Structural Basis for Inhibition of the SARS‐CoV‐2 nsp16 by Substrate‐Based Dual Site Inhibitors

Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ChemMedChem Ročník 19; číslo 24; s. e202400618 - n/a
Hlavní autoři: Kalnins, Gints, Rudusa, Laura, Bula, Anna L., Zelencova‐Gopejenko, Diana, Bobileva, Olga, Sisovs, Mihails, Tars, Kaspars, Jirgensons, Aigars, Jaudzems, Kristaps, Bobrovs, Raitis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 16.12.2024
John Wiley and Sons Inc
Témata:
ISSN:1860-7179, 1860-7187, 1860-7187
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of subsequent nucleotides of viral mRNA. The 2′‐O‐methylation performed by nsp16‐nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X‐ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16‐nsp10. We obtained eleven 3D crystal structures of the nsp16‐nsp10 complexes with SAM‐derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual‐site targeting of both SAM and RNA sites correlates with higher inhibitory potential. Structural information on the binding of S‐adenosyl methionine (SAM) analogues to SARS‐CoV‐2 nsp16 shows that targeting both the SAM and RNA binding sites simultaneously enhances inhibitory potential.
AbstractList Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16-nsp10 methylates the 2'-O- of subsequent nucleotides of viral mRNA. The 2'-O-methylation performed by nsp16-nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X-ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16-nsp10. We obtained eleven 3D crystal structures of the nsp16-nsp10 complexes with SAM-derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual-site targeting of both SAM and RNA sites correlates with higher inhibitory potential.Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16-nsp10 methylates the 2'-O- of subsequent nucleotides of viral mRNA. The 2'-O-methylation performed by nsp16-nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X-ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16-nsp10. We obtained eleven 3D crystal structures of the nsp16-nsp10 complexes with SAM-derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual-site targeting of both SAM and RNA sites correlates with higher inhibitory potential.
Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of subsequent nucleotides of viral mRNA. The 2′‐O‐methylation performed by nsp16‐nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X‐ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16‐nsp10. We obtained eleven 3D crystal structures of the nsp16‐nsp10 complexes with SAM‐derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual‐site targeting of both SAM and RNA sites correlates with higher inhibitory potential. Structural information on the binding of S‐adenosyl methionine (SAM) analogues to SARS‐CoV‐2 nsp16 shows that targeting both the SAM and RNA binding sites simultaneously enhances inhibitory potential.
Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of subsequent nucleotides of viral mRNA. The 2′‐O‐methylation performed by nsp16‐nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X‐ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16‐nsp10. We obtained eleven 3D crystal structures of the nsp16‐nsp10 complexes with SAM‐derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual‐site targeting of both SAM and RNA sites correlates with higher inhibitory potential.
Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16‐nsp10 methylates the 2′‐O‐ of subsequent nucleotides of viral mRNA. The 2′‐O‐methylation performed by nsp16‐nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X‐ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16‐nsp10. We obtained eleven 3D crystal structures of the nsp16‐nsp10 complexes with SAM‐derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual‐site targeting of both SAM and RNA sites correlates with higher inhibitory potential. Structural information on the binding of S‐adenosyl methionine (SAM) analogues to SARS‐CoV‐2 nsp16 shows that targeting both the SAM and RNA binding sites simultaneously enhances inhibitory potential.
Author Rudusa, Laura
Bula, Anna L.
Tars, Kaspars
Jaudzems, Kristaps
Bobrovs, Raitis
Jirgensons, Aigars
Zelencova‐Gopejenko, Diana
Kalnins, Gints
Sisovs, Mihails
Bobileva, Olga
AuthorAffiliation 1 Latvian Biomedical Research and Study Centre Ratsupites 1 k-1 LV1067 Riga Latvia
2 Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia
3 University of Latvia Jelgavas 1 LV1004 Riga Latvia
AuthorAffiliation_xml – name: 2 Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia
– name: 1 Latvian Biomedical Research and Study Centre Ratsupites 1 k-1 LV1067 Riga Latvia
– name: 3 University of Latvia Jelgavas 1 LV1004 Riga Latvia
Author_xml – sequence: 1
  givenname: Gints
  surname: Kalnins
  fullname: Kalnins, Gints
  organization: Latvian Biomedical Research and Study Centre
– sequence: 2
  givenname: Laura
  surname: Rudusa
  fullname: Rudusa, Laura
  organization: Latvian Institute of Organic Synthesis
– sequence: 3
  givenname: Anna L.
  surname: Bula
  fullname: Bula, Anna L.
  organization: Latvian Institute of Organic Synthesis
– sequence: 4
  givenname: Diana
  surname: Zelencova‐Gopejenko
  fullname: Zelencova‐Gopejenko, Diana
  organization: Latvian Institute of Organic Synthesis
– sequence: 5
  givenname: Olga
  surname: Bobileva
  fullname: Bobileva, Olga
  organization: Latvian Institute of Organic Synthesis
– sequence: 6
  givenname: Mihails
  surname: Sisovs
  fullname: Sisovs, Mihails
  organization: Latvian Biomedical Research and Study Centre
– sequence: 7
  givenname: Kaspars
  surname: Tars
  fullname: Tars, Kaspars
  organization: University of Latvia
– sequence: 8
  givenname: Aigars
  surname: Jirgensons
  fullname: Jirgensons, Aigars
  organization: Latvian Institute of Organic Synthesis
– sequence: 9
  givenname: Kristaps
  surname: Jaudzems
  fullname: Jaudzems, Kristaps
  organization: University of Latvia
– sequence: 10
  givenname: Raitis
  orcidid: 0000-0002-0221-8658
  surname: Bobrovs
  fullname: Bobrovs, Raitis
  email: raitis.bobrovs@osi.lv
  organization: Latvian Institute of Organic Synthesis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39258386$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxJZYsNmBv_GzgqVFNpKrZAIsLUc54ZxlYmndgKaHY_AM_IkeDSdoVRCbGzLPufT8T3H6GAIAyD0nJI5JYS9dsvWzRlhgpCC6kfoiOqCzBTV6mB_VuUhOk7phhAhNNVP0CEvmdRcF0cI6jFObpyi7fFbm3zCXYj4clj4xo8-DDh0eFwArk8_1r9-_KzCl7wyPKQVLXCzxvXUpDHaEfJ19kOLz6aMqv0IO0qI6Sl63Nk-wbO7_QR9fv_uU3Uxu_pwflmdXs2cKEo9s0yXjaKCKwXStiXnSgqpbNdCI4UlgnEoWQm0aGXBJXcKgDAuVUvartOCn6A3W-5qapbQOhhytt6sol_auDbBevP3y-AX5mv4ZigthM6zyYRXd4QYbidIo1n65KDv7QBhSoZTwrQmmtEsfflAehOmOOT_ZZWQVAlWbIAv7kfaZ9lVkAViK3AxpBShM86PdjP7nND3hhKzadpsmjb7prNt_sC2I__TUG4N330P6_-oTXV9Vv3x_gb4gb0B
CitedBy_id crossref_primary_10_34133_bmr_0229
Cites_doi 10.1021/acsmedchemlett.2c00265
10.1007/s12250-016-3726-4
10.1021/acsinfecdis.3c00203
10.1128/JVI.00407-08
10.1038/s41564-020-0695-z
10.1016/j.ejmech.2020.112557
10.1038/s41467-021-23594-y
10.3390/ph14121243
10.1021/acsmedchemlett.1c00140
10.1073/pnas.2100170118
10.1038/s41392-020-00241-4
10.1021/acs.jmedchem.2c00120
10.1002/pro.4395
10.1016/j.bbagen.2023.130319
10.1038/s41467-019-13796-w
10.1021/acsomega.3c02815
10.1016/j.ejmech.2023.115474
10.1126/scisignal.abe1202
10.3390/molecules28020768
10.1126/scisignal.abh2071
10.1038/s41467-020-17495-9
10.1038/nature09489
10.3390/molecules28030988
10.1021/acsinfecdis.1c00131
ContentType Journal Article
Copyright 2024 The Authors. ChemMedChem published by Wiley-VCH GmbH
2024 The Authors. ChemMedChem published by Wiley-VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. ChemMedChem published by Wiley-VCH GmbH
– notice: 2024 The Authors. ChemMedChem published by Wiley-VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/cmdc.202400618
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1860-7187
EndPage n/a
ExternalDocumentID PMC11648818
39258386
10_1002_cmdc_202400618
CMDC202400618
Genre article
Journal Article
GrantInformation_xml – fundername: DIAMOND Light Source
  funderid: mx35587
– fundername: “State research project in the field of biomedicine, medical technologies and pharmacy”
  funderid: VPP-EM-BIOMEDICĪNA-2022/1-0001
– fundername: Ministry of Economics of the Republic of Latvia
– fundername: HZB BESSY II
  funderid: MX-222-00329-ST
– fundername: "State research project in the field of biomedicine, medical technologies and pharmacy"
  grantid: VPP-EM-BIOMEDICĪNA-2022/1-0001
– fundername: HZB BESSY II
  grantid: MX-222-00329-ST
– fundername: DIAMOND Light Source
  grantid: mx35587
– fundername: “State research project in the field of biomedicine, medical technologies and pharmacy”
  grantid: VPP-EM-BIOMEDICĪNA-2022/1-0001
GroupedDBID ---
05W
0R~
1L6
1OC
24P
29B
33P
3WU
4.4
53G
5GY
66C
6J9
77Q
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
HBH
HGLYW
HHZ
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
RWI
SUPJJ
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
YZZ
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4698-a289b714377e5ad93375457afdeb54a0423e929e16d56353c7ee02357d0dff843
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001357359900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-7179
1860-7187
IngestDate Tue Nov 04 02:04:52 EST 2025
Thu Oct 02 06:34:09 EDT 2025
Sat Nov 29 14:20:52 EST 2025
Wed Feb 19 02:00:24 EST 2025
Tue Nov 18 20:02:52 EST 2025
Sat Nov 29 07:17:26 EST 2025
Wed Jan 22 17:11:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Medicinal chemistry
SARS-CoV-2
nsp16
Structural biology
Methyltransferase
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. ChemMedChem published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4698-a289b714377e5ad93375457afdeb54a0423e929e16d56353c7ee02357d0dff843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0221-8658
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.202400618
PMID 39258386
PQID 3145174268
PQPubID 986335
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11648818
proquest_miscellaneous_3102880821
proquest_journals_3145174268
pubmed_primary_39258386
crossref_citationtrail_10_1002_cmdc_202400618
crossref_primary_10_1002_cmdc_202400618
wiley_primary_10_1002_cmdc_202400618_CMDC202400618
PublicationCentury 2000
PublicationDate December 16, 2024
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: December 16, 2024
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle ChemMedChem
PublicationTitleAlternate ChemMedChem
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2021; 14
2023; 1867
2021; 7
2020; 5
2021; 12
2023; 28
2022
2010; 468
2020
2023; 256
2023; 8
2023; 9
2021; 118
2016; 31
2022; 13
2020; 13
2022; 31
2022; 65
2020; 11
2020; 201
2008; 82
Rosas-Lemus M. (e_1_2_8_26_1) 2020
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
Park G. J. (e_1_2_8_3_1) 2022
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 12
  start-page: 1102
  year: 2021
  end-page: 1107
  publication-title: ACS Med. Chem. Lett.
– volume: 65
  start-page: 6231
  year: 2022
  end-page: 6249
  publication-title: J. Med. Chem.
– volume: 13
  start-page: 1477
  year: 2022
  end-page: 1484
  publication-title: ACS Med. Chem. Lett.
– volume: 5
  start-page: 131
  year: 2020
  publication-title: Signal Transduction Target Ther.
– volume: 31
  year: 2022
  publication-title: Protein Sci.
– volume: 11
  start-page: 4
  year: 2020
  end-page: 10
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1243
  year: 2021
  publication-title: Pharmaceuticals (Basel)
– volume: 1867
  year: 2023
  publication-title: Biochim. Biophys. Acta (BBA) – Gen. Subj.
– volume: 468
  start-page: 452
  year: 2010
  end-page: 456
  publication-title: Nature
– volume: 82
  start-page: 8071
  year: 2008
  end-page: 8084
  publication-title: J. Virol.
– volume: 11
  start-page: 3717
  year: 2020
  publication-title: Nat. Commun.
– volume: 256
  year: 2023
  publication-title: Eur. J. Med. Chem.
– volume: 8
  start-page: 27410
  year: 2023
  end-page: 27418
  publication-title: ACS Omega
– volume: 12
  start-page: 3287
  year: 2021
  publication-title: Nat. Commun.
– year: 2022
  publication-title: Nature
– volume: 31
  start-page: 3
  year: 2016
  end-page: 11
  publication-title: Virol. Sin.
– volume: 28
  start-page: 988
  year: 2023
  publication-title: Molecules
– volume: 201
  year: 2020
  publication-title: Eur. J. Med. Chem.
– year: 2020
  publication-title: BioRxiv
– volume: 28
  start-page: 768
  year: 2023
  publication-title: Molecules
– volume: 7
  start-page: 2214
  year: 2021
  end-page: 2220
  publication-title: ACS Infect. Dis.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci.
– volume: 14
  year: 2021
  publication-title: Sci. Signal
– volume: 9
  start-page: 1918
  year: 2023
  end-page: 1931
  publication-title: ACS Infect. Dis.
– volume: 13
  start-page: 1
  year: 2020
  end-page: 12
  publication-title: Sci. Signal
– volume: 5
  start-page: 536
  year: 2020
  end-page: 544
  publication-title: Nat. Microbiol.
– year: 2020
  ident: e_1_2_8_26_1
  publication-title: BioRxiv
– ident: e_1_2_8_17_1
  doi: 10.1021/acsmedchemlett.2c00265
– ident: e_1_2_8_2_1
  doi: 10.1007/s12250-016-3726-4
– ident: e_1_2_8_8_1
  doi: 10.1021/acsinfecdis.3c00203
– ident: e_1_2_8_4_1
  doi: 10.1128/JVI.00407-08
– ident: e_1_2_8_1_1
  doi: 10.1038/s41564-020-0695-z
– ident: e_1_2_8_18_1
  doi: 10.1016/j.ejmech.2020.112557
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-021-23594-y
– ident: e_1_2_8_7_1
  doi: 10.3390/ph14121243
– ident: e_1_2_8_13_1
  doi: 10.1021/acsmedchemlett.1c00140
– ident: e_1_2_8_23_1
  doi: 10.1073/pnas.2100170118
– ident: e_1_2_8_24_1
  doi: 10.1038/s41392-020-00241-4
– ident: e_1_2_8_16_1
  doi: 10.1021/acs.jmedchem.2c00120
– ident: e_1_2_8_15_1
  doi: 10.1002/pro.4395
– ident: e_1_2_8_9_1
  doi: 10.1016/j.bbagen.2023.130319
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-019-13796-w
– ident: e_1_2_8_12_1
  doi: 10.1021/acsomega.3c02815
– ident: e_1_2_8_11_1
  doi: 10.1016/j.ejmech.2023.115474
– ident: e_1_2_8_19_1
  doi: 10.1126/scisignal.abe1202
– ident: e_1_2_8_14_1
  doi: 10.3390/molecules28020768
– ident: e_1_2_8_21_1
  doi: 10.1126/scisignal.abh2071
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-020-17495-9
– ident: e_1_2_8_5_1
  doi: 10.1038/nature09489
– year: 2022
  ident: e_1_2_8_3_1
  publication-title: Nature
– ident: e_1_2_8_6_1
  doi: 10.3390/molecules28030988
– ident: e_1_2_8_10_1
  doi: 10.1021/acsinfecdis.1c00131
SSID ssj0044818
Score 2.4142036
Snippet Coronaviruses, including SARS‐CoV‐2, possess an mRNA 5′ capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM‐dependent...
Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202400618
SubjectTerms Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Binding Sites
Capping
Catalytic Domain
Coronaviruses
COVID-19
Crystallography
Crystallography, X-Ray
Enzymatic activity
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Humans
Inhibitors
Innate immunity
Medicinal chemistry
Methionine
Methylation
Methyltransferase
Methyltransferases - antagonists & inhibitors
Methyltransferases - chemistry
Methyltransferases - metabolism
Models, Molecular
mRNA
mRNA guanylyltransferase
nsp16
Nucleotides
S-Adenosylmethionine - chemistry
S-Adenosylmethionine - metabolism
SARS-CoV-2
SARS-CoV-2 - drug effects
SARS-CoV-2 - enzymology
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Structural biology
Substrate inhibition
Viral Nonstructural Proteins - antagonists & inhibitors
Viral Nonstructural Proteins - chemistry
Viral Nonstructural Proteins - metabolism
Viral Regulatory and Accessory Proteins
Title Structural Basis for Inhibition of the SARS‐CoV‐2 nsp16 by Substrate‐Based Dual Site Inhibitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.202400618
https://www.ncbi.nlm.nih.gov/pubmed/39258386
https://www.proquest.com/docview/3145174268
https://www.proquest.com/docview/3102880821
https://pubmed.ncbi.nlm.nih.gov/PMC11648818
Volume 19
WOSCitedRecordID wos001357359900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1860-7187
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044818
  issn: 1860-7179
  databaseCode: DRFUL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB610EMvLfS55SFXquBCRBzn4Rxhl1UrUbRiAe0tcmxHrNQmiJRKe-tP4DfyS5hxNllWCFVqL1HiV5x4xv4mGX8D8KUIAqkFjgAvhPFCrkIPF8HIK4RMUq25ssax6x8nJydyMklHD3bxN_wQ3Qc30gw3X5OCq7zeX5CG6p-GKAjJBzLm8jmsci4kBW8IwlE7F6Pt4b7wcRn7HhouaUvb6Af7y_WXl6VHWPOxy-RDKOvWouHr_3-KNXg1x6HsoBGcdXhmyzewM2qIrGd77GyxL6veYztstKC4nr0FO3a0s0TZwQ5VPa0ZYl_2rbyc5s4FjFUFQ2TJxgen47s_t_3qAo8BK-srHrN8xmi6crS4mIz1rWGDG2xqjPi3baW6rt_B-fDorP_Vmwds8DQFovQUWm85BVRPEhspkwqKrxslqjA2j0JFLjgW4ZjlsYkQ6AidWOv4doxvikKG4j2slFVpPwKTsfBVboQRCm241E-11LlCMBZhUpqLHnjteGV6zmZOQTV-ZA0Pc5DRm826N9uD3a78VcPj8WTJzXb4s7k-15mggMYJohnM_txloybS7xVV2uqGyiBWkwipeA8-NNLS3QpRKP2fjnsgl-SoK0As38s55fTSsX1zNGilpH4FTpD-0v2s_33Q764-_UulDXhJ5-S0w-NNWEGJslvwQv_-Na2vt52C4TGZyG1YHZwOz4_vAZmpKc4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BiwQX3o-FAkZC5dKocZyHcyy7rFqxXa26W9Rb5NiOuhIkVUOR9sZP4DfyS5hxHsuqQkiIS6TYjuPEM_Y39vgbgLdFEEgtsAd4IYwXchV6OAlGXiFkkmrNlTWOXX-STKfy7Cydtd6EdBam4YfoF9xIM9x4TQpOC9L7a9ZQ_cUQByE5QcZc3oTtEGUJhXx7dDI-nXTDMZofbpGPy9j30HZJO-ZGP9jfrGFzZroGN697Tf6OZt10NL73Hz7kPtxtsSg7aITnAdyw5UPYnTVk1qs9tlifzar32C6brWmuV4_Azh31LNF2sPeqXtYM8S87Ks-XuXMDY1XBEF2y-cHJ_Of3H8PqE14DVtYXPGb5itGQ5ahxMRmft4aNrrCqOWLgrpbqsn4Mp-MPi-Gh1wZt8DQFo_QUWnA5BVVPEhspkwqKsRslqjA2j0JFbjgWIZnlsYkQ7AidWOs4d4xvikKG4glslVVpnwGTsfBVboQRCu241E-11LlCQBZhUpqLAXhdh2W6ZTSnwBqfs4aLOcjoz2b9nx3Au778RcPl8ceSO13_Z61O15mgoMYJIhrMftNnozbSFosqbXVFZRCvSYRVfABPG3HpX4VIlPao4wHIDUHqCxDT92ZOuTx3jN8cjVopqV2Bk6S_ND8bHo-G_d3zf3noNdw-XBxPssnR9OMLuEPp5MTD4x3YQumyL-GW_vZ1WV--avXtF2w_LMw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFiEuvB8LBYyEyqVR4zgP51h2WVGxrFbdFvUWObajrgTJqqFIe-Mn8Bv5Jcw4j2VVISTEJVLsiePEM_Y3zuQbgNdFEEgtcAR4IYwXchV6uAhGXiFkkmrNlTWOXX-azGby7Cydt9GE9C9Mww_Rb7iRZbj5mgzcrkxxsGEN1V8McRBSEGTM5XXYCSmTzAB2xseT02k3HaP74Tb5uIx9D32XtGNu9IOD7Ra2V6YrcPNq1OTvaNYtR5M7_-FB7sLtFouyw0Z57sE1W96HvXlDZr3eZyebf7PqfbbH5hua6_UDsAtHPUu0Heytqpc1Q_zLjsrzZe7CwFhVMESXbHF4vPj5_ceo-oTHgJX1iscsXzOashw1Lhbj9daw8SU2tUAM3LVSXdQP4XTy7mT03muTNniaklF6Cj24nJKqJ4mNlEkF5diNElUYm0ehojAci5DM8thECHaETqx1nDvGN0UhQ_EIBmVV2ifAZCx8lRthhEI_LvVTLXWuEJBFWJTmYgheN2CZbhnNKbHG56zhYg4yerNZ_2aH8KaXXzVcHn-U3O3GP2ttus4EJTVOENFg9au-Gq2RPrGo0laXJIN4TSKs4kN43KhLfytEovSNOh6C3FKkXoCYvrdryuW5Y_zm6NRKSf0KnCb9pfvZ6ON41J89_ZeLXsLN-XiSTY9mH57BLSqmGB4e78IAlcs-hxv629dlffGiNbdftkYsRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Basis+for+Inhibition+of+the+SARS%E2%80%90CoV%E2%80%902+nsp16+by+Substrate%E2%80%90Based+Dual+Site+Inhibitors&rft.jtitle=ChemMedChem&rft.au=Kalnins%2C+Gints&rft.au=Rudusa%2C+Laura&rft.au=Bula%2C+Anna+L.&rft.au=Zelencova%E2%80%90Gopejenko%2C+Diana&rft.date=2024-12-16&rft.issn=1860-7179&rft.eissn=1860-7187&rft.volume=19&rft.issue=24&rft_id=info:doi/10.1002%2Fcmdc.202400618&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cmdc_202400618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-7179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-7179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-7179&client=summon