Designing Shape Morphing Behavior through Local Programming of Mechanical Metamaterials

Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is progr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 33; číslo 37; s. e2008617 - n/a
Hlavní autoři: Wenz, Franziska, Schmidt, Ingo, Leichner, Alexander, Lichti, Tobias, Baumann, Sascha, Andrae, Heiko, Eberl, Christoph
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.09.2021
John Wiley and Sons Inc
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process. Different kinds of shape morphing are realized with programmable materials. Therefore, processing functions as well as if‐then‐else‐conditions are implemented in unit cells. Local geometrical adaptions allow controlling the global shape in dependency of a load amplitude. Combining these elements, (strain‐dependent) shapes as well as a moving hillock are created within a material.
AbstractList Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function ε y  = sin (ε x ) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process. Different kinds of shape morphing are realized with programmable materials. Therefore, processing functions as well as if‐then‐else‐conditions are implemented in unit cells. Local geometrical adaptions allow controlling the global shape in dependency of a load amplitude. Combining these elements, (strain‐dependent) shapes as well as a moving hillock are created within a material.
Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process.
Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if-then-else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx ) and an if-then-else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process.Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if-then-else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx ) and an if-then-else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process.
Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν  = f (ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function ε y   = sin (ε x ) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process.
Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if-then-else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function ε  = sin (ε ) and an if-then-else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process.
Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process. Different kinds of shape morphing are realized with programmable materials. Therefore, processing functions as well as if‐then‐else‐conditions are implemented in unit cells. Local geometrical adaptions allow controlling the global shape in dependency of a load amplitude. Combining these elements, (strain‐dependent) shapes as well as a moving hillock are created within a material.
Author Andrae, Heiko
Schmidt, Ingo
Wenz, Franziska
Lichti, Tobias
Leichner, Alexander
Baumann, Sascha
Eberl, Christoph
AuthorAffiliation 2 Fraunhofer Institute for Industrial Mathematics (ITWM) 67663 Kaiserslautern Germany
3 Fraunhofer Institute for Chemical Technology (ICT) 76327 Pfinztal Germany
1 Fraunhofer Institute for Mechanics of Materials (IWM) 79108 Freiburg Germany
4 Institute for Microsystems Engineering Albert‐Ludwigs University of Freiburg 79110 Freiburg Germany
AuthorAffiliation_xml – name: 2 Fraunhofer Institute for Industrial Mathematics (ITWM) 67663 Kaiserslautern Germany
– name: 1 Fraunhofer Institute for Mechanics of Materials (IWM) 79108 Freiburg Germany
– name: 4 Institute for Microsystems Engineering Albert‐Ludwigs University of Freiburg 79110 Freiburg Germany
– name: 3 Fraunhofer Institute for Chemical Technology (ICT) 76327 Pfinztal Germany
Author_xml – sequence: 1
  givenname: Franziska
  orcidid: 0000-0002-3000-4139
  surname: Wenz
  fullname: Wenz, Franziska
  email: franziska.wenz@iwm.fraunhofer.de
  organization: Albert‐Ludwigs University of Freiburg
– sequence: 2
  givenname: Ingo
  surname: Schmidt
  fullname: Schmidt, Ingo
  organization: Fraunhofer Institute for Mechanics of Materials (IWM)
– sequence: 3
  givenname: Alexander
  surname: Leichner
  fullname: Leichner, Alexander
  organization: Fraunhofer Institute for Industrial Mathematics (ITWM)
– sequence: 4
  givenname: Tobias
  surname: Lichti
  fullname: Lichti, Tobias
  organization: Fraunhofer Institute for Industrial Mathematics (ITWM)
– sequence: 5
  givenname: Sascha
  surname: Baumann
  fullname: Baumann, Sascha
  organization: Fraunhofer Institute for Chemical Technology (ICT)
– sequence: 6
  givenname: Heiko
  surname: Andrae
  fullname: Andrae, Heiko
  organization: Fraunhofer Institute for Industrial Mathematics (ITWM)
– sequence: 7
  givenname: Christoph
  surname: Eberl
  fullname: Eberl, Christoph
  organization: Albert‐Ludwigs University of Freiburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34338367$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URLeFK0cUiQuXLP6I7eSElpYWpF2BBIijNU4miaskXuykqP89ibYsUAlxGlnze-M3887IyeAHJOQ5o2tGKX8NVQ9rTjmluWL6EVkxyVma0UKekBUthEwLleWn5CzGG0ppoah6Qk5FJkQulF6Rb5cYXTO4oUk-t7DHZOfDvl2eb7GFW-dDMrbBT02bbH0JXfIp-CZA3y-Ir5Mdli0MbunscIQeRgwOuviUPK7ngs_u6zn5evXuy8X7dPvx-sPFZpuWmSp0yjnkVV7WukRbKG0ph8wqaytNdQVY5SByyy3y2TkymwkpalFpplGipHUmzsmbw9z9ZHusShzGAJ3ZB9dDuDMenPm7M7jWNP7WMDYb4IrPE17dTwj--4RxNL2LJXYdDOinaLiUWmZa6GJGXz5Ab_wUhnm_mdKcUybVYunFn5aOXn4dfQbWB6AMPsaA9RFh1CypmiVVc0x1FmQPBKUbYXR-Wcl1_5YVB9kP1-Hdfz4xm8vd5rf2J52Ft-I
CitedBy_id crossref_primary_10_1016_j_matdes_2023_112468
crossref_primary_10_1063_5_0099323
crossref_primary_10_1016_j_ijmecsci_2025_110423
crossref_primary_10_1080_17452759_2025_2450286
crossref_primary_10_1002_aisy_202200400
crossref_primary_10_1016_j_commatsci_2023_112716
crossref_primary_10_1038_s41578_024_00714_w
crossref_primary_10_1002_adfm_202421746
crossref_primary_10_1002_adem_202200386
crossref_primary_10_1002_adma_202110115
crossref_primary_10_1016_j_mser_2023_100755
crossref_primary_10_1038_s42005_022_00876_5
crossref_primary_10_1016_j_matdes_2024_113334
crossref_primary_10_1016_j_compstruct_2023_117151
crossref_primary_10_1016_j_engstruct_2025_120997
crossref_primary_10_1002_adem_202101620
crossref_primary_10_1007_s11431_024_2681_1
crossref_primary_10_1142_S1758825125500541
crossref_primary_10_1002_adem_202201323
crossref_primary_10_1016_j_ijmecsci_2025_110696
crossref_primary_10_1073_pnas_2305380120
crossref_primary_10_3390_buildings13040933
crossref_primary_10_1002_adma_202406263
crossref_primary_10_1016_j_cirp_2023_05_005
crossref_primary_10_1016_j_ijmecsci_2024_109686
crossref_primary_10_1016_j_ijsolstr_2025_113471
crossref_primary_10_1039_D4MH01013B
crossref_primary_10_1002_app_53376
crossref_primary_10_1016_j_matdes_2023_111988
crossref_primary_10_1016_j_ijsolstr_2022_111769
crossref_primary_10_1088_1748_3190_ad5ee7
crossref_primary_10_1002_adem_202201022
crossref_primary_10_1002_smll_202202128
crossref_primary_10_1002_advs_202204721
crossref_primary_10_1016_j_matdes_2022_110918
crossref_primary_10_1038_s43246_024_00448_w
crossref_primary_10_1016_j_eml_2022_101656
crossref_primary_10_1016_j_compstruct_2022_116135
crossref_primary_10_3389_fmats_2024_1361408
crossref_primary_10_1002_advs_202201867
crossref_primary_10_1007_s10409_024_24061_x
crossref_primary_10_3390_ma16020676
crossref_primary_10_1002_adma_202210993
crossref_primary_10_1038_s41586_025_08658_z
crossref_primary_10_1016_j_matdes_2024_113187
crossref_primary_10_1002_pol_20230982
Cites_doi 10.1080/09243046.2016.1165643
10.1002/adma.201501708
10.1098/rspa.1972.0001
10.1039/C3SM52047A
10.1016/S1672-6529(16)60302-5
10.1038/s42254-018-0018-y
10.2514/1.44287
10.1002/adma.201200584
10.1145/2380116.2380181
10.1103/PhysRevLett.113.175503
10.1017/CBO9781139878326
10.1007/BF00042531
10.1115/1.2804743
10.3390/ma13061383
10.1088/0964-1726/22/2/025021
10.1115/1.4037966
10.1002/adem.201800771
10.1002/adma.201706311
10.1038/nmat3177
10.1007/s10589-013-9630-z
10.1002/adma.200901956
10.1038/natrevmats.2017.66
10.1016/j.matdes.2019.107950
10.1016/j.matdes.2017.04.082
10.1039/C6RA27333E
10.1038/361511a0
10.1016/j.matdes.2017.12.047
10.1088/0964-1726/21/10/105004
10.1002/adem.201500295
10.3182/20060912-3-DE-2911.00027
10.2514/1.25356
10.1016/S0141-0296(01)00081-5
ContentType Journal Article
Copyright 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.202008617
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC11469262
34338367
10_1002_adma_202008617
ADMA202008617
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c4697-22a8d8cf7ceb967b02a4b6bbd707daed8a38b2be2096e1b4353f3d717e5e50f43
IEDL.DBID 24P
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680016700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Tue Nov 04 02:05:53 EST 2025
Fri Jul 11 10:55:26 EDT 2025
Sun Nov 09 06:02:52 EST 2025
Thu Apr 03 06:54:05 EDT 2025
Sat Nov 29 07:20:15 EST 2025
Tue Nov 18 21:14:59 EST 2025
Wed Jan 22 16:29:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords material design
shape morphing
homogenization
multiscale simulation
mechanical metamaterials
programmable materials
Language English
License Attribution
2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4697-22a8d8cf7ceb967b02a4b6bbd707daed8a38b2be2096e1b4353f3d717e5e50f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3000-4139
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008617
PMID 34338367
PQID 2572201564
PQPubID 2045203
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469262
proquest_miscellaneous_2557547379
proquest_journals_2572201564
pubmed_primary_34338367
crossref_primary_10_1002_adma_202008617
crossref_citationtrail_10_1002_adma_202008617
wiley_primary_10_1002_adma_202008617_ADMA202008617
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2018; 141
2017; 7
2009; 46
2017; 2
2017; 26
2013; 22
2012
2017; 69
2019; 1
2013; 62
2006; 39
1995; 117
1997
2007
1993; 361
2011; 10
2020; 13
2016; 18
2018; 20
2016; 13
2014; 113
2010; 22
2018; 8
2019; 180
2015; 27
2013; 10
2002; 24
2018
2016
2018; 30
2012; 24
2007; 44
1972; 326
1985; 15
2012; 21
2017; 127
e_1_2_7_6_1
Andersen G. (e_1_2_7_2_1) 2007
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
Celli P. (e_1_2_7_21_1) 2018
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Follmer S. (e_1_2_7_34_1) 2012
e_1_2_7_29_1
Winstone B. (e_1_2_7_5_1) 2016
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Mirzaali M. (e_1_2_7_19_1) 2018; 8
References_xml – volume: 13
  start-page: 6
  year: 2020
  publication-title: Materials
– start-page: 449
  year: 2016
  end-page: 456
– volume: 141
  start-page: 384
  year: 2018
  publication-title: Mater. Des.
– volume: 127
  start-page: 215
  year: 2017
  publication-title: Mater. Des.
– start-page: 519
  year: 2012
  end-page: 528
– volume: 180
  year: 2019
  publication-title: Mater. Des.
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 117
  start-page: 483
  year: 1995
  publication-title: J. Eng. Mater. Technol.
– year: 2007
– volume: 69
  year: 2017
  publication-title: Appl. Mech. Rev.
– volume: 24
  start-page: 5
  year: 2002
  publication-title: Eng. Struct.
– volume: 24
  start-page: 2710
  year: 2012
  publication-title: Adv. Mater.
– volume: 7
  start-page: 5111
  year: 2017
  publication-title: RSC Adv.
– year: 2018
  publication-title: Soft Matter Commun.
– volume: 22
  start-page: 361
  year: 2010
  publication-title: Adv. Mater.
– volume: 18
  start-page: 643
  year: 2016
  publication-title: Adv. Eng. Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 361
  start-page: 511
  year: 1993
  publication-title: Nature
– volume: 20
  year: 2018
  publication-title: Adv. Eng. Mater.
– volume: 27
  start-page: 4296
  year: 2015
  publication-title: Adv. Mater.
– volume: 1
  start-page: 198
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 15
  start-page: 427
  year: 1985
  publication-title: J. Elast.
– volume: 326
  start-page: 131
  year: 1972
  publication-title: Proc. R. Soc. London. A. Math. Phys. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 62
  start-page: 111
  year: 2013
  publication-title: Computational Optimization and Applications
– volume: 13
  start-page: 292
  year: 2016
  publication-title: J. Bionic Eng.
– year: 1997
– volume: 10
  start-page: 48
  year: 2013
  publication-title: Soft Matter
– volume: 22
  year: 2013
  publication-title: Smart Mater. Struct.
– volume: 26
  start-page: 35
  year: 2017
  publication-title: Adv. Compos. Mater.
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 46
  start-page: 2169
  year: 2009
  publication-title: J. Aircr.
– volume: 44
  start-page: 741
  year: 2007
  publication-title: J. Aircr.
– volume: 10
  start-page: 986
  year: 2011
  publication-title: Nat. Mater.
– volume: 21
  year: 2012
  publication-title: Smart Mater. Struct.
– volume: 39
  start-page: 139
  year: 2006
  publication-title: IFAC Proc. Vol.
– ident: e_1_2_7_7_1
  doi: 10.1080/09243046.2016.1165643
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201501708
– ident: e_1_2_7_23_1
  doi: 10.1098/rspa.1972.0001
– ident: e_1_2_7_33_1
  doi: 10.1039/C3SM52047A
– ident: e_1_2_7_37_1
  doi: 10.1016/S1672-6529(16)60302-5
– ident: e_1_2_7_13_1
  doi: 10.1038/s42254-018-0018-y
– ident: e_1_2_7_1_1
  doi: 10.2514/1.44287
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201200584
– start-page: 519
  volume-title: UIST'12 ‐ Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology
  year: 2012
  ident: e_1_2_7_34_1
  doi: 10.1145/2380116.2380181
– ident: e_1_2_7_30_1
  doi: 10.1103/PhysRevLett.113.175503
– volume-title: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf.
  year: 2007
  ident: e_1_2_7_2_1
– ident: e_1_2_7_22_1
  doi: 10.1017/CBO9781139878326
– ident: e_1_2_7_15_1
  doi: 10.1007/BF00042531
– ident: e_1_2_7_11_1
  doi: 10.1115/1.2804743
– ident: e_1_2_7_4_1
  doi: 10.3390/ma13061383
– volume: 8
  year: 2018
  ident: e_1_2_7_19_1
  publication-title: Sci. Rep.
– year: 2018
  ident: e_1_2_7_21_1
  publication-title: Soft Matter Commun.
– ident: e_1_2_7_8_1
  doi: 10.1088/0964-1726/22/2/025021
– ident: e_1_2_7_29_1
  doi: 10.1115/1.4037966
– ident: e_1_2_7_31_1
  doi: 10.1002/adem.201800771
– start-page: 449
  volume-title: 2016 6th IEEE Int. Conf. Biomedical Robotics and Biomechatronics (BioRob)
  year: 2016
  ident: e_1_2_7_5_1
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201706311
– ident: e_1_2_7_10_1
  doi: 10.1038/nmat3177
– ident: e_1_2_7_25_1
  doi: 10.1007/s10589-013-9630-z
– ident: e_1_2_7_35_1
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.200901956
– ident: e_1_2_7_12_1
  doi: 10.1038/natrevmats.2017.66
– ident: e_1_2_7_14_1
  doi: 10.1016/j.matdes.2019.107950
– ident: e_1_2_7_20_1
  doi: 10.1016/j.matdes.2017.04.082
– ident: e_1_2_7_16_1
  doi: 10.1039/C6RA27333E
– ident: e_1_2_7_9_1
  doi: 10.1038/361511a0
– ident: e_1_2_7_18_1
  doi: 10.1016/j.matdes.2017.12.047
– ident: e_1_2_7_24_1
  doi: 10.1088/0964-1726/21/10/105004
– ident: e_1_2_7_26_1
– ident: e_1_2_7_28_1
  doi: 10.1002/adem.201500295
– ident: e_1_2_7_36_1
  doi: 10.3182/20060912-3-DE-2911.00027
– ident: e_1_2_7_3_1
  doi: 10.2514/1.25356
– ident: e_1_2_7_6_1
  doi: 10.1016/S0141-0296(01)00081-5
SSID ssj0009606
Score 2.566876
Snippet Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2008617
SubjectTerms homogenization
Inverse design
material design
Materials science
mechanical metamaterials
Metamaterials
Morphing
multiscale simulation
Poisson's ratio
programmable materials
shape morphing
Stiffness
Title Designing Shape Morphing Behavior through Local Programming of Mechanical Metamaterials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008617
https://www.ncbi.nlm.nih.gov/pubmed/34338367
https://www.proquest.com/docview/2572201564
https://www.proquest.com/docview/2557547379
https://pubmed.ncbi.nlm.nih.gov/PMC11469262
Volume 33
WOSCitedRecordID wos000680016700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-2dg_bQ7dua-d-4cFgT6aOpFjyY2gW-tCU0K0sb0ZnybSwOSVJ9_fvTnbchDIG7YuR0Mkf0p3uzjr9DuCLcR5VX5KTk8ssUc6WCaI3iURH2q7UpLWrkGxCX16a6TSfrJ3ib_Ahuh9uLBlhvWYBt7g4fQANtS7gBvH-PWnhl7Dd60nNfC3U5AF2NwvZNXm3L8kzZVawjak43ey_qZYe2ZqPQybXTdmgi0Zvn_8V72CntUPjQcM4u_DC1-_hzRo64Qf4OQzRHVSOv9_YOx-PZzQpXG1BFedxm-UnvmCNGE-aWK_fTDKr4rHnU8XMBFRcWjKNG27_CNejbz_OzpM2D0NSkvOsEyGscaasdOkxzzSmwirMEJ1OtbPeGSsNCvSChtv3kAwwWUlHfqLv-35aKbkHW_Ws9p8gxjRPETWaXAlSi7SeVGlqK97t4-yjMoJkNQ1F2YKUc66MX0UDrywKHrCiG7AIvnb0dw08xz8pj1azWrRiuihovRKCD5OrCD53zSRgvGtiaz-7ZxqyaJUm3opgv2GC7lFSsYef0c3NBnt0BAzevdlS394EEG8-Dc5YjRGIwB__ef1iMBwPutrBUzodwmvBATkhQO4Itpbze38Mr8o_y9vF_CTIDV311JzA9vBqdH3xF6TcGsI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB90PfB88OO8O-tnDwSfir0k26SPi-uiuLuIp5xvJWlSFLQr63p_vzNpt7qIHIhvCZmmbTKTmUkmvwHYV9YZ0ebo5KQ8iYTVeWSMUxE3FrVdLlFrFz7ZhBwO1fV1el5HE9JdmAofotlwI8nw6zUJOG1IH76ghmrrgYPoAB_V8DwsCOSldgsWuhe9q_4L8m7iE2zSgV-UJkJNkRtjdjjbw6xmemNuvo2afG3NenXUW_mEH1mF5doWDTsV86zBnCu_wdIrhMJ1-Nv1ER5YDv_c6AcXDkY4MVStgRXHYZ3pJ-yTVgzPq3iveyIZFeHA0c1iYgQsTjSaxxXHf4er3vHl0UlU52KIcnSgZcSYVlblhcydSRNpYqaFSYyxMpZWO6s0V4YZx3C83W-DRhgvuEVf0bVdOy4E_wGtclS6DQhNnMbGSKNSwVA14ppSxLEu6MSPMpDyAKLpPGR5DVRO-TLusgpimWU0YFkzYAEcNPQPFUTHu5Tb02nNalF9zHDNYowulIsAfjXNKGR0cqJLN3oiGrRqheQyDeBnxQXNq7ggLz_BztUMfzQEBOA921Le3nggb7oRTniNATDPIP_5_KzTHXSa2uZHHtqDxZPLQT_rnw7PtuArowAdHzC3Da3J-MntwJf83-T2cbxbi9EzEG0dtw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6doztodu6bnObrR4U-mTqSoolP4amYWNJCHRjeTOSJZNA54R87O_fney4CaUUxt4kfPKHdF-y7n4HcK6sM6LNcZOT8iQSVueRMU5F3Fi0drlEq134YhNyOFTjcTqqowkpF6bCh2h-uJFkeH1NAu7mtri8Rw3V1gMH0QE-muFncCDaqGgJ3FmM7nF3E19ek477ojQRaoPbGLPL3fG7dumBs_kwZnLbl_XGqPf6P3zGGzisPdGwU7HOW9hz5RG82sInfAe_uj6-A9vh7UTPXTiY4bJQt4ZVXIR1nZ-wTzYxHFXRXr-JZFaEA0d5xcQG2FxpdI4rfj-Gn72bH9dfo7oSQ5Tj9llGjGllVV7I3Jk0kSZmWpjEGCtjabWzSnNlmHEM59tdGXTBeMEt7hRd27XjQvD3sF_OSvcRQhOnsTHSqFQwNIyoUYo41gWd91H9UR5AtFmHLK9hyqlaxl1WASyzjCYsayYsgIuGfl4BdDxK2dosa1YL6jJDjcUYpZOLAL40l1HE6NxEl262Jhr0aYXkMg3gQ8UFzaO4oD1-gjdXO_zREBB89-6VcjrxMN6UD05ojQEwzyBPvH7W6Q46Te_kXwadwYtRt5f1vw2_n8JLRtE5PlquBfurxdp9guf5n9V0ufjsZegvW70boA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Shape+Morphing+Behavior+through+Local+Programming+of+Mechanical+Metamaterials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wenz%2C+Franziska&rft.au=Schmidt%2C+Ingo&rft.au=Leichner%2C+Alexander&rft.au=Lichti%2C+Tobias&rft.date=2021-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=37&rft_id=info:doi/10.1002%2Fadma.202008617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202008617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon