Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation

Fuzzy c-means (FCM) clustering algorithm has been widely used in image segmentation. In this study, a modified FCM algorithm is presented by utilising local contextual information and structure information. The authors first establish a novel similarity measure model based on image patches and local...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 8; číslo 3; s. 150 - 161
Hlavní autoři: Zaixin, Zhao, Lizhi, Cheng, Guangquan, Cheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage The Institution of Engineering and Technology 01.03.2014
Institution of Engineering and Technology
The Institution of Engineering & Technology
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Fuzzy c-means (FCM) clustering algorithm has been widely used in image segmentation. In this study, a modified FCM algorithm is presented by utilising local contextual information and structure information. The authors first establish a novel similarity measure model based on image patches and local statistics, and then define the neighbourhood-weighted distance to replace the Euclidean distance in the objective function of FCM. Validation studies are performed on synthetic and real-world images with different noises, as well as magnetic resonance brain images. Experimental results show that the proposed method is very robust to noise and other image artefacts.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1751-9659
1751-9667
DOI:10.1049/iet-ipr.2011.0128