Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria

[Display omitted] •Styrene degradation via phenylacetic acid was shown for the strains described.•Co-metabolic transformation of substituted styrenes was shown.•Formation of several phenylacetic acids, e.g. ibuprofen, was reported.•α-Methylated substrates were transformed enantioselectively with an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biotechnology reports (Amsterdam, Netherlands) Ročník 6; číslo C; s. 20 - 26
Hlavní autoři: Oelschlägel, Michel, Kaschabek, Stefan R., Zimmerling, Juliane, Schlömann, Michael, Tischler, Dirk
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.06.2015
Elsevier
Témata:
ISSN:2215-017X, 2215-017X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Styrene degradation via phenylacetic acid was shown for the strains described.•Co-metabolic transformation of substituted styrenes was shown.•Formation of several phenylacetic acids, e.g. ibuprofen, was reported.•α-Methylated substrates were transformed enantioselectively with an ee of up to 40%.•Pseud. fluorescens ST was identified as promising biocatalyst for phenylacetic acids. Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38mmolproductgcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess.
AbstractList Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess.
• Styrene degradation via phenylacetic acid was shown for the strains described. • Co-metabolic transformation of substituted styrenes was shown. • Formation of several phenylacetic acids, e.g. ibuprofen, was reported. • α-Methylated substrates were transformed enantioselectively with an ee of up to 40%. • Pseud. fluorescens ST was identified as promising biocatalyst for phenylacetic acids. Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess.
Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite.The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38mmolproductgcelldryweight⁻¹ after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess.
Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight-1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess.Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight-1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess.
[Display omitted] •Styrene degradation via phenylacetic acid was shown for the strains described.•Co-metabolic transformation of substituted styrenes was shown.•Formation of several phenylacetic acids, e.g. ibuprofen, was reported.•α-Methylated substrates were transformed enantioselectively with an ee of up to 40%.•Pseud. fluorescens ST was identified as promising biocatalyst for phenylacetic acids. Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38mmolproductgcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess.
Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains 1CP, ST, and the novel isolates sp. Kp5.2 and sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmol  g after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the ( )-enantiomer of the acid with 40% enantiomeric excess.
Author Schlömann, Michael
Kaschabek, Stefan R.
Tischler, Dirk
Zimmerling, Juliane
Oelschlägel, Michel
AuthorAffiliation Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
AuthorAffiliation_xml – name: Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
Author_xml – sequence: 1
  givenname: Michel
  surname: Oelschlägel
  fullname: Oelschlägel, Michel
  email: michel.oelschlaegel@ioez.tu-freiberg.de
– sequence: 2
  givenname: Stefan R.
  surname: Kaschabek
  fullname: Kaschabek, Stefan R.
– sequence: 3
  givenname: Juliane
  surname: Zimmerling
  fullname: Zimmerling, Juliane
– sequence: 4
  givenname: Michael
  surname: Schlömann
  fullname: Schlömann, Michael
– sequence: 5
  givenname: Dirk
  surname: Tischler
  fullname: Tischler, Dirk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28626693$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAUhU1JadI0f6CL4mU3dvUeG0qhDH0EAt2E0p24kq4nGmxrKsmB-ffVZJKSdJGuJORzPh3r3NfVyRxmrKq3lLSUUPVh25ocsWWEypbQlhD-ojpjjMqG0NWvk0f70-oipS0hhHJBpOpfVaesU0ypnp9VP9ehmTCDCaO39RDiBNmHuQ5DnRaTss9LRlfvbnDej2AxFxVY71Jt9nXK-4gzNg43EZyfN7UBmzF6eFO9HGBMeHG_nlfXX79cr783Vz--Xa4_XzVWlOubnnei40gUQy6Bg-pXtCAsEUKhAGNdDwMq0g294ZJ3xHAyOMtox1fMGX5eXR6xLsBW76KfIO51AK_vDkLcaIgl8oiacIoc0EroqIBC6tyA1KFgPetQksL6dGTtFjOhszjnCOMT6NMvs7_Rm3CrpVCKSVEA7-8BMfxeMGU9-WRxHGHGsCTNSgWSsb78yP-ktKe0NCsEL9J3j2P9zfNQYRF0R4GNIaWIg7Y-35VYUvpRU6IPA6O3-jAw-jAwmlBdBqZY2T_WB_qzpo9HE5Zebz1GnazH2aLzEW0uL--fs_8BzK7aaA
CitedBy_id crossref_primary_10_1016_j_dwt_2024_100246
crossref_primary_10_1016_j_jbiotec_2017_04_038
crossref_primary_10_1002_adsc_201700416
crossref_primary_10_1128_Spectrum_00474_21
crossref_primary_10_1007_s12010_020_03421_8
crossref_primary_10_1002_prot_26447
crossref_primary_10_3390_app8101855
crossref_primary_10_1002_aoc_3829
crossref_primary_10_1080_15287394_2019_1703510
crossref_primary_10_1099_ijs_0_000371
crossref_primary_10_3389_fmicb_2019_00800
crossref_primary_10_1128_AEM_00154_18
crossref_primary_10_1016_j_molstruc_2024_141078
crossref_primary_10_1016_j_rser_2022_112966
crossref_primary_10_1016_j_scitotenv_2022_158330
crossref_primary_10_1134_S1070328418030053
crossref_primary_10_1155_2020_5849123
crossref_primary_10_3389_fmicb_2018_00490
crossref_primary_10_1021_acscatal_5c02430
crossref_primary_10_1016_j_molcatb_2016_08_003
crossref_primary_10_1016_j_jenvman_2020_111744
crossref_primary_10_1088_1755_1315_689_1_012024
crossref_primary_10_1007_s12010_016_2384_1
Cites_doi 10.1128/AEM.07641-11
10.1128/AEM.00341-10
10.1111/j.1472-765X.1995.tb01291.x
10.1111/j.1432-1033.1994.tb18749.x
10.1002/adsc.201100384
10.1021/ja103490h
10.4103/0974-777X.62880
10.1016/j.jbiosc.2011.08.028
10.1002/btpr.1503
10.1128/AEM.60.4.1137-1145.1994
10.1016/S0043-1354(98)00228-0
10.1007/BF00164456
10.1007/BF01278610
10.1016/0304-5102(88)80026-9
10.1016/j.foodchem.2010.06.036
10.1016/j.tetlet.2007.03.016
10.1021/jm800841w
10.1099/00221287-147-7-1815
10.1007/BF00696222
10.1099/mic.0.080259-0
10.1073/pnas.1005399107
10.1007/s00253-006-0443-1
10.1039/JR9560004943
10.1021/jo9914216
10.1021/ja01189a001
10.1016/S0040-4039(00)01327-7
10.1128/AEM.54.8.1940-1945.1988
10.1073/pnas.95.11.6419
10.1016/S0723-2020(83)80042-3
10.1021/jo2018087
10.1021/jm8010965
10.1128/AEM.61.2.544-548.1995
10.1021/jm00037a022
10.1111/j.1574-6976.2002.tb00622.x
10.1016/j.ibiod.2004.06.005
10.1271/bbb.61.2058
10.1128/AEM.63.6.2232-2239.1997
10.1016/j.tet.2009.01.005
10.1016/S0040-4020(99)00279-3
ContentType Journal Article
Copyright 2015 The Authors
2015 The Authors 2015
Copyright_xml – notice: 2015 The Authors
– notice: 2015 The Authors 2015
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.btre.2015.01.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2215-017X
EndPage 26
ExternalDocumentID oai_doaj_org_article_031e3aec5a814a80b8dfe1de42928e50
PMC5466254
28626693
10_1016_j_btre_2015_01_003
S2215017X15000065
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4693-938483e062e35a3a6971bacc0446e4abcd9afe608f9b35380b30fdc218372db3
IEDL.DBID DOA
ISSN 2215-017X
IngestDate Fri Oct 03 12:43:45 EDT 2025
Tue Sep 30 16:56:37 EDT 2025
Wed Oct 01 13:25:08 EDT 2025
Fri Jul 11 16:51:22 EDT 2025
Thu Jan 02 22:20:33 EST 2025
Sat Nov 29 05:55:45 EST 2025
Tue Nov 18 22:13:58 EST 2025
Tue May 16 23:59:55 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Biocatalysis
Ibuprofen
Styrene degradation
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4693-938483e062e35a3a6971bacc0446e4abcd9afe608f9b35380b30fdc218372db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/031e3aec5a814a80b8dfe1de42928e50
PMID 28626693
PQID 1911201443
PQPubID 23479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_031e3aec5a814a80b8dfe1de42928e50
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5466254
proquest_miscellaneous_2000522935
proquest_miscellaneous_1911201443
pubmed_primary_28626693
crossref_citationtrail_10_1016_j_btre_2015_01_003
crossref_primary_10_1016_j_btre_2015_01_003
elsevier_sciencedirect_doi_10_1016_j_btre_2015_01_003
PublicationCentury 2000
PublicationDate 2015-Jun
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-Jun
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biotechnology reports (Amsterdam, Netherlands)
PublicationTitleAlternate Biotechnol Rep (Amst)
PublicationYear 2015
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chen, Ren, Crudden (bib0040) 1999; 64
(bib0115) 2012
ÓConnor, Buckley, Hartmans, Dobson (bib0165) 1995; 61
Ishibashi, Maeki, Yagi, Ohba, Kanai (bib0105) 1999; 55
Gilligan, Yamada, Nagasawa (bib0080) 1993; 39
Oelschlägel, Zimmerling, Schlömann, Tischler (bib0175) 2014; 160
Olivera, Miñambres García, Muñiz, Moreno, Ferrández, Díaz, García, Luengo (bib0190) 1998; 95
Kohler, Kohler-Staub, Focht (bib0135) 1988; 54
(bib0070) 2012
Shiina, Nakata, Ono, Onda, Itagaki (bib0195) 2010; 132
M. Takase, T. Nakamura, K. Kamiya, T. Takezawa, H. Yamazaki, T. Iwaki, Process for production of
Ghorai, Kraus, Keller, Götte, Igel, Schneider, Schnell, Bernhardt, Dove, Zabel, Elz, Seifert, Buschauer (bib0075) 2008; 51
Montersino, Tischler, Gassner, van Berkel (bib0155) 2011; 353
Trott, Bauer, Knackmuss, Stolz (bib0240) 2001; 147
Zhu, Zhou, Hu, Tang, Su, Guo, Chen, Liu (bib0255) 2011; 124
(bib0030) 2005
Sosedov, Baum, Bürger, Matzer, Kiziak, Stolz (bib0210) 2010; 76
Bestetti, Gennaro, Colmegna, Ronco, Galli, Sello (bib0035) 2004; 54
Skoutakis, Carter, Mickle, Smith, Arkin, Alissandratros, Petty (bib0200) 1988; 22
Beltrametti, Marconi, Bestetti, Colombo, Galli, Ruzzi, Zennaro (bib0025) 1997; 63
Hartmans, Smits, van der Werf, Volkering, de Bont (bib0100) 1989; 55
Al-Janabi (bib0005) 2010; 2
Gualtieri, Conti, Dei, Giovannoni, Nannucci, Romanelli, Scapecchi, Teodori, Fanfani, Ghelardini, Giotti, Bartolini (bib0095) 1994; 37
Warhurst, Clarke, Hill, Holt, Fewson (bib0250) 1994; 60
Itoh, Hayashi, Okada, Ito, Mizuguchi (bib0110) 1997; 61
Douma, Deshmukh, de Jonge, de Jong, Seifar, Heijnen, van Gulik (bib0055) 2012; 28
Oelschlägel, Gröning, Tischler, Kaschabek, Schlömann (bib0170) 2012; 78
Gorlatov, Maltseva, Shevchenko, Golovleva (bib0090) 1989; 58
Knackmuss, Hellwig, Lackner, Otting (bib0130) 1976; 2
Toda, Itoh (bib0235) 2012; 113
Dorn, Hellwig, Reineke, Knackmuss (bib0050) 1974; 99
Olivera, Reglero, Martínez-Blanco, Fernández-Medarde, Moreno, Luengo (bib0185) 1994; 221
Milne, Storz, Colyer, Thiel, Dilmeghani Seran, Larsen, Murry (bib0145) 2011; 76
Baddeley, Wrench (bib0015) 1956
Elvers, Wright (bib0065) 1995; 20
Giroux, Nadeau, Han (bib0085) 2000; 41
ÓLeary, ÓConnor, Dobson (bib0180) 2002; 26
Small (bib0205) 1989; 8
Teufel, Mascaraque, Ismail, Voss, Perera, Eisenreich, Haehnel, Fuchs (bib0230) 2010; 107
Taqui Khan, Halligudi, Abdi (bib0225) 1988; 44
Kim, Hao (bib0125) 1999; 33
N.J. Stuart, A.S. Sanders, Phenyl propionic acids U.S. patent 3385886 (Boots Pure Drug Co., Ltd.) 1968.
V. Elango, M.A. Murphy, B.L. Smith, K.G. Davenport, G.N. Mott, E.G. Zey, G.L. Moss, Method for producing ibuprofen. US patent 4981995 (BHC Company) 1991.
K. Kagawa, N. Kanda, F. Masuko, H. Nakanishi, Synthesis of substituted phenylacetic acid. US patent 4220592 (Sumitomo Chemical Company) 1980.
Miyamoto, Okuro, Ohta (bib0150) 2007; 48
Mooney, Ward, ÓConnor (bib0160) 2006; 72
D.D. Lindley, T.A. Curtis, T.R. Ryan, E.M. de la Garza, C.B. Hilton, T.M. Kenesson, Process for the production of 4'-isobutylacetophenone US patent 5068448 A (Hoechst Celanese Corporation, BHC Company) 1991.
(2,6-dichloroanilino)-phenylacetic acid U.S. patent 4410724 (Zenyaku Kogyo Kabushiki Kaisha) 1983.
Wagner, Larson, Beno, Bosse, Darbyshire, Gao, Gates, He, Henry, Hernandez, Hutchinson, Jiang, Kati, Klein, Koev, Kohlbrenner, Krueger, Liu, Liu, Long, Maring, Masse, Middleton, Montgomery, Pratt, Stuart, Molla, Kempf (bib0245) 2009; 52
Baggi, Boga, Catelani, Galli, Treccani (bib0020) 1983; 4
Aramini, Sablone, Bianchini, Amore, Fanì, Perrone, Dolce, Allegretti (bib0010) 2009; 65
Corse, Jones, Soper, Whitehead, Behrens (bib0045) 1948; 70
Gilligan (10.1016/j.btre.2015.01.003_bib0080) 1993; 39
Sosedov (10.1016/j.btre.2015.01.003_bib0210) 2010; 76
Giroux (10.1016/j.btre.2015.01.003_bib0085) 2000; 41
Ghorai (10.1016/j.btre.2015.01.003_bib0075) 2008; 51
10.1016/j.btre.2015.01.003_bib0140
Itoh (10.1016/j.btre.2015.01.003_bib0110) 1997; 61
Milne (10.1016/j.btre.2015.01.003_bib0145) 2011; 76
10.1016/j.btre.2015.01.003_bib0220
Zhu (10.1016/j.btre.2015.01.003_bib0255) 2011; 124
Trott (10.1016/j.btre.2015.01.003_bib0240) 2001; 147
Baddeley (10.1016/j.btre.2015.01.003_bib0015) 1956
Small (10.1016/j.btre.2015.01.003_bib0205) 1989; 8
Al-Janabi (10.1016/j.btre.2015.01.003_bib0005) 2010; 2
(10.1016/j.btre.2015.01.003_bib0070) 2012
Mooney (10.1016/j.btre.2015.01.003_bib0160) 2006; 72
Montersino (10.1016/j.btre.2015.01.003_bib0155) 2011; 353
Kim (10.1016/j.btre.2015.01.003_bib0125) 1999; 33
(10.1016/j.btre.2015.01.003_bib0030) 2005
Chen (10.1016/j.btre.2015.01.003_bib0040) 1999; 64
Skoutakis (10.1016/j.btre.2015.01.003_bib0200) 1988; 22
Toda (10.1016/j.btre.2015.01.003_bib0235) 2012; 113
Dorn (10.1016/j.btre.2015.01.003_bib0050) 1974; 99
Kohler (10.1016/j.btre.2015.01.003_bib0135) 1988; 54
Beltrametti (10.1016/j.btre.2015.01.003_bib0025) 1997; 63
Taqui Khan (10.1016/j.btre.2015.01.003_bib0225) 1988; 44
ÓConnor (10.1016/j.btre.2015.01.003_bib0165) 1995; 61
Elvers (10.1016/j.btre.2015.01.003_bib0065) 1995; 20
Gorlatov (10.1016/j.btre.2015.01.003_bib0090) 1989; 58
(10.1016/j.btre.2015.01.003_bib0115) 2012
Teufel (10.1016/j.btre.2015.01.003_bib0230) 2010; 107
Hartmans (10.1016/j.btre.2015.01.003_bib0100) 1989; 55
10.1016/j.btre.2015.01.003_bib0120
Shiina (10.1016/j.btre.2015.01.003_bib0195) 2010; 132
Miyamoto (10.1016/j.btre.2015.01.003_bib0150) 2007; 48
Douma (10.1016/j.btre.2015.01.003_bib0055) 2012; 28
10.1016/j.btre.2015.01.003_bib0060
Baggi (10.1016/j.btre.2015.01.003_bib0020) 1983; 4
Corse (10.1016/j.btre.2015.01.003_bib0045) 1948; 70
Oelschlägel (10.1016/j.btre.2015.01.003_bib0175) 2014; 160
Oelschlägel (10.1016/j.btre.2015.01.003_bib0170) 2012; 78
Olivera (10.1016/j.btre.2015.01.003_bib0190) 1998; 95
Wagner (10.1016/j.btre.2015.01.003_bib0245) 2009; 52
10.1016/j.btre.2015.01.003_bib0215
Olivera (10.1016/j.btre.2015.01.003_bib0185) 1994; 221
Bestetti (10.1016/j.btre.2015.01.003_bib0035) 2004; 54
Warhurst (10.1016/j.btre.2015.01.003_bib0250) 1994; 60
Aramini (10.1016/j.btre.2015.01.003_bib0010) 2009; 65
Ishibashi (10.1016/j.btre.2015.01.003_bib0105) 1999; 55
Knackmuss (10.1016/j.btre.2015.01.003_bib0130) 1976; 2
Gualtieri (10.1016/j.btre.2015.01.003_bib0095) 1994; 37
ÓLeary (10.1016/j.btre.2015.01.003_bib0180) 2002; 26
20382812 - Appl Environ Microbiol. 2010 Jun;76(11):3668-74
22223600 - Biotechnol Prog. 2012 Mar-Apr;28(2):337-48
27396882 - Biosci Biotechnol Biochem. 1997 Jan;61(12):2058-62
9600981 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6419-24
9172343 - Appl Environ Microbiol. 1997 Jun;63(6):2232-9
18882513 - J Am Chem Soc. 1948 Sep;70(9):2837-43
16823552 - Appl Microbiol Biotechnol. 2006 Aug;72(1):1-10
20606962 - J Glob Infect Dis. 2010 May;2(2):105-8
11429459 - Microbiology. 2001 Jul;147(Pt 7):1815-24
2670397 - Clin Pharm. 1989 Aug;8(8):545-58
7765904 - Lett Appl Microbiol. 1995 Feb;20(2):82-4
3069424 - Drug Intell Clin Pharm. 1988 Nov;22(11):850-9
22504818 - Appl Environ Microbiol. 2012 Jun;78(12):4330-7
8168524 - Eur J Biochem. 1994 Apr 1;221(1):375-81
21988471 - J Org Chem. 2011 Nov 18;76(22):9519-24
20681552 - J Am Chem Soc. 2010 Aug 25;132(33):11629-41
18950149 - J Med Chem. 2008 Nov 27;51(22):7193-204
12413667 - FEMS Microbiol Rev. 2002 Nov;26(4):403-17
7574594 - Appl Environ Microbiol. 1995 Feb;61(2):544-8
4852581 - Arch Microbiol. 1974;99(1):61-70
8201605 - J Med Chem. 1994 May 27;37(11):1704-11
21996027 - J Biosci Bioeng. 2012 Jan;113(1):12-9
3140725 - Appl Environ Microbiol. 1988 Aug;54(8):1940-5
8017910 - Appl Environ Microbiol. 1994 Apr;60(4):1137-45
25187627 - Microbiology. 2014 Nov;160(Pt 11):2481-91
20660314 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14390-5
7764117 - Appl Microbiol Biotechnol. 1993 Aug;39(6):720-5
16348047 - Appl Environ Microbiol. 1989 Nov;55(11):2850-5
19226162 - J Med Chem. 2009 Mar 26;52(6):1659-69
23196308 - Syst Appl Microbiol. 1983;4(1):141-7
References_xml – volume: 4
  start-page: 141
  year: 1983
  end-page: 147
  ident: bib0020
  article-title: Styrene catabolism by a strain of
  publication-title: Syst. Appl. Microbiol.
– volume: 113
  start-page: 12
  year: 2012
  end-page: 19
  ident: bib0235
  article-title: Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria
  publication-title: J. Biosci. Bioeng.
– volume: 51
  start-page: 7193
  year: 2008
  end-page: 7204
  ident: bib0075
  article-title: Acylguanidines as bioisosteres of guanidines:
  publication-title: J. Med. Chem.
– volume: 160
  start-page: 2481
  year: 2014
  end-page: 2491
  ident: bib0175
  article-title: Styrene oxide isomerase of
  publication-title: Microbiology
– volume: 60
  start-page: 1137
  year: 1994
  end-page: 1145
  ident: bib0250
  article-title: Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259
  publication-title: Appl. Environ. Microbiol.
– volume: 39
  start-page: 720
  year: 1993
  end-page: 725
  ident: bib0080
  article-title: Production of
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 54
  start-page: 183
  year: 2004
  end-page: 187
  ident: bib0035
  article-title: Characterization of styrene catabolic pathway in
  publication-title: Int. Biodeterior. Biodegr.
– volume: 124
  start-page: 298
  year: 2011
  end-page: 302
  ident: bib0255
  article-title: Antityrosinase and antimicrobial activities of 2-phenylethanol: 2-phenylacetaldehyde and 2-phenylacetic acid
  publication-title: Food Chem.
– volume: 76
  start-page: 3668
  year: 2010
  end-page: 3674
  ident: bib0210
  article-title: Construction and application of variants of the
  publication-title: Appl. Environ. Microbiol.
– volume: 58
  start-page: 802
  year: 1989
  end-page: 806
  ident: bib0090
  article-title: Degradation of chlorophenols by a culture of
  publication-title: Mikrobiologiya
– volume: 8
  start-page: 545
  year: 1989
  end-page: 558
  ident: bib0205
  article-title: Diclofenac sodium
  publication-title: Clin. Pharm.
– volume: 2
  start-page: 267
  year: 1976
  end-page: 276
  ident: bib0130
  article-title: Cometabolism of 3-methylbenzoate and methylcatechols by a 3-chlorobenzoate utilizing
  publication-title: Eur. J. Appl. Microbiol. Biotechnol.
– volume: 2
  start-page: 105
  year: 2010
  end-page: 108
  ident: bib0005
  article-title: In vitro antibacterial activity of ibuprofen and acetaminophen
  publication-title: J. Glob. Infect. Dis.
– year: 2012
  ident: bib0115
  article-title: Styrene
  publication-title: Ullmann’s Encyclopedia of Industrial Chemistry
– volume: 99
  start-page: 61
  year: 1974
  end-page: 70
  ident: bib0050
  article-title: Isolation and characterization of a 3-chlorobenzoate-degrading pseudomonad
  publication-title: Arch. Microbiol.
– volume: 55
  start-page: 6075
  year: 1999
  end-page: 6080
  ident: bib0105
  article-title: A modification of the asymmetric dihydroxylation approach to the synthesis of (S)-2-arylpropanoic acids
  publication-title: Tetrahedron
– volume: 95
  start-page: 6419
  year: 1998
  end-page: 6424
  ident: bib0190
  article-title: Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 20
  start-page: 82
  year: 1995
  end-page: 84
  ident: bib0065
  article-title: Antibacterial activity of the anti-inflammatory compound ibuprofen
  publication-title: Lett. Appl. Microbiol.
– reference: V. Elango, M.A. Murphy, B.L. Smith, K.G. Davenport, G.N. Mott, E.G. Zey, G.L. Moss, Method for producing ibuprofen. US patent 4981995 (BHC Company) 1991.
– volume: 107
  start-page: 14390
  year: 2010
  end-page: 14395
  ident: bib0230
  article-title: Bacterial phenylalanine and phenylacetate catabolic pathway revealed
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– reference: K. Kagawa, N. Kanda, F. Masuko, H. Nakanishi, Synthesis of substituted phenylacetic acid. US patent 4220592 (Sumitomo Chemical Company) 1980.
– start-page: 4943
  year: 1956
  end-page: 4945
  ident: bib0015
  article-title: The interaction of alkylbenzenes with excess of Friedel-Crafts acetylating agent
  publication-title: J. Chem. Soc.
– volume: 147
  start-page: 1815
  year: 2001
  end-page: 1824
  ident: bib0240
  article-title: Genetic and biochemical characterization of an enantioselective amidase
  publication-title: Microbiology
– volume: 54
  start-page: 1940
  year: 1988
  end-page: 1945
  ident: bib0135
  article-title: Cometabolism of polychlorinated biphenyls: enhanced transformation of Arochlor 1254 by growing bacterial cells
  publication-title: Appl. Environ. Microbiol.
– volume: 26
  start-page: 403
  year: 2002
  end-page: 417
  ident: bib0180
  article-title: Biochemistry, genetics and physiology of microbial styrene degradation
  publication-title: FEMS Microbiol. Rev.
– volume: 22
  start-page: 850
  year: 1988
  end-page: 859
  ident: bib0200
  article-title: Review of diclofenac and evaluation of its place in therapy as a nonsteroidal antiinflammatory agent
  publication-title: Drug Intel. Clin. Pharm.
– volume: 44
  start-page: 179
  year: 1988
  end-page: 181
  ident: bib0225
  article-title: Carbonylation of benzyl chloride to phenylacetic acid and its ester using water-soluble Ru(III)-EDTA complex catalyst
  publication-title: J. Mol. Catal.
– volume: 52
  start-page: 1659
  year: 2009
  end-page: 1669
  ident: bib0245
  article-title: Inhibitors of hepatitis C virus polymerase: synthesis and biological characterization of unsymmetrical dialkyl-hydroxynaphthalenoyl-benzothiadiazines
  publication-title: J. Med. Chem.
– volume: 78
  start-page: 4330
  year: 2012
  end-page: 4337
  ident: bib0170
  article-title: Styrene oxide isomerase of
  publication-title: Appl. Environ. Microbiol.
– year: 2005
  ident: bib0030
  article-title: Carbonylation
  publication-title: Ullmann’s Encyclopedia of Industrial Chemistry
– volume: 65
  start-page: 2015
  year: 2009
  end-page: 2021
  ident: bib0010
  article-title: Facile one-pot preparation of 2-arylpropionic acids from cyanohydrins by treatment with aqueous HI
  publication-title: Tetrahedron
– volume: 70
  start-page: 2837
  year: 1948
  end-page: 2843
  ident: bib0045
  article-title: Biosynthesis of penicillins. V. Substituted phenylacetic acid derivatives as penicillin precursors
  publication-title: J. Am. Chem. Soc.
– reference: D.D. Lindley, T.A. Curtis, T.R. Ryan, E.M. de la Garza, C.B. Hilton, T.M. Kenesson, Process for the production of 4'-isobutylacetophenone US patent 5068448 A (Hoechst Celanese Corporation, BHC Company) 1991.
– volume: 61
  start-page: 2058
  year: 1997
  end-page: 2062
  ident: bib0110
  article-title: Characterization of styrene oxide isomerase: a key enzyme of styrene and styrene oxide metabolism in
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 132
  start-page: 11629
  year: 2010
  end-page: 11641
  ident: bib0195
  article-title: Kinetic resolution of racemic α-arylalkanoic acids with achiral alcohols via the asymmetric esterification using carboxylic anhydrides and acyl-transfer catalysts
  publication-title: J. Am. Chem. Soc.
– reference: M. Takase, T. Nakamura, K. Kamiya, T. Takezawa, H. Yamazaki, T. Iwaki, Process for production of
– volume: 33
  start-page: 562
  year: 1999
  end-page: 574
  ident: bib0125
  article-title: Cometabolic degradation of chlorophenols by
  publication-title: Water Res.
– volume: 61
  start-page: 544
  year: 1995
  end-page: 548
  ident: bib0165
  article-title: Possible regulatory role for nonaromatic carbon sources in styrene degradation by
  publication-title: Appl. Environ. Microbiol.
– year: 2012
  ident: bib0070
  article-title: Flavors and fragrances
  publication-title: Ullmann's Encyclopedia of Industrial Chemistry
– volume: 221
  start-page: 375
  year: 1994
  end-page: 381
  ident: bib0185
  article-title: Catabolism of aromatics in
  publication-title: Eur. J. Biochem.
– volume: 37
  start-page: 1704
  year: 1994
  end-page: 1711
  ident: bib0095
  article-title: Presynaptic cholinergic modulators as potent cognition enhancers and analgestic drugs: 1 Tropic and 2-phenylpropionic acid esters
  publication-title: J. Med. Chem.
– volume: 353
  start-page: 2301
  year: 2011
  end-page: 2319
  ident: bib0155
  article-title: Catalytic and structural features of flavoprotein hydroxylases and epoxidases
  publication-title: Adv. Synth. Catal.
– volume: 41
  start-page: 7601
  year: 2000
  end-page: 7604
  ident: bib0085
  article-title: Synthesis of phenylacetic acids under rhodium-catalyzed carbonylation conditions
  publication-title: Tetrahedron Lett.
– volume: 64
  start-page: 9704
  year: 1999
  end-page: 9710
  ident: bib0040
  article-title: Catalytic asymmetric hydrocarboxylation and hydrohydroxymethylation: a two-step approach to the enantioselective functionalization of vinylarenes
  publication-title: J. Org. Chem.
– volume: 48
  start-page: 3255
  year: 2007
  end-page: 3257
  ident: bib0150
  article-title: Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from
  publication-title: Tetrahedron Lett.
– volume: 55
  start-page: 2850
  year: 1989
  end-page: 2855
  ident: bib0100
  article-title: Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X
  publication-title: Microbiology
– volume: 28
  start-page: 337
  year: 2012
  end-page: 348
  ident: bib0055
  article-title: Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in
  publication-title: Biotechnol. Prog.
– reference: -(2,6-dichloroanilino)-phenylacetic acid U.S. patent 4410724 (Zenyaku Kogyo Kabushiki Kaisha) 1983.
– volume: 76
  start-page: 9519
  year: 2011
  end-page: 9524
  ident: bib0145
  article-title: Iodide-catalyzed reductions: development of a synthesis of phenylacetic acids
  publication-title: J. Org. Chem.
– volume: 72
  start-page: 1
  year: 2006
  end-page: 10
  ident: bib0160
  article-title: Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 63
  start-page: 2232
  year: 1997
  end-page: 2239
  ident: bib0025
  article-title: Sequencing and functional analysis of styrene catabolism genes from
  publication-title: Appl. Environ. Microbiol.
– reference: N.J. Stuart, A.S. Sanders, Phenyl propionic acids U.S. patent 3385886 (Boots Pure Drug Co., Ltd.) 1968.
– volume: 78
  start-page: 4330
  year: 2012
  ident: 10.1016/j.btre.2015.01.003_bib0170
  article-title: Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.07641-11
– volume: 76
  start-page: 3668
  year: 2010
  ident: 10.1016/j.btre.2015.01.003_bib0210
  article-title: Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00341-10
– volume: 20
  start-page: 82
  year: 1995
  ident: 10.1016/j.btre.2015.01.003_bib0065
  article-title: Antibacterial activity of the anti-inflammatory compound ibuprofen
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/j.1472-765X.1995.tb01291.x
– volume: 221
  start-page: 375
  year: 1994
  ident: 10.1016/j.btre.2015.01.003_bib0185
  article-title: Catabolism of aromatics in Pseudomonas putida U. Formal demonstration that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1994.tb18749.x
– volume: 353
  start-page: 2301
  year: 2011
  ident: 10.1016/j.btre.2015.01.003_bib0155
  article-title: Catalytic and structural features of flavoprotein hydroxylases and epoxidases
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201100384
– volume: 132
  start-page: 11629
  year: 2010
  ident: 10.1016/j.btre.2015.01.003_bib0195
  article-title: Kinetic resolution of racemic α-arylalkanoic acids with achiral alcohols via the asymmetric esterification using carboxylic anhydrides and acyl-transfer catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103490h
– volume: 2
  start-page: 105
  year: 2010
  ident: 10.1016/j.btre.2015.01.003_bib0005
  article-title: In vitro antibacterial activity of ibuprofen and acetaminophen
  publication-title: J. Glob. Infect. Dis.
  doi: 10.4103/0974-777X.62880
– volume: 113
  start-page: 12
  year: 2012
  ident: 10.1016/j.btre.2015.01.003_bib0235
  article-title: Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2011.08.028
– volume: 28
  start-page: 337
  year: 2012
  ident: 10.1016/j.btre.2015.01.003_bib0055
  article-title: Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in Penicillium chrysogenum
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.1503
– ident: 10.1016/j.btre.2015.01.003_bib0060
– volume: 60
  start-page: 1137
  year: 1994
  ident: 10.1016/j.btre.2015.01.003_bib0250
  article-title: Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.60.4.1137-1145.1994
– volume: 33
  start-page: 562
  year: 1999
  ident: 10.1016/j.btre.2015.01.003_bib0125
  article-title: Cometabolic degradation of chlorophenols by Acinetobacter species
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00228-0
– ident: 10.1016/j.btre.2015.01.003_bib0220
– volume: 39
  start-page: 720
  year: 1993
  ident: 10.1016/j.btre.2015.01.003_bib0080
  article-title: Production of S-(+)-2-phenylpropionic acid from (RS)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00164456
– volume: 2
  start-page: 267
  year: 1976
  ident: 10.1016/j.btre.2015.01.003_bib0130
  article-title: Cometabolism of 3-methylbenzoate and methylcatechols by a 3-chlorobenzoate utilizing Pseudomonas: accumulation of (+)-2,5-dihydro-4-methyl-and (+)-2,5-dihydro-2-methyl-5-oxo-furan-2-acetic acid
  publication-title: Eur. J. Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF01278610
– ident: 10.1016/j.btre.2015.01.003_bib0140
– volume: 44
  start-page: 179
  year: 1988
  ident: 10.1016/j.btre.2015.01.003_bib0225
  article-title: Carbonylation of benzyl chloride to phenylacetic acid and its ester using water-soluble Ru(III)-EDTA complex catalyst
  publication-title: J. Mol. Catal.
  doi: 10.1016/0304-5102(88)80026-9
– volume: 124
  start-page: 298
  year: 2011
  ident: 10.1016/j.btre.2015.01.003_bib0255
  article-title: Antityrosinase and antimicrobial activities of 2-phenylethanol: 2-phenylacetaldehyde and 2-phenylacetic acid
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2010.06.036
– volume: 48
  start-page: 3255
  year: 2007
  ident: 10.1016/j.btre.2015.01.003_bib0150
  article-title: Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from Pseudomonas putida S12
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2007.03.016
– volume: 51
  start-page: 7193
  year: 2008
  ident: 10.1016/j.btre.2015.01.003_bib0075
  article-title: Acylguanidines as bioisosteres of guanidines: NG-acylated imidazolylpropylguanidines, a new class of histamine H2 receptor agonists
  publication-title: J. Med. Chem.
  doi: 10.1021/jm800841w
– volume: 147
  start-page: 1815
  year: 2001
  ident: 10.1016/j.btre.2015.01.003_bib0240
  article-title: Genetic and biochemical characterization of an enantioselective amidase Agrobacterium tumefaciens strain d3
  publication-title: Microbiology
  doi: 10.1099/00221287-147-7-1815
– volume: 99
  start-page: 61
  year: 1974
  ident: 10.1016/j.btre.2015.01.003_bib0050
  article-title: Isolation and characterization of a 3-chlorobenzoate-degrading pseudomonad
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00696222
– volume: 160
  start-page: 2481
  year: 2014
  ident: 10.1016/j.btre.2015.01.003_bib0175
  article-title: Styrene oxide isomerase of Sphingopyxis species Kp5.2
  publication-title: Microbiology
  doi: 10.1099/mic.0.080259-0
– volume: 107
  start-page: 14390
  year: 2010
  ident: 10.1016/j.btre.2015.01.003_bib0230
  article-title: Bacterial phenylalanine and phenylacetate catabolic pathway revealed
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1005399107
– volume: 72
  start-page: 1
  year: 2006
  ident: 10.1016/j.btre.2015.01.003_bib0160
  article-title: Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0443-1
– ident: 10.1016/j.btre.2015.01.003_bib0120
– start-page: 4943
  year: 1956
  ident: 10.1016/j.btre.2015.01.003_bib0015
  article-title: The interaction of alkylbenzenes with excess of Friedel-Crafts acetylating agent
  publication-title: J. Chem. Soc.
  doi: 10.1039/JR9560004943
– volume: 64
  start-page: 9704
  year: 1999
  ident: 10.1016/j.btre.2015.01.003_bib0040
  article-title: Catalytic asymmetric hydrocarboxylation and hydrohydroxymethylation: a two-step approach to the enantioselective functionalization of vinylarenes
  publication-title: J. Org. Chem.
  doi: 10.1021/jo9914216
– volume: 70
  start-page: 2837
  year: 1948
  ident: 10.1016/j.btre.2015.01.003_bib0045
  article-title: Biosynthesis of penicillins. V. Substituted phenylacetic acid derivatives as penicillin precursors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01189a001
– volume: 41
  start-page: 7601
  year: 2000
  ident: 10.1016/j.btre.2015.01.003_bib0085
  article-title: Synthesis of phenylacetic acids under rhodium-catalyzed carbonylation conditions
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)01327-7
– volume: 54
  start-page: 1940
  year: 1988
  ident: 10.1016/j.btre.2015.01.003_bib0135
  article-title: Cometabolism of polychlorinated biphenyls: enhanced transformation of Arochlor 1254 by growing bacterial cells
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.54.8.1940-1945.1988
– volume: 8
  start-page: 545
  year: 1989
  ident: 10.1016/j.btre.2015.01.003_bib0205
  article-title: Diclofenac sodium
  publication-title: Clin. Pharm.
– year: 2012
  ident: 10.1016/j.btre.2015.01.003_bib0115
  article-title: Styrene
– volume: 95
  start-page: 6419
  year: 1998
  ident: 10.1016/j.btre.2015.01.003_bib0190
  article-title: Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.11.6419
– volume: 4
  start-page: 141
  year: 1983
  ident: 10.1016/j.btre.2015.01.003_bib0020
  article-title: Styrene catabolism by a strain of Pseudomonas fluorescens
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/S0723-2020(83)80042-3
– volume: 76
  start-page: 9519
  year: 2011
  ident: 10.1016/j.btre.2015.01.003_bib0145
  article-title: Iodide-catalyzed reductions: development of a synthesis of phenylacetic acids
  publication-title: J. Org. Chem.
  doi: 10.1021/jo2018087
– volume: 52
  start-page: 1659
  year: 2009
  ident: 10.1016/j.btre.2015.01.003_bib0245
  article-title: Inhibitors of hepatitis C virus polymerase: synthesis and biological characterization of unsymmetrical dialkyl-hydroxynaphthalenoyl-benzothiadiazines
  publication-title: J. Med. Chem.
  doi: 10.1021/jm8010965
– volume: 58
  start-page: 802
  year: 1989
  ident: 10.1016/j.btre.2015.01.003_bib0090
  article-title: Degradation of chlorophenols by a culture of Rhodococcus erythropolis
  publication-title: Mikrobiologiya
– volume: 61
  start-page: 544
  year: 1995
  ident: 10.1016/j.btre.2015.01.003_bib0165
  article-title: Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.61.2.544-548.1995
– volume: 37
  start-page: 1704
  year: 1994
  ident: 10.1016/j.btre.2015.01.003_bib0095
  article-title: Presynaptic cholinergic modulators as potent cognition enhancers and analgestic drugs: 1 Tropic and 2-phenylpropionic acid esters
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00037a022
– volume: 26
  start-page: 403
  year: 2002
  ident: 10.1016/j.btre.2015.01.003_bib0180
  article-title: Biochemistry, genetics and physiology of microbial styrene degradation
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2002.tb00622.x
– volume: 55
  start-page: 2850
  year: 1989
  ident: 10.1016/j.btre.2015.01.003_bib0100
  article-title: Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X
  publication-title: Microbiology
– year: 2005
  ident: 10.1016/j.btre.2015.01.003_bib0030
  article-title: Carbonylation
– volume: 54
  start-page: 183
  year: 2004
  ident: 10.1016/j.btre.2015.01.003_bib0035
  article-title: Characterization of styrene catabolic pathway in Pseudomonas fluorescens ST
  publication-title: Int. Biodeterior. Biodegr.
  doi: 10.1016/j.ibiod.2004.06.005
– volume: 22
  start-page: 850
  year: 1988
  ident: 10.1016/j.btre.2015.01.003_bib0200
  article-title: Review of diclofenac and evaluation of its place in therapy as a nonsteroidal antiinflammatory agent
  publication-title: Drug Intel. Clin. Pharm.
– volume: 61
  start-page: 2058
  year: 1997
  ident: 10.1016/j.btre.2015.01.003_bib0110
  article-title: Characterization of styrene oxide isomerase: a key enzyme of styrene and styrene oxide metabolism in Corynebacterium sp
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.61.2058
– ident: 10.1016/j.btre.2015.01.003_bib0215
– volume: 63
  start-page: 2232
  year: 1997
  ident: 10.1016/j.btre.2015.01.003_bib0025
  article-title: Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.63.6.2232-2239.1997
– year: 2012
  ident: 10.1016/j.btre.2015.01.003_bib0070
  article-title: Flavors and fragrances
– volume: 65
  start-page: 2015
  year: 2009
  ident: 10.1016/j.btre.2015.01.003_bib0010
  article-title: Facile one-pot preparation of 2-arylpropionic acids from cyanohydrins by treatment with aqueous HI
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2009.01.005
– volume: 55
  start-page: 6075
  year: 1999
  ident: 10.1016/j.btre.2015.01.003_bib0105
  article-title: A modification of the asymmetric dihydroxylation approach to the synthesis of (S)-2-arylpropanoic acids
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(99)00279-3
– reference: 4852581 - Arch Microbiol. 1974;99(1):61-70
– reference: 12413667 - FEMS Microbiol Rev. 2002 Nov;26(4):403-17
– reference: 23196308 - Syst Appl Microbiol. 1983;4(1):141-7
– reference: 21996027 - J Biosci Bioeng. 2012 Jan;113(1):12-9
– reference: 16348047 - Appl Environ Microbiol. 1989 Nov;55(11):2850-5
– reference: 7765904 - Lett Appl Microbiol. 1995 Feb;20(2):82-4
– reference: 20382812 - Appl Environ Microbiol. 2010 Jun;76(11):3668-74
– reference: 20606962 - J Glob Infect Dis. 2010 May;2(2):105-8
– reference: 3140725 - Appl Environ Microbiol. 1988 Aug;54(8):1940-5
– reference: 25187627 - Microbiology. 2014 Nov;160(Pt 11):2481-91
– reference: 7574594 - Appl Environ Microbiol. 1995 Feb;61(2):544-8
– reference: 20660314 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14390-5
– reference: 8201605 - J Med Chem. 1994 May 27;37(11):1704-11
– reference: 7764117 - Appl Microbiol Biotechnol. 1993 Aug;39(6):720-5
– reference: 18882513 - J Am Chem Soc. 1948 Sep;70(9):2837-43
– reference: 11429459 - Microbiology. 2001 Jul;147(Pt 7):1815-24
– reference: 27396882 - Biosci Biotechnol Biochem. 1997 Jan;61(12):2058-62
– reference: 16823552 - Appl Microbiol Biotechnol. 2006 Aug;72(1):1-10
– reference: 3069424 - Drug Intell Clin Pharm. 1988 Nov;22(11):850-9
– reference: 18950149 - J Med Chem. 2008 Nov 27;51(22):7193-204
– reference: 8017910 - Appl Environ Microbiol. 1994 Apr;60(4):1137-45
– reference: 21988471 - J Org Chem. 2011 Nov 18;76(22):9519-24
– reference: 2670397 - Clin Pharm. 1989 Aug;8(8):545-58
– reference: 9172343 - Appl Environ Microbiol. 1997 Jun;63(6):2232-9
– reference: 22504818 - Appl Environ Microbiol. 2012 Jun;78(12):4330-7
– reference: 8168524 - Eur J Biochem. 1994 Apr 1;221(1):375-81
– reference: 19226162 - J Med Chem. 2009 Mar 26;52(6):1659-69
– reference: 9600981 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6419-24
– reference: 22223600 - Biotechnol Prog. 2012 Mar-Apr;28(2):337-48
– reference: 20681552 - J Am Chem Soc. 2010 Aug 25;132(33):11629-41
SSID ssj0001340569
Score 2.121021
Snippet [Display omitted] •Styrene degradation via phenylacetic acid was shown for the strains described.•Co-metabolic transformation of substituted styrenes was...
Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to...
• Styrene degradation via phenylacetic acid was shown for the strains described. • Co-metabolic transformation of substituted styrenes was shown. • Formation...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms Biocatalysis
biotransformation
Ibuprofen
phenylacetic acid
Pseudomonas fluorescens
Rhodococcus opacus
soil bacteria
Sphingomonas
styrene
Styrene degradation
Title Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria
URI https://dx.doi.org/10.1016/j.btre.2015.01.003
https://www.ncbi.nlm.nih.gov/pubmed/28626693
https://www.proquest.com/docview/1911201443
https://www.proquest.com/docview/2000522935
https://pubmed.ncbi.nlm.nih.gov/PMC5466254
https://doaj.org/article/031e3aec5a814a80b8dfe1de42928e50
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2215-017X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340569
  issn: 2215-017X
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gAH1PJMC5WRuKGIOI4T51gqqh5QxaFCe7P8GIugkq02W6T-e2biZLUL0nLhmtiOPDPOfGOPv2HsfQu1FJWLuSvbmCMirnNb2SZ3PmilmuAUjJr-0lxd6cWi_bpV6otywhI9cBLcRzQ6kBa8slpUVhdOhwgiAJVZ0pCidUQ9W8HUuLsiEYiM9exK9GkYLzeL6cZMSu5y6xVxZIrE2TlXzJq80kjev-Oc_gaff-ZQbjmli0P2dEKT_CzN4og9gP4Ze7LFMficfTtf5j9hjbq-6Tzf3FXky8gH_GmkTIHAKdXrnrbUcSRufRcG7u75QHvUPeSBKCXIy3GX2J3tC3Z98fn6_DKfiinkHiNgmbdSV1pCUZcglZW2bhuBXTwd6EJlUTetjVAXOrZO4l-wcLKIwROCasrg5Et20C97eM14tBJhXYCopKtcDVqBrHwdhai9l85nTMyyNH4iGqd6Fzdmzij7YUj-huRvCkH0pBn7sOlzm2g29rb-RCratCSK7PEBGo6ZDMf8y3AypmYFmwltJBSBQ3V7P_5utgaDS5HOV2wPy7vBYOgrSopQ97Qpx7NVxFgqY6-SBW2mUVJ0ibrKWLNjWzvz3H3Td99HSnBV1RjIVsf_QzAn7DFNN-XDvWEH69UdvGWP_K91N6xO2cNmoU_H1fYbLwwu7Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-metabolic+formation+of+substituted+phenylacetic+acids+by+styrene-degrading+bacteria&rft.jtitle=Biotechnology+reports+%28Amsterdam%2C+Netherlands%29&rft.au=Oelschl%C3%A4gel%2C+Michel&rft.au=Kaschabek%2C+Stefan+R.&rft.au=Zimmerling%2C+Juliane&rft.au=Schl%C3%B6mann%2C+Michael&rft.date=2015-06-01&rft.issn=2215-017X&rft.eissn=2215-017X&rft.volume=6&rft.spage=20&rft.epage=26&rft_id=info:doi/10.1016%2Fj.btre.2015.01.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_btre_2015_01_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-017X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-017X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-017X&client=summon