d9da43fdfbe7cce1a0be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3571-8907 0000-0002-5185-1062 |
| OpenAccessLink | https://www.proquest.com/docview/3047054104?pq-origsite=%requestingapplication% |
| PMID | 38675999 |
| PQID | 3047054104 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e9c4faea42fb40c3a039f68109ed00b5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11054358 proquest_miscellaneous_3047946240 proquest_journals_3047054104 gale_infotracacademiconefile_A793559284 pubmed_primary_38675999 crossref_primary_10_3390_s24082382 |
| PublicationCentury | 2000 |
| PublicationDate | 20240409 |
| PublicationDateYYYYMMDD | 2024-04-09 |
| PublicationDate_xml | – month: 4 year: 2024 text: 20240409 day: 9 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Li (ref_16) 2024; 12 Yang (ref_28) 2024; 244 ref_14 Feng (ref_9) 2014; 81 ref_13 ref_12 ref_11 ref_10 ref_19 ref_18 Zhou (ref_25) 2023; 19 ref_15 Zhang (ref_8) 2021; 158 Rathore (ref_26) 2024; 24 Zhao (ref_3) 2020; 8 Wang (ref_7) 2022; 162 ref_24 ref_23 ref_22 ref_21 ref_20 ref_1 ref_2 Qiao (ref_17) 2020; 8 ref_27 ref_5 ref_4 ref_6 |
| References_xml | – volume: 81 start-page: 94 year: 2014 ident: ref_9 article-title: Reliability-based residual life prediction of large-size low-speed slewing bearings publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2014.06.013 – ident: ref_10 doi: 10.3390/wevj13110208 – ident: ref_23 doi: 10.3390/s23229212 – ident: ref_19 doi: 10.3390/en16073291 – ident: ref_2 doi: 10.3390/mi13091471 – ident: ref_15 doi: 10.3390/s22124549 – ident: ref_6 doi: 10.3390/s24010256 – ident: ref_13 doi: 10.3390/s22114156 – ident: ref_11 doi: 10.3390/e25050798 – ident: ref_18 doi: 10.3390/s20247109 – ident: ref_20 doi: 10.3390/lubricants10080170 – ident: ref_4 doi: 10.3390/app9245313 – ident: ref_27 doi: 10.1109/TIE.2023.3301546 – volume: 12 start-page: 6 year: 2024 ident: ref_16 article-title: A data-driven approach to RUL prediction of tools publication-title: Adv. Manuf. doi: 10.1007/s40436-023-00464-y – volume: 162 start-page: 108018 year: 2022 ident: ref_7 article-title: Bearing fault diagnosis method based on adaptive maximum cyclostationarity blind deconvolution publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108018 – ident: ref_22 doi: 10.3390/app112311516 – ident: ref_1 doi: 10.3390/machines11070678 – ident: ref_5 doi: 10.3390/e25030543 – volume: 19 start-page: 8307 year: 2023 ident: ref_25 article-title: Dual-Thread Gated Recurrent Unit for Gear Remaining Useful Life Prediction publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3217758 – volume: 8 start-page: 66257 year: 2020 ident: ref_17 article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Rolling Bearing Fault Diagnosis Under Strong Noises and Variable Loads publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985617 – volume: 8 start-page: 40925 year: 2020 ident: ref_3 article-title: Intelligent Fault Identification for Rolling Element Bearings in Impulsive Noise Environments Based on Cyclic Correntropy Spectra and LSSVM publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976868 – volume: 244 start-page: 109928 year: 2024 ident: ref_28 article-title: Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2024.109928 – ident: ref_21 doi: 10.20944/preprints202011.0591.v1 – ident: ref_24 doi: 10.3390/app12115747 – volume: 24 start-page: 021002 year: 2024 ident: ref_26 article-title: Unsupervised Domain Deep Transfer Learning Approach for Rolling Bearing Remaining Useful Life Estimation publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4062731 – volume: 158 start-page: 107736 year: 2021 ident: ref_8 article-title: Adaptive maximum second-order cyclostationarity blind deconvolution and its application for locomotive bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.107736 – ident: ref_14 doi: 10.3390/math9233035 – ident: ref_12 doi: 10.3390/machines11020279 |
| SSID | ssj0023338 |
| Score | 2.416548 |
| Snippet | The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2382 |
| SubjectTerms | Bearings Communication convolutional LSTM autoencoder Deep learning Eigenvalues health index analysis Kurtosis Machinery Neural networks remaining useful life Signal processing Support vector machines Useful life |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDdpCzIIiVNUr-1N7OPuQsVhW6o-pN4iP8VK3aTabCr6x_r7mEmyS1YcuHC1HcvxjDPfp3G-IeSzVdYy7UQaveOplNqmBgUBsNZ2zjOjo291Zuf56am6vtZng1JfeCeskwfuNu4oaCejCUbyaCVzwjChI4po6eAZs616Kcv1hkz1VEsA8-p0hASQ-qMahbx4q7Y3iD6tSP_fn-JBLNq9JzkIPMfPybMeMdJJt9IX5FEoX5KnAx3BV-QBjE3PVphzwX2mVaSA6-h5WHb1H-hVHWJzQ-eLGLDzvMIEPLSftFcpw-qeTiGaeQrPmpJOvLnFryB0_1osmyW9QNbs0x8o00ln9-6mqrsMvsHSd3QKUNXTrzjorvdkmMZTQ2d_WuAV5heXJ3TSrCsUz4SpXpOr42-Xs-9pX5AhdcCi1-nIjDI7HhkwsFYiKB150MxygEBRSKcd4BWrvOAhaK-9kSL6aEPuXBgZZoN4Q_bKqgzvCM1cHp2WVo0ll4ppK5QL2ZhngqnIRiYhnzaGKm473Y0C-Apas9haMyFTNOF2AEpltw3gQEXvQMW_HCghX9ABCjzQYGVn-v8SYJ0ojVVMcpSg1xDGE3K48ZGiP-l1gWlLgL3AahPycdsNZxQTL6YMVdON0TKDZSfkbedS2zULBZQNUHpC1I6z7bzUbk-5-NnqgANyGwPaVfv_YxsOyBMOeK29lKQPyd561YT35LG7Wy_q1Yf2dP0GZuMvsg priority: 102 providerName: Directory of Open Access Journals |
| Title | The Prediction of the Remaining Useful Life of Rotating Machinery Based on an Adaptive Maximum Second-Order Cyclostationarity Blind Deconvolution and a Convolutional LSTM Autoencoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38675999 https://www.proquest.com/docview/3047054104 https://www.proquest.com/docview/3047946240 https://pubmed.ncbi.nlm.nih.gov/PMC11054358 https://doaj.org/article/e9c4faea42fb40c3a039f68109ed00b5 |
| Volume | 24 |
| WOSCitedRecordID | wos001210294200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceD8CS2UQEqdokzhN7BNqS1cgtaXq7krlFPkJlbZJadoVe-Fn8fuYSdKXkLhwycF2Ikf5PP7GM_mGkHeKKxUIzXxndOTHsVC-REEArLWdRokUzlQ6s4N0NOLTqRg3B25lk1a5sYmVoTaFxjPyUwwPAb0A7-HD4oePVaMwutqU0LhNjrFsNuI8ne4cLgb-V60mxMC1Py1RziuqNPf29qBKqv9vg7y3Ix1mS-5tP2cP_nfiD8n9hnjSTo2UR-SWzR-Te3tyhE_Ib8AMHS8xdIOfixaOAj2kEzuvy0jQy9K69RUdzJzFzkmBcXxoH1YZmXZ5Q7uwKRoK98qcdoxcoDGF7p-z-XpOz9H5Nv4XVPukvRt9VZR1IoDECnq0C4zX0I846LpZEPAYQyXt7VrgFQbnF0PaWa8K1OCERz0ll2f9i94nv6nr4Gtwxld-KMNEtUMJOBGcWS5cZEWgImBSjsVaaKA9ihsWWSuMMDJmzjhlU61tKANl2TNylBe5fUFoolOnRax4O45iHgjFuLZJO0pYwF0QSo-83XzpbFHLd2Tg9iAcsi0cPNJFDGwHoOJ21VAsv2XNAs6s0LGTVsaRU3GgmQyYcCjmJqwJAtX2yHtEUIZ2AWCiZfN7A8wTFbayTopK9gLYgEdONkDJGoNRZjuUeOTNthuWOsZvZG6LdT1GxAlM2yPPa0xu58w4eH5A9j3CD9B68FKHPfnseyUnDgSwDaSZv_z3vF6RuxEQuiprSZyQo9VybV-TO_p6NSuXrWrhVVfeIsfd_mg8aVXnG3Ad_upD2_jzcPz1D93BQyE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VggQc2BdDgQGBOFl1Zhzbc0AoSalaNQlVFyk3MytEauwQJ4X8KY78Pt6znU1I3HrgOjMePdvf2zzP3yPkrUqUCoTmvjOa-WEolC-REAB7bccsksKZkme2G_f7yWAgjrfIr8W_MFhWubCJpaE2ucZv5Lt4PAThBWQPH8fffewahaerixYaFSyO7PwHpGzFh8M9eL_vGNv_dNY58OuuAr6GVHDqN2QjUs2GBClFwm0iHLMiUAz8uOOhFhqcrkoMZ9YKI4wMuTNO2Vhr25CBshz2vUaugx2PMdmLB6sEj0O-V7EXcS6C3QLpw1jJ8bfm88rWAH87gDUPuFmduebu9u_-bw_qHrlTB9a0VWnCfbJlswfk9hrd4kPyG3SCHk_waArhSHNHIfylJ3ZUtcmg54V1swvaHTqLkyc51inAeK-sOLWTOW2D0zcUrpUZbRk5RmcB0z-Ho9mInuLHBeN_RjZT2pnri7yoCh0kdgikbYjoDd3DRZe1wsM2hkraWY3ALXRPz3q0NZvmyDEKWz0i51fy4B6T7SzP7FNCIx07LUKVNEMWJoFQPNE2arKIB4kLGtIjbxbISscVPUkKaR3CL13CzyNtxNxyATKKlwP55GtaG6jUCh06aWXInAoDzWXAhUOyOmFNEKimR94jYlO0ewBLLevfN0BOZBBLWzEy9QuIdjyyswBmWhvEIl2h0iOvl9NgyvB8SmY2n1VrRBiB2B55UunAUmaeQGYLyYxHkg3t2LipzZls-K2kS4cAtwlJQfLs33K9IjcPznrdtHvYP3pObjEIXssKLbFDtqeTmX1BbujL6bCYvCyVnpIvV608fwChBZzY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLaGDkJwYF8CAxgE4hQ1tdM0PiDUhYpq2lLNIg2n4BUq0aY07UD_GAd-He8laacVErc5cLVd6zn93ha_fI-QVypWKhCa-85o5oehUL5EQgDstd1gkRTO5Dyz_cZwGJ-didEe-b3-FgbLKtc2MTfUJtX4jryK10MQXkD2UHVlWcSo0303--5jBym8aV230yggcmhXPyB9y972OvBfv2as-_6k_cEvOwz4GtLChV-TtUjVaxIkFjG3sXDMikAx8OmOh1pocMAqNpxZK4wwMuTOOGUbWtuaDJTlsO8Vsg8hecgqZH_UG4w-bdI9DtlfwWXEuQiqGZKJsZzxb8sD5o0C_nYHW_5wt1Zzy_l1b_3Pj-02uVmG3LRZ6Mgdsmend8mNLSLGe-QXaAsdzfHSCoFKU0chMKZHdlI00KCnmYWD0f7YWZw8SrGCAcYHeS2qna9oC8IBQ-G3ckqbRs7QjcD0z_FkOaHH-NrB-B-R55S2V_pbmhUlEBJ7B9IWxPqGdnDReWkKYBtDJW1fjMAR-scnA9pcLlJkH4Wt7pPTS3lwD0hlmk7tI0Ij3XBahCquhyyMA6F4rG1UZxEPYhfUpEderlGWzArikgQSPoRisoGiR1qIv80C5BrPB9L5l6Q0XYkVOnTSypA5FQaay4ALhzR2wpogUHWPvEH0JmgRAaJalh92gJzILZY0G8jhLyAO8sjBGqRJaSqz5AKhHnmxmQYjhzdXcmrTZbFGhBGI7ZGHhT5sZOYx5LyQ5ngk3tGUnUPtzkzHX3MidQh965AuxI__Lddzcg10Jun3hodPyHUGUW1euiUOSGUxX9qn5Ko-X4yz-bPSAlDy-bK15w-0Qacn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Prediction+of+the+Remaining+Useful+Life+of+Rotating+Machinery+Based+on+an+Adaptive+Maximum+Second-Order+Cyclostationarity+Blind+Deconvolution+and+a+Convolutional+LSTM+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gao%2C+Yangde&rft.au=Zahoor%2C+Ahmad&rft.au=Jong-Myon+Kim&rft.date=2024-04-09&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=8&rft.spage=2382&rft_id=info:doi/10.3390%2Fs24082382&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |