The Prediction of the Remaining Useful Life of Rotating Machinery Based on an Adaptive Maximum Second-Order Cyclostationarity Blind Deconvolution and a Convolutional LSTM Autoencoder

The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 24; no. 8; p. 2382
Main Authors: Gao, Yangde, Ahmad, Zahoor, Kim, Jong-Myon
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 09.04.2024
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery.
AbstractList The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery.
The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery.The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals. Second, based on the peak value properties, a novel health index (HI) is designed to analyze the health conditions for the denoising signal, showing a high sensitivity for the degradation of bearings. Finally, for better prognostics and health management of the rotating machinery, based on convolutional layers and LSTM, an autoencoder can achieve a transform convolutional LSTM network to develop a convolutional LSTM autoencoder (ALSTM) model that can be applied to forecast the health trend for rotating machinery. Compared with the SVM, CNN, LSTM, GRU, and DTGRU methods, our experiments demonstrate that the proposed approach has the greatest performance for the prediction of the remaining useful life of rotating machinery.
Audience Academic
Author Ahmad, Zahoor
Kim, Jong-Myon
Gao, Yangde
AuthorAffiliation Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; gaoyangdephd@gmail.com (Y.G.); zahooruou@mail.ulsan.ac.kr (Z.A.)
AuthorAffiliation_xml – name: Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; gaoyangdephd@gmail.com (Y.G.); zahooruou@mail.ulsan.ac.kr (Z.A.)
Author_xml – sequence: 1
  givenname: Yangde
  surname: Gao
  fullname: Gao, Yangde
– sequence: 2
  givenname: Zahoor
  orcidid: 0000-0002-3571-8907
  surname: Ahmad
  fullname: Ahmad, Zahoor
– sequence: 3
  givenname: Jong-Myon
  orcidid: 0000-0002-5185-1062
  surname: Kim
  fullname: Kim, Jong-Myon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38675999$$D View this record in MEDLINE/PubMed
BookMark eNpdkl1v0zAUhiM0xD7ggj-ALHEDFx2O7TTxFSrla1Knoa27jk7s49ZVYhc7qdgf4_fhrKNsKBeO3vOcx3ZyTrMj5x1m2eucnnMu6YfIBK0Yr9iz7CQXTEwqxujRo_fj7DTGDaWMc169yI55NS0LKeVJ9nu5RvIjoLaqt94Rb0ifkmvswDrrVuQ2ohlasrAGx-K176Ef80tQa-sw3JFPEFGT1AuOzDRse7vDVP5lu6EjN6i805OroDGQ-Z1qfRwF3kGwfeptrdPk8wjtfDvcHwFSAmT-L4G0_c3yksyG3qNTPqleZs8NtBFfPaxn2e3XL8v598ni6tvFfLaYKDGV_SSHfNoUOTRVIyuOlTQMJW0YK7nhQklFy7ypNGeIUksNghttGiyVwhxog_wsu9h7tYdNvQ22g3BXe7D1feDDqobQW9VijVIJAwiCmUZQxYFyaaZVTiVqSpsiuT7uXduh6VArdH2A9on0acXZdb3yuzrPaSF4USXDuwdD8D8HjH3d2aiwbcGhH2LNqSilmKZpSOjb_9CNH0L6lHsqCXMqEnW-p1aQbmCd8WljlR6NnU3_BI1N-ayUvCgkq8aGN4_vcDj834FKwPs9oIKPMaA5IDmtx2GtD8PK_wCypN7F
Cites_doi 10.1016/j.mechmachtheory.2014.06.013
10.3390/wevj13110208
10.3390/s23229212
10.3390/en16073291
10.3390/mi13091471
10.3390/s22124549
10.3390/s24010256
10.3390/s22114156
10.3390/e25050798
10.3390/s20247109
10.3390/lubricants10080170
10.3390/app9245313
10.1109/TIE.2023.3301546
10.1007/s40436-023-00464-y
10.1016/j.ymssp.2021.108018
10.3390/app112311516
10.3390/machines11070678
10.3390/e25030543
10.1109/TII.2022.3217758
10.1109/ACCESS.2020.2985617
10.1109/ACCESS.2020.2976868
10.1016/j.ress.2024.109928
10.20944/preprints202011.0591.v1
10.3390/app12115747
10.1115/1.4062731
10.1016/j.ymssp.2021.107736
10.3390/math9233035
10.3390/machines11020279
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24082382
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e9c4faea42fb40c3a039f68109ed00b5
PMC11054358
A793559284
38675999
10_3390_s24082382
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Trade, Industry and Energy
  grantid: 20023566
– fundername: University of Ulsan
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c469t-1a16b51ab8b983e89f2e90b2273f34c9c071b8d32ee9d9da43fdfbe7cce1a0be3
IEDL.DBID 7X7
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001210294200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:35:49 EST 2025
Tue Nov 04 02:05:36 EST 2025
Fri Sep 05 11:16:05 EDT 2025
Tue Oct 07 07:36:49 EDT 2025
Tue Nov 04 18:22:35 EST 2025
Mon Jul 21 05:45:49 EDT 2025
Sat Nov 29 07:19:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords health index analysis
convolutional LSTM autoencoder
remaining useful life
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-1a16b51ab8b983e89f2e90b2273f34c9c071b8d32ee9d9da43fdfbe7cce1a0be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3571-8907
0000-0002-5185-1062
OpenAccessLink https://www.proquest.com/docview/3047054104?pq-origsite=%requestingapplication%
PMID 38675999
PQID 3047054104
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e9c4faea42fb40c3a039f68109ed00b5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11054358
proquest_miscellaneous_3047946240
proquest_journals_3047054104
gale_infotracacademiconefile_A793559284
pubmed_primary_38675999
crossref_primary_10_3390_s24082382
PublicationCentury 2000
PublicationDate 20240409
PublicationDateYYYYMMDD 2024-04-09
PublicationDate_xml – month: 4
  year: 2024
  text: 20240409
  day: 9
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Li (ref_16) 2024; 12
Yang (ref_28) 2024; 244
ref_14
Feng (ref_9) 2014; 81
ref_13
ref_12
ref_11
ref_10
ref_19
ref_18
Zhou (ref_25) 2023; 19
ref_15
Zhang (ref_8) 2021; 158
Rathore (ref_26) 2024; 24
Zhao (ref_3) 2020; 8
Wang (ref_7) 2022; 162
ref_24
ref_23
ref_22
ref_21
ref_20
ref_1
ref_2
Qiao (ref_17) 2020; 8
ref_27
ref_5
ref_4
ref_6
References_xml – volume: 81
  start-page: 94
  year: 2014
  ident: ref_9
  article-title: Reliability-based residual life prediction of large-size low-speed slewing bearings
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2014.06.013
– ident: ref_10
  doi: 10.3390/wevj13110208
– ident: ref_23
  doi: 10.3390/s23229212
– ident: ref_19
  doi: 10.3390/en16073291
– ident: ref_2
  doi: 10.3390/mi13091471
– ident: ref_15
  doi: 10.3390/s22124549
– ident: ref_6
  doi: 10.3390/s24010256
– ident: ref_13
  doi: 10.3390/s22114156
– ident: ref_11
  doi: 10.3390/e25050798
– ident: ref_18
  doi: 10.3390/s20247109
– ident: ref_20
  doi: 10.3390/lubricants10080170
– ident: ref_4
  doi: 10.3390/app9245313
– ident: ref_27
  doi: 10.1109/TIE.2023.3301546
– volume: 12
  start-page: 6
  year: 2024
  ident: ref_16
  article-title: A data-driven approach to RUL prediction of tools
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-023-00464-y
– volume: 162
  start-page: 108018
  year: 2022
  ident: ref_7
  article-title: Bearing fault diagnosis method based on adaptive maximum cyclostationarity blind deconvolution
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108018
– ident: ref_22
  doi: 10.3390/app112311516
– ident: ref_1
  doi: 10.3390/machines11070678
– ident: ref_5
  doi: 10.3390/e25030543
– volume: 19
  start-page: 8307
  year: 2023
  ident: ref_25
  article-title: Dual-Thread Gated Recurrent Unit for Gear Remaining Useful Life Prediction
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3217758
– volume: 8
  start-page: 66257
  year: 2020
  ident: ref_17
  article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Rolling Bearing Fault Diagnosis Under Strong Noises and Variable Loads
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985617
– volume: 8
  start-page: 40925
  year: 2020
  ident: ref_3
  article-title: Intelligent Fault Identification for Rolling Element Bearings in Impulsive Noise Environments Based on Cyclic Correntropy Spectra and LSSVM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976868
– volume: 244
  start-page: 109928
  year: 2024
  ident: ref_28
  article-title: Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.109928
– ident: ref_21
  doi: 10.20944/preprints202011.0591.v1
– ident: ref_24
  doi: 10.3390/app12115747
– volume: 24
  start-page: 021002
  year: 2024
  ident: ref_26
  article-title: Unsupervised Domain Deep Transfer Learning Approach for Rolling Bearing Remaining Useful Life Estimation
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4062731
– volume: 158
  start-page: 107736
  year: 2021
  ident: ref_8
  article-title: Adaptive maximum second-order cyclostationarity blind deconvolution and its application for locomotive bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107736
– ident: ref_14
  doi: 10.3390/math9233035
– ident: ref_12
  doi: 10.3390/machines11020279
SSID ssj0023338
Score 2.416548
Snippet The prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2382
SubjectTerms Bearings
Communication
convolutional LSTM autoencoder
Deep learning
Eigenvalues
health index analysis
Kurtosis
Machinery
Neural networks
remaining useful life
Signal processing
Support vector machines
Useful life
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiDdpCzIIiVNUr-1N7OPuQsVhW6o-pN4iP8VK3aTabCr6x_r7mEmyS1YcuHC1HcvxjDPfp3G-IeSzVdYy7UQaveOplNqmBgUBsNZ2zjOjo291Zuf56am6vtZng1JfeCeskwfuNu4oaCejCUbyaCVzwjChI4po6eAZs616Kcv1hkz1VEsA8-p0hASQ-qMahbx4q7Y3iD6tSP_fn-JBLNq9JzkIPMfPybMeMdJJt9IX5FEoX5KnAx3BV-QBjE3PVphzwX2mVaSA6-h5WHb1H-hVHWJzQ-eLGLDzvMIEPLSftFcpw-qeTiGaeQrPmpJOvLnFryB0_1osmyW9QNbs0x8o00ln9-6mqrsMvsHSd3QKUNXTrzjorvdkmMZTQ2d_WuAV5heXJ3TSrCsUz4SpXpOr42-Xs-9pX5AhdcCi1-nIjDI7HhkwsFYiKB150MxygEBRSKcd4BWrvOAhaK-9kSL6aEPuXBgZZoN4Q_bKqgzvCM1cHp2WVo0ll4ppK5QL2ZhngqnIRiYhnzaGKm473Y0C-Apas9haMyFTNOF2AEpltw3gQEXvQMW_HCghX9ABCjzQYGVn-v8SYJ0ojVVMcpSg1xDGE3K48ZGiP-l1gWlLgL3AahPycdsNZxQTL6YMVdON0TKDZSfkbedS2zULBZQNUHpC1I6z7bzUbk-5-NnqgANyGwPaVfv_YxsOyBMOeK29lKQPyd561YT35LG7Wy_q1Yf2dP0GZuMvsg
  priority: 102
  providerName: Directory of Open Access Journals
Title The Prediction of the Remaining Useful Life of Rotating Machinery Based on an Adaptive Maximum Second-Order Cyclostationarity Blind Deconvolution and a Convolutional LSTM Autoencoder
URI https://www.ncbi.nlm.nih.gov/pubmed/38675999
https://www.proquest.com/docview/3047054104
https://www.proquest.com/docview/3047946240
https://pubmed.ncbi.nlm.nih.gov/PMC11054358
https://doaj.org/article/e9c4faea42fb40c3a039f68109ed00b5
Volume 24
WOSCitedRecordID wos001210294200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceD8CS2UQEqdokzhN7BNqS1cgtaXq7krlFPkJlbZJadoVe-Fn8fuYSdKXkLhwycF2Ikf5PP7GM_mGkHeKKxUIzXxndOTHsVC-REEArLWdRokUzlQ6s4N0NOLTqRg3B25lk1a5sYmVoTaFxjPyUwwPAb0A7-HD4oePVaMwutqU0LhNjrFsNuI8ne4cLgb-V60mxMC1Py1RziuqNPf29qBKqv9vg7y3Ix1mS-5tP2cP_nfiD8n9hnjSTo2UR-SWzR-Te3tyhE_Ib8AMHS8xdIOfixaOAj2kEzuvy0jQy9K69RUdzJzFzkmBcXxoH1YZmXZ5Q7uwKRoK98qcdoxcoDGF7p-z-XpOz9H5Nv4XVPukvRt9VZR1IoDECnq0C4zX0I846LpZEPAYQyXt7VrgFQbnF0PaWa8K1OCERz0ll2f9i94nv6nr4Gtwxld-KMNEtUMJOBGcWS5cZEWgImBSjsVaaKA9ihsWWSuMMDJmzjhlU61tKANl2TNylBe5fUFoolOnRax4O45iHgjFuLZJO0pYwF0QSo-83XzpbFHLd2Tg9iAcsi0cPNJFDGwHoOJ21VAsv2XNAs6s0LGTVsaRU3GgmQyYcCjmJqwJAtX2yHtEUIZ2AWCiZfN7A8wTFbayTopK9gLYgEdONkDJGoNRZjuUeOTNthuWOsZvZG6LdT1GxAlM2yPPa0xu58w4eH5A9j3CD9B68FKHPfnseyUnDgSwDaSZv_z3vF6RuxEQuiprSZyQo9VybV-TO_p6NSuXrWrhVVfeIsfd_mg8aVXnG3Ad_upD2_jzcPz1D93BQyE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VggQc2BdDgQGBOFl1Zhzbc0AoSalaNQlVFyk3MytEauwQJ4X8KY78Pt6znU1I3HrgOjMePdvf2zzP3yPkrUqUCoTmvjOa-WEolC-REAB7bccsksKZkme2G_f7yWAgjrfIr8W_MFhWubCJpaE2ucZv5Lt4PAThBWQPH8fffewahaerixYaFSyO7PwHpGzFh8M9eL_vGNv_dNY58OuuAr6GVHDqN2QjUs2GBClFwm0iHLMiUAz8uOOhFhqcrkoMZ9YKI4wMuTNO2Vhr25CBshz2vUaugx2PMdmLB6sEj0O-V7EXcS6C3QLpw1jJ8bfm88rWAH87gDUPuFmduebu9u_-bw_qHrlTB9a0VWnCfbJlswfk9hrd4kPyG3SCHk_waArhSHNHIfylJ3ZUtcmg54V1swvaHTqLkyc51inAeK-sOLWTOW2D0zcUrpUZbRk5RmcB0z-Ho9mInuLHBeN_RjZT2pnri7yoCh0kdgikbYjoDd3DRZe1wsM2hkraWY3ALXRPz3q0NZvmyDEKWz0i51fy4B6T7SzP7FNCIx07LUKVNEMWJoFQPNE2arKIB4kLGtIjbxbISscVPUkKaR3CL13CzyNtxNxyATKKlwP55GtaG6jUCh06aWXInAoDzWXAhUOyOmFNEKimR94jYlO0ewBLLevfN0BOZBBLWzEy9QuIdjyyswBmWhvEIl2h0iOvl9NgyvB8SmY2n1VrRBiB2B55UunAUmaeQGYLyYxHkg3t2LipzZls-K2kS4cAtwlJQfLs33K9IjcPznrdtHvYP3pObjEIXssKLbFDtqeTmX1BbujL6bCYvCyVnpIvV608fwChBZzY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLaGDkJwYF8CAxgE4hQ1tdM0PiDUhYpq2lLNIg2n4BUq0aY07UD_GAd-He8laacVErc5cLVd6zn93ha_fI-QVypWKhCa-85o5oehUL5EQgDstd1gkRTO5Dyz_cZwGJ-didEe-b3-FgbLKtc2MTfUJtX4jryK10MQXkD2UHVlWcSo0303--5jBym8aV230yggcmhXPyB9y972OvBfv2as-_6k_cEvOwz4GtLChV-TtUjVaxIkFjG3sXDMikAx8OmOh1pocMAqNpxZK4wwMuTOOGUbWtuaDJTlsO8Vsg8hecgqZH_UG4w-bdI9DtlfwWXEuQiqGZKJsZzxb8sD5o0C_nYHW_5wt1Zzy_l1b_3Pj-02uVmG3LRZ6Mgdsmend8mNLSLGe-QXaAsdzfHSCoFKU0chMKZHdlI00KCnmYWD0f7YWZw8SrGCAcYHeS2qna9oC8IBQ-G3ckqbRs7QjcD0z_FkOaHH-NrB-B-R55S2V_pbmhUlEBJ7B9IWxPqGdnDReWkKYBtDJW1fjMAR-scnA9pcLlJkH4Wt7pPTS3lwD0hlmk7tI0Ij3XBahCquhyyMA6F4rG1UZxEPYhfUpEderlGWzArikgQSPoRisoGiR1qIv80C5BrPB9L5l6Q0XYkVOnTSypA5FQaay4ALhzR2wpogUHWPvEH0JmgRAaJalh92gJzILZY0G8jhLyAO8sjBGqRJaSqz5AKhHnmxmQYjhzdXcmrTZbFGhBGI7ZGHhT5sZOYx5LyQ5ngk3tGUnUPtzkzHX3MidQh965AuxI__Lddzcg10Jun3hodPyHUGUW1euiUOSGUxX9qn5Ko-X4yz-bPSAlDy-bK15w-0Qacn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Prediction+of+the+Remaining+Useful+Life+of+Rotating+Machinery+Based+on+an+Adaptive+Maximum+Second-Order+Cyclostationarity+Blind+Deconvolution+and+a+Convolutional+LSTM+Autoencoder&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gao%2C+Yangde&rft.au=Zahoor%2C+Ahmad&rft.au=Jong-Myon+Kim&rft.date=2024-04-09&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=8&rft.spage=2382&rft_id=info:doi/10.3390%2Fs24082382&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon