Designing Shape Morphing Behavior through Local Programming of Mechanical Metamaterials
Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is progr...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 33; H. 37; S. e2008617 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.09.2021
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process.
Different kinds of shape morphing are realized with programmable materials. Therefore, processing functions as well as if‐then‐else‐conditions are implemented in unit cells. Local geometrical adaptions allow controlling the global shape in dependency of a load amplitude. Combining these elements, (strain‐dependent) shapes as well as a moving hillock are created within a material. |
|---|---|
| AbstractList | Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν =
f(ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function ε
y
= sin (ε
x
) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process. Different kinds of shape morphing are realized with programmable materials. Therefore, processing functions as well as if‐then‐else‐conditions are implemented in unit cells. Local geometrical adaptions allow controlling the global shape in dependency of a load amplitude. Combining these elements, (strain‐dependent) shapes as well as a moving hillock are created within a material. Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process. Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if-then-else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx ) and an if-then-else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process.Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if-then-else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx ) and an if-then-else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process. Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f (ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function ε y = sin (ε x ) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process. Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if-then-else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function ε = sin (ε ) and an if-then-else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process. Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if‐then‐else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy = sin (εx) and an if‐then‐else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process. Different kinds of shape morphing are realized with programmable materials. Therefore, processing functions as well as if‐then‐else‐conditions are implemented in unit cells. Local geometrical adaptions allow controlling the global shape in dependency of a load amplitude. Combining these elements, (strain‐dependent) shapes as well as a moving hillock are created within a material. |
| Author | Andrae, Heiko Schmidt, Ingo Wenz, Franziska Lichti, Tobias Leichner, Alexander Baumann, Sascha Eberl, Christoph |
| AuthorAffiliation | 2 Fraunhofer Institute for Industrial Mathematics (ITWM) 67663 Kaiserslautern Germany 3 Fraunhofer Institute for Chemical Technology (ICT) 76327 Pfinztal Germany 1 Fraunhofer Institute for Mechanics of Materials (IWM) 79108 Freiburg Germany 4 Institute for Microsystems Engineering Albert‐Ludwigs University of Freiburg 79110 Freiburg Germany |
| AuthorAffiliation_xml | – name: 2 Fraunhofer Institute for Industrial Mathematics (ITWM) 67663 Kaiserslautern Germany – name: 1 Fraunhofer Institute for Mechanics of Materials (IWM) 79108 Freiburg Germany – name: 4 Institute for Microsystems Engineering Albert‐Ludwigs University of Freiburg 79110 Freiburg Germany – name: 3 Fraunhofer Institute for Chemical Technology (ICT) 76327 Pfinztal Germany |
| Author_xml | – sequence: 1 givenname: Franziska orcidid: 0000-0002-3000-4139 surname: Wenz fullname: Wenz, Franziska email: franziska.wenz@iwm.fraunhofer.de organization: Albert‐Ludwigs University of Freiburg – sequence: 2 givenname: Ingo surname: Schmidt fullname: Schmidt, Ingo organization: Fraunhofer Institute for Mechanics of Materials (IWM) – sequence: 3 givenname: Alexander surname: Leichner fullname: Leichner, Alexander organization: Fraunhofer Institute for Industrial Mathematics (ITWM) – sequence: 4 givenname: Tobias surname: Lichti fullname: Lichti, Tobias organization: Fraunhofer Institute for Industrial Mathematics (ITWM) – sequence: 5 givenname: Sascha surname: Baumann fullname: Baumann, Sascha organization: Fraunhofer Institute for Chemical Technology (ICT) – sequence: 6 givenname: Heiko surname: Andrae fullname: Andrae, Heiko organization: Fraunhofer Institute for Industrial Mathematics (ITWM) – sequence: 7 givenname: Christoph surname: Eberl fullname: Eberl, Christoph organization: Albert‐Ludwigs University of Freiburg |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34338367$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1v1DAQxS1URLeFK0cUiQuXLP6I7eSElpYWpF2BBIijNU4miaskXuykqP89ibYsUAlxGlnze-M3887IyeAHJOQ5o2tGKX8NVQ9rTjmluWL6EVkxyVma0UKekBUthEwLleWn5CzGG0ppoah6Qk5FJkQulF6Rb5cYXTO4oUk-t7DHZOfDvl2eb7GFW-dDMrbBT02bbH0JXfIp-CZA3y-Ir5Mdli0MbunscIQeRgwOuviUPK7ngs_u6zn5evXuy8X7dPvx-sPFZpuWmSp0yjnkVV7WukRbKG0ph8wqaytNdQVY5SByyy3y2TkymwkpalFpplGipHUmzsmbw9z9ZHusShzGAJ3ZB9dDuDMenPm7M7jWNP7WMDYb4IrPE17dTwj--4RxNL2LJXYdDOinaLiUWmZa6GJGXz5Ab_wUhnm_mdKcUybVYunFn5aOXn4dfQbWB6AMPsaA9RFh1CypmiVVc0x1FmQPBKUbYXR-Wcl1_5YVB9kP1-Hdfz4xm8vd5rf2J52Ft-I |
| CitedBy_id | crossref_primary_10_1016_j_matdes_2023_112468 crossref_primary_10_1063_5_0099323 crossref_primary_10_1016_j_ijmecsci_2025_110423 crossref_primary_10_1080_17452759_2025_2450286 crossref_primary_10_1002_aisy_202200400 crossref_primary_10_1016_j_commatsci_2023_112716 crossref_primary_10_1038_s41578_024_00714_w crossref_primary_10_1002_adfm_202421746 crossref_primary_10_1002_adem_202200386 crossref_primary_10_1002_adma_202110115 crossref_primary_10_1016_j_mser_2023_100755 crossref_primary_10_1038_s42005_022_00876_5 crossref_primary_10_1016_j_matdes_2024_113334 crossref_primary_10_1016_j_compstruct_2023_117151 crossref_primary_10_1016_j_engstruct_2025_120997 crossref_primary_10_1002_adem_202101620 crossref_primary_10_1007_s11431_024_2681_1 crossref_primary_10_1142_S1758825125500541 crossref_primary_10_1002_adem_202201323 crossref_primary_10_1016_j_ijmecsci_2025_110696 crossref_primary_10_1073_pnas_2305380120 crossref_primary_10_3390_buildings13040933 crossref_primary_10_1002_adma_202406263 crossref_primary_10_1016_j_cirp_2023_05_005 crossref_primary_10_1016_j_ijmecsci_2024_109686 crossref_primary_10_1016_j_ijsolstr_2025_113471 crossref_primary_10_1039_D4MH01013B crossref_primary_10_1002_app_53376 crossref_primary_10_1016_j_matdes_2023_111988 crossref_primary_10_1016_j_ijsolstr_2022_111769 crossref_primary_10_1088_1748_3190_ad5ee7 crossref_primary_10_1002_adem_202201022 crossref_primary_10_1002_smll_202202128 crossref_primary_10_1002_advs_202204721 crossref_primary_10_1016_j_matdes_2022_110918 crossref_primary_10_1038_s43246_024_00448_w crossref_primary_10_1016_j_eml_2022_101656 crossref_primary_10_1016_j_compstruct_2022_116135 crossref_primary_10_3389_fmats_2024_1361408 crossref_primary_10_1002_advs_202201867 crossref_primary_10_1007_s10409_024_24061_x crossref_primary_10_3390_ma16020676 crossref_primary_10_1002_adma_202210993 crossref_primary_10_1038_s41586_025_08658_z crossref_primary_10_1016_j_matdes_2024_113187 crossref_primary_10_1002_pol_20230982 |
| Cites_doi | 10.1080/09243046.2016.1165643 10.1002/adma.201501708 10.1098/rspa.1972.0001 10.1039/C3SM52047A 10.1016/S1672-6529(16)60302-5 10.1038/s42254-018-0018-y 10.2514/1.44287 10.1002/adma.201200584 10.1145/2380116.2380181 10.1103/PhysRevLett.113.175503 10.1017/CBO9781139878326 10.1007/BF00042531 10.1115/1.2804743 10.3390/ma13061383 10.1088/0964-1726/22/2/025021 10.1115/1.4037966 10.1002/adem.201800771 10.1002/adma.201706311 10.1038/nmat3177 10.1007/s10589-013-9630-z 10.1002/adma.200901956 10.1038/natrevmats.2017.66 10.1016/j.matdes.2019.107950 10.1016/j.matdes.2017.04.082 10.1039/C6RA27333E 10.1038/361511a0 10.1016/j.matdes.2017.12.047 10.1088/0964-1726/21/10/105004 10.1002/adem.201500295 10.3182/20060912-3-DE-2911.00027 10.2514/1.25356 10.1016/S0141-0296(01)00081-5 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1002/adma.202008617 |
| DatabaseName | Open Access: Wiley-Blackwell Open Access Journals CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | PMC11469262 34338367 10_1002_adma_202008617 ADMA202008617 |
| Genre | article Journal Article |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c4697-22a8d8cf7ceb967b02a4b6bbd707daed8a38b2be2096e1b4353f3d717e5e50f43 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680016700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Tue Nov 04 02:05:53 EST 2025 Fri Jul 11 10:55:26 EDT 2025 Sun Nov 09 06:02:52 EST 2025 Thu Apr 03 06:54:05 EDT 2025 Sat Nov 29 07:20:15 EST 2025 Tue Nov 18 21:14:59 EST 2025 Wed Jan 22 16:29:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Keywords | material design shape morphing homogenization multiscale simulation mechanical metamaterials programmable materials |
| Language | English |
| License | Attribution 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4697-22a8d8cf7ceb967b02a4b6bbd707daed8a38b2be2096e1b4353f3d717e5e50f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3000-4139 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008617 |
| PMID | 34338367 |
| PQID | 2572201564 |
| PQPubID | 2045203 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469262 proquest_miscellaneous_2557547379 proquest_journals_2572201564 pubmed_primary_34338367 crossref_primary_10_1002_adma_202008617 crossref_citationtrail_10_1002_adma_202008617 wiley_primary_10_1002_adma_202008617_ADMA202008617 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2018; 141 2017; 7 2009; 46 2017; 2 2017; 26 2013; 22 2012 2017; 69 2019; 1 2013; 62 2006; 39 1995; 117 1997 2007 1993; 361 2011; 10 2020; 13 2016; 18 2018; 20 2016; 13 2014; 113 2010; 22 2018; 8 2019; 180 2015; 27 2013; 10 2002; 24 2018 2016 2018; 30 2012; 24 2007; 44 1972; 326 1985; 15 2012; 21 2017; 127 e_1_2_7_6_1 Andersen G. (e_1_2_7_2_1) 2007 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 Celli P. (e_1_2_7_21_1) 2018 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Follmer S. (e_1_2_7_34_1) 2012 e_1_2_7_29_1 Winstone B. (e_1_2_7_5_1) 2016 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 Mirzaali M. (e_1_2_7_19_1) 2018; 8 |
| References_xml | – volume: 13 start-page: 6 year: 2020 publication-title: Materials – start-page: 449 year: 2016 end-page: 456 – volume: 141 start-page: 384 year: 2018 publication-title: Mater. Des. – volume: 127 start-page: 215 year: 2017 publication-title: Mater. Des. – start-page: 519 year: 2012 end-page: 528 – volume: 180 year: 2019 publication-title: Mater. Des. – volume: 113 year: 2014 publication-title: Phys. Rev. Lett. – volume: 117 start-page: 483 year: 1995 publication-title: J. Eng. Mater. Technol. – year: 2007 – volume: 69 year: 2017 publication-title: Appl. Mech. Rev. – volume: 24 start-page: 5 year: 2002 publication-title: Eng. Struct. – volume: 24 start-page: 2710 year: 2012 publication-title: Adv. Mater. – volume: 7 start-page: 5111 year: 2017 publication-title: RSC Adv. – year: 2018 publication-title: Soft Matter Commun. – volume: 22 start-page: 361 year: 2010 publication-title: Adv. Mater. – volume: 18 start-page: 643 year: 2016 publication-title: Adv. Eng. Mater. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 361 start-page: 511 year: 1993 publication-title: Nature – volume: 20 year: 2018 publication-title: Adv. Eng. Mater. – volume: 27 start-page: 4296 year: 2015 publication-title: Adv. Mater. – volume: 1 start-page: 198 year: 2019 publication-title: Nat. Rev. Phys. – volume: 15 start-page: 427 year: 1985 publication-title: J. Elast. – volume: 326 start-page: 131 year: 1972 publication-title: Proc. R. Soc. London. A. Math. Phys. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 62 start-page: 111 year: 2013 publication-title: Computational Optimization and Applications – volume: 13 start-page: 292 year: 2016 publication-title: J. Bionic Eng. – year: 1997 – volume: 10 start-page: 48 year: 2013 publication-title: Soft Matter – volume: 22 year: 2013 publication-title: Smart Mater. Struct. – volume: 26 start-page: 35 year: 2017 publication-title: Adv. Compos. Mater. – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 46 start-page: 2169 year: 2009 publication-title: J. Aircr. – volume: 44 start-page: 741 year: 2007 publication-title: J. Aircr. – volume: 10 start-page: 986 year: 2011 publication-title: Nat. Mater. – volume: 21 year: 2012 publication-title: Smart Mater. Struct. – volume: 39 start-page: 139 year: 2006 publication-title: IFAC Proc. Vol. – ident: e_1_2_7_7_1 doi: 10.1080/09243046.2016.1165643 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201501708 – ident: e_1_2_7_23_1 doi: 10.1098/rspa.1972.0001 – ident: e_1_2_7_33_1 doi: 10.1039/C3SM52047A – ident: e_1_2_7_37_1 doi: 10.1016/S1672-6529(16)60302-5 – ident: e_1_2_7_13_1 doi: 10.1038/s42254-018-0018-y – ident: e_1_2_7_1_1 doi: 10.2514/1.44287 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201200584 – start-page: 519 volume-title: UIST'12 ‐ Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology year: 2012 ident: e_1_2_7_34_1 doi: 10.1145/2380116.2380181 – ident: e_1_2_7_30_1 doi: 10.1103/PhysRevLett.113.175503 – volume-title: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf. year: 2007 ident: e_1_2_7_2_1 – ident: e_1_2_7_22_1 doi: 10.1017/CBO9781139878326 – ident: e_1_2_7_15_1 doi: 10.1007/BF00042531 – ident: e_1_2_7_11_1 doi: 10.1115/1.2804743 – ident: e_1_2_7_4_1 doi: 10.3390/ma13061383 – volume: 8 year: 2018 ident: e_1_2_7_19_1 publication-title: Sci. Rep. – year: 2018 ident: e_1_2_7_21_1 publication-title: Soft Matter Commun. – ident: e_1_2_7_8_1 doi: 10.1088/0964-1726/22/2/025021 – ident: e_1_2_7_29_1 doi: 10.1115/1.4037966 – ident: e_1_2_7_31_1 doi: 10.1002/adem.201800771 – start-page: 449 volume-title: 2016 6th IEEE Int. Conf. Biomedical Robotics and Biomechatronics (BioRob) year: 2016 ident: e_1_2_7_5_1 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201706311 – ident: e_1_2_7_10_1 doi: 10.1038/nmat3177 – ident: e_1_2_7_25_1 doi: 10.1007/s10589-013-9630-z – ident: e_1_2_7_35_1 – ident: e_1_2_7_38_1 doi: 10.1002/adma.200901956 – ident: e_1_2_7_12_1 doi: 10.1038/natrevmats.2017.66 – ident: e_1_2_7_14_1 doi: 10.1016/j.matdes.2019.107950 – ident: e_1_2_7_20_1 doi: 10.1016/j.matdes.2017.04.082 – ident: e_1_2_7_16_1 doi: 10.1039/C6RA27333E – ident: e_1_2_7_9_1 doi: 10.1038/361511a0 – ident: e_1_2_7_18_1 doi: 10.1016/j.matdes.2017.12.047 – ident: e_1_2_7_24_1 doi: 10.1088/0964-1726/21/10/105004 – ident: e_1_2_7_26_1 – ident: e_1_2_7_28_1 doi: 10.1002/adem.201500295 – ident: e_1_2_7_36_1 doi: 10.3182/20060912-3-DE-2911.00027 – ident: e_1_2_7_3_1 doi: 10.2514/1.25356 – ident: e_1_2_7_6_1 doi: 10.1016/S0141-0296(01)00081-5 |
| SSID | ssj0009606 |
| Score | 2.566876 |
| Snippet | Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2008617 |
| SubjectTerms | homogenization Inverse design material design Materials science mechanical metamaterials Metamaterials Morphing multiscale simulation Poisson's ratio programmable materials shape morphing Stiffness |
| Title | Designing Shape Morphing Behavior through Local Programming of Mechanical Metamaterials |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202008617 https://www.ncbi.nlm.nih.gov/pubmed/34338367 https://www.proquest.com/docview/2572201564 https://www.proquest.com/docview/2557547379 https://pubmed.ncbi.nlm.nih.gov/PMC11469262 |
| Volume | 33 |
| WOSCitedRecordID | wos000680016700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEO5Q0ppQoSEqeojuPYznHFsuLQrVZAxd4iv6JWgmy1u-X3M-Nk011VCKm9RLY8zsP-xh7H428APjIepHa8zCSrWCZ8gTrnncqqUNlGNqV2ronBJtTZmZ7Pq9nWKf6OH2L44UaaEcdrUnBjVyc3pKHGR94g2r_HWfgh7Od5oQjXXMxuaHdljK5Ju31ZJYXe0DYyfrJbf3daumVr3naZ3DZl41w0eXr_r3gGB70dmo464DyHB6F9AU-22Alfws9x9O7AdPr9wlyFdLrATqFsT6q4TPsoP-kpzYjprPP1-k0iiyadBjpVTCDA5Nqgadyh_RWcT778-Pw16-MwZA4Xzyrj3GivXaNcsJVUlnEjrLTWK6a8CV6bQltuA8fmDrlFA6xoCo_rxFCGkjWieA177aINbyHNHTONKY0QXggnQyW94blXBmFRMasTyDbdULuepJxiZfyqO3plXlOD1UODJfBpkL_q6Dn-KXm06dW6V9NVjeMV53SYXCTwYShGBaNdE9OGxTXJoEUrFGIrgTcdCIZHFYJW-BJvrnfgMQgQefduSXt5EUm86TQ4cTUmwCM-_vP69Wg8HQ25w7tUegePOTnkRAe5I9hbL6_De3jk_qwvV8vjqDd4VXN9DPvjb5Pz078pMxvs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-xMmnbw4CNbRlsZNKkPUW4juOPx2qlYlpbIQYab5G_IpAgRaXs75_PSQMVmiYh3mz54iT2ne9s3_0O4CuhnktLi4wTRTLm8iBzzopMeWUqXhXS2iommxDTqTw7U0etNyHGwjT4EN2BG0pGXK9RwPFAev8ONVS7CByEF_hBDT-DdRZ4qejB-vB4dDq-Q97lMcEmXvhlijO5RG4kdH-1h1XN9MDcfOg1ed-ajepotPEEP7IJr1tbNB00zLMFa75-A6_uIRS-hd_D6OERyumvc33t08ksTAxWW2DFedpm-knHqBXTo8bf6wpJZlU68RhZjIwQigsdzOOG47fhdHRw8v0wa3MxZDZsoEVGqZZO2kpYbxQXhlDNDDfGCSKc9k7qXBpqPA3j7fsmGGF5lbuwV_SFL0jF8nfQq2e1_wBp3xJd6UIz5hiz3CvuNO07oQNrKGJkAtlyHkrbApVjvozLsoFYpiUOWNkNWALfOvrrBqLjn5S7y2ktW1G9KcOaRSkGlLMEvnTNQcjw5kTXfnaLNMGqZSIXKoH3DRd0r8oZ7vJ56Fyu8EdHgADeqy31xXkE8saIcMRrTIBGBvnP55eD4WTQ1T4-5qE9eHF4MhmX4x_TnzvwkqKDTnSY24XeYn7rP8Fz-2dxcTP_3IrRX5QhHuE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BmNB4YBsfIzBGkJB4iuY6jj8eK0q1ibWqBIi9Rf7UJkFadR1_Pz4nzVZNCAntzZbPiWPf-c7x3e8APhDqubS0KjhRpGCujDLnrCiUVybwUElrQ0o2IaZTeX6uZp03IcbCtPgQ_Q83lIy0X6OA-4ULxzeoodol4CC8wI9q-CE8YlXcaBHcmc1ucHd5Sq-J132F4kyucRsJPd7sv6mX7hibd30mb9uySRmNd-_hM_bgaWeJ5sOWdfbhgW-ewZNb-ITP4cco-XfEcv71Qi98PpnHZcFqB6u4zLs8P_kZ6sR81np7_UKSecgnHuOKkQ1icaWjcdzy-wv4Pv787dNJ0WViKGw8PouCUi2dtEFYbxQXhlDNDDfGCSKc9k7qUhpqPI3z7QcmmmBlKF08KfrKVySw8iVsNfPGv4J8YIkOutKMOcYs94o7TQdO6MgYihiZQbFeh9p2MOWYLeNn3QIs0xonrO4nLIOPPf2iBej4K-XhelnrTlCv6rhjUYrh5CyD931zFDG8N9GNn18jTbRpmSiFyuCg5YL-VSXDMz6PD5cb_NETIHz3ZktzeZFgvDEeHNEaM6CJQf4x_Ho4mgz72uv_6fQOHs9G4_rsdPrlDexQ9M5J3nKHsLVaXvu3sG1_ry6vlkdJhv4A3D0cyg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Shape+Morphing+Behavior+through+Local+Programming+of+Mechanical+Metamaterials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wenz%2C+Franziska&rft.au=Schmidt%2C+Ingo&rft.au=Leichner%2C+Alexander&rft.au=Lichti%2C+Tobias&rft.date=2021-09-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=37&rft_id=info:doi/10.1002%2Fadma.202008617&rft_id=info%3Apmid%2F34338367&rft.externalDocID=PMC11469262 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |