Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria
[Display omitted] •Styrene degradation via phenylacetic acid was shown for the strains described.•Co-metabolic transformation of substituted styrenes was shown.•Formation of several phenylacetic acids, e.g. ibuprofen, was reported.•α-Methylated substrates were transformed enantioselectively with an...
Uloženo v:
| Vydáno v: | Biotechnology reports (Amsterdam, Netherlands) Ročník 6; číslo C; s. 20 - 26 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.06.2015
Elsevier |
| Témata: | |
| ISSN: | 2215-017X, 2215-017X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | [Display omitted]
•Styrene degradation via phenylacetic acid was shown for the strains described.•Co-metabolic transformation of substituted styrenes was shown.•Formation of several phenylacetic acids, e.g. ibuprofen, was reported.•α-Methylated substrates were transformed enantioselectively with an ee of up to 40%.•Pseud. fluorescens ST was identified as promising biocatalyst for phenylacetic acids.
Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite.
The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38mmolproductgcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess. |
|---|---|
| AbstractList | Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess. • Styrene degradation via phenylacetic acid was shown for the strains described. • Co-metabolic transformation of substituted styrenes was shown. • Formation of several phenylacetic acids, e.g. ibuprofen, was reported. • α-Methylated substrates were transformed enantioselectively with an ee of up to 40%. • Pseud. fluorescens ST was identified as promising biocatalyst for phenylacetic acids. Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess. Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite.The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38mmolproductgcelldryweight⁻¹ after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess. Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight-1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess.Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight-1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess. [Display omitted] •Styrene degradation via phenylacetic acid was shown for the strains described.•Co-metabolic transformation of substituted styrenes was shown.•Formation of several phenylacetic acids, e.g. ibuprofen, was reported.•α-Methylated substrates were transformed enantioselectively with an ee of up to 40%.•Pseud. fluorescens ST was identified as promising biocatalyst for phenylacetic acids. Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38mmolproductgcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S)-enantiomer of the acid with 40% enantiomeric excess. Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to the occurrence of phenylacetic acid as a central metabolite. The styrene-degrading strains 1CP, ST, and the novel isolates sp. Kp5.2 and sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmol g after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the ( )-enantiomer of the acid with 40% enantiomeric excess. |
| Author | Schlömann, Michael Kaschabek, Stefan R. Tischler, Dirk Zimmerling, Juliane Oelschlägel, Michel |
| AuthorAffiliation | Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany |
| AuthorAffiliation_xml | – name: Interdisciplinary Ecological Center, Environmental Microbiology Group, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany |
| Author_xml | – sequence: 1 givenname: Michel surname: Oelschlägel fullname: Oelschlägel, Michel email: michel.oelschlaegel@ioez.tu-freiberg.de – sequence: 2 givenname: Stefan R. surname: Kaschabek fullname: Kaschabek, Stefan R. – sequence: 3 givenname: Juliane surname: Zimmerling fullname: Zimmerling, Juliane – sequence: 4 givenname: Michael surname: Schlömann fullname: Schlömann, Michael – sequence: 5 givenname: Dirk surname: Tischler fullname: Tischler, Dirk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28626693$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktr3DAUhU1JadI0f6CL4mU3dvUeG0qhDH0EAt2E0p24kq4nGmxrKsmB-ffVZJKSdJGuJORzPh3r3NfVyRxmrKq3lLSUUPVh25ocsWWEypbQlhD-ojpjjMqG0NWvk0f70-oipS0hhHJBpOpfVaesU0ypnp9VP9ehmTCDCaO39RDiBNmHuQ5DnRaTss9LRlfvbnDej2AxFxVY71Jt9nXK-4gzNg43EZyfN7UBmzF6eFO9HGBMeHG_nlfXX79cr783Vz--Xa4_XzVWlOubnnei40gUQy6Bg-pXtCAsEUKhAGNdDwMq0g294ZJ3xHAyOMtox1fMGX5eXR6xLsBW76KfIO51AK_vDkLcaIgl8oiacIoc0EroqIBC6tyA1KFgPetQksL6dGTtFjOhszjnCOMT6NMvs7_Rm3CrpVCKSVEA7-8BMfxeMGU9-WRxHGHGsCTNSgWSsb78yP-ktKe0NCsEL9J3j2P9zfNQYRF0R4GNIaWIg7Y-35VYUvpRU6IPA6O3-jAw-jAwmlBdBqZY2T_WB_qzpo9HE5Zebz1GnazH2aLzEW0uL--fs_8BzK7aaA |
| CitedBy_id | crossref_primary_10_1016_j_dwt_2024_100246 crossref_primary_10_1016_j_jbiotec_2017_04_038 crossref_primary_10_1002_adsc_201700416 crossref_primary_10_1128_Spectrum_00474_21 crossref_primary_10_1007_s12010_020_03421_8 crossref_primary_10_1002_prot_26447 crossref_primary_10_3390_app8101855 crossref_primary_10_1002_aoc_3829 crossref_primary_10_1080_15287394_2019_1703510 crossref_primary_10_1099_ijs_0_000371 crossref_primary_10_3389_fmicb_2019_00800 crossref_primary_10_1128_AEM_00154_18 crossref_primary_10_1016_j_molstruc_2024_141078 crossref_primary_10_1016_j_rser_2022_112966 crossref_primary_10_1016_j_scitotenv_2022_158330 crossref_primary_10_1134_S1070328418030053 crossref_primary_10_1155_2020_5849123 crossref_primary_10_3389_fmicb_2018_00490 crossref_primary_10_1021_acscatal_5c02430 crossref_primary_10_1016_j_molcatb_2016_08_003 crossref_primary_10_1016_j_jenvman_2020_111744 crossref_primary_10_1088_1755_1315_689_1_012024 crossref_primary_10_1007_s12010_016_2384_1 |
| Cites_doi | 10.1128/AEM.07641-11 10.1128/AEM.00341-10 10.1111/j.1472-765X.1995.tb01291.x 10.1111/j.1432-1033.1994.tb18749.x 10.1002/adsc.201100384 10.1021/ja103490h 10.4103/0974-777X.62880 10.1016/j.jbiosc.2011.08.028 10.1002/btpr.1503 10.1128/AEM.60.4.1137-1145.1994 10.1016/S0043-1354(98)00228-0 10.1007/BF00164456 10.1007/BF01278610 10.1016/0304-5102(88)80026-9 10.1016/j.foodchem.2010.06.036 10.1016/j.tetlet.2007.03.016 10.1021/jm800841w 10.1099/00221287-147-7-1815 10.1007/BF00696222 10.1099/mic.0.080259-0 10.1073/pnas.1005399107 10.1007/s00253-006-0443-1 10.1039/JR9560004943 10.1021/jo9914216 10.1021/ja01189a001 10.1016/S0040-4039(00)01327-7 10.1128/AEM.54.8.1940-1945.1988 10.1073/pnas.95.11.6419 10.1016/S0723-2020(83)80042-3 10.1021/jo2018087 10.1021/jm8010965 10.1128/AEM.61.2.544-548.1995 10.1021/jm00037a022 10.1111/j.1574-6976.2002.tb00622.x 10.1016/j.ibiod.2004.06.005 10.1271/bbb.61.2058 10.1128/AEM.63.6.2232-2239.1997 10.1016/j.tet.2009.01.005 10.1016/S0040-4020(99)00279-3 |
| ContentType | Journal Article |
| Copyright | 2015 The Authors 2015 The Authors 2015 |
| Copyright_xml | – notice: 2015 The Authors – notice: 2015 The Authors 2015 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1016/j.btre.2015.01.003 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2215-017X |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_031e3aec5a814a80b8dfe1de42928e50 PMC5466254 28626693 10_1016_j_btre_2015_01_003 S2215017X15000065 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 NCXOZ O9- OK1 RIG ROL RPM SSZ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c4693-938483e062e35a3a6971bacc0446e4abcd9afe608f9b35380b30fdc218372db3 |
| IEDL.DBID | DOA |
| ISSN | 2215-017X |
| IngestDate | Fri Oct 03 12:43:45 EDT 2025 Tue Sep 30 16:56:37 EDT 2025 Wed Oct 01 13:25:08 EDT 2025 Fri Jul 11 16:51:22 EDT 2025 Thu Jan 02 22:20:33 EST 2025 Sat Nov 29 05:55:45 EST 2025 Tue Nov 18 22:13:58 EST 2025 Tue May 16 23:59:55 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Biocatalysis Ibuprofen Styrene degradation |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4693-938483e062e35a3a6971bacc0446e4abcd9afe608f9b35380b30fdc218372db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/031e3aec5a814a80b8dfe1de42928e50 |
| PMID | 28626693 |
| PQID | 1911201443 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_031e3aec5a814a80b8dfe1de42928e50 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5466254 proquest_miscellaneous_2000522935 proquest_miscellaneous_1911201443 pubmed_primary_28626693 crossref_citationtrail_10_1016_j_btre_2015_01_003 crossref_primary_10_1016_j_btre_2015_01_003 elsevier_sciencedirect_doi_10_1016_j_btre_2015_01_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-Jun |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-Jun |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biotechnology reports (Amsterdam, Netherlands) |
| PublicationTitleAlternate | Biotechnol Rep (Amst) |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Chen, Ren, Crudden (bib0040) 1999; 64 (bib0115) 2012 ÓConnor, Buckley, Hartmans, Dobson (bib0165) 1995; 61 Ishibashi, Maeki, Yagi, Ohba, Kanai (bib0105) 1999; 55 Gilligan, Yamada, Nagasawa (bib0080) 1993; 39 Oelschlägel, Zimmerling, Schlömann, Tischler (bib0175) 2014; 160 Olivera, Miñambres García, Muñiz, Moreno, Ferrández, Díaz, García, Luengo (bib0190) 1998; 95 Kohler, Kohler-Staub, Focht (bib0135) 1988; 54 (bib0070) 2012 Shiina, Nakata, Ono, Onda, Itagaki (bib0195) 2010; 132 M. Takase, T. Nakamura, K. Kamiya, T. Takezawa, H. Yamazaki, T. Iwaki, Process for production of Ghorai, Kraus, Keller, Götte, Igel, Schneider, Schnell, Bernhardt, Dove, Zabel, Elz, Seifert, Buschauer (bib0075) 2008; 51 Montersino, Tischler, Gassner, van Berkel (bib0155) 2011; 353 Trott, Bauer, Knackmuss, Stolz (bib0240) 2001; 147 Zhu, Zhou, Hu, Tang, Su, Guo, Chen, Liu (bib0255) 2011; 124 (bib0030) 2005 Sosedov, Baum, Bürger, Matzer, Kiziak, Stolz (bib0210) 2010; 76 Bestetti, Gennaro, Colmegna, Ronco, Galli, Sello (bib0035) 2004; 54 Skoutakis, Carter, Mickle, Smith, Arkin, Alissandratros, Petty (bib0200) 1988; 22 Beltrametti, Marconi, Bestetti, Colombo, Galli, Ruzzi, Zennaro (bib0025) 1997; 63 Hartmans, Smits, van der Werf, Volkering, de Bont (bib0100) 1989; 55 Al-Janabi (bib0005) 2010; 2 Gualtieri, Conti, Dei, Giovannoni, Nannucci, Romanelli, Scapecchi, Teodori, Fanfani, Ghelardini, Giotti, Bartolini (bib0095) 1994; 37 Warhurst, Clarke, Hill, Holt, Fewson (bib0250) 1994; 60 Itoh, Hayashi, Okada, Ito, Mizuguchi (bib0110) 1997; 61 Douma, Deshmukh, de Jonge, de Jong, Seifar, Heijnen, van Gulik (bib0055) 2012; 28 Oelschlägel, Gröning, Tischler, Kaschabek, Schlömann (bib0170) 2012; 78 Gorlatov, Maltseva, Shevchenko, Golovleva (bib0090) 1989; 58 Knackmuss, Hellwig, Lackner, Otting (bib0130) 1976; 2 Toda, Itoh (bib0235) 2012; 113 Dorn, Hellwig, Reineke, Knackmuss (bib0050) 1974; 99 Olivera, Reglero, Martínez-Blanco, Fernández-Medarde, Moreno, Luengo (bib0185) 1994; 221 Milne, Storz, Colyer, Thiel, Dilmeghani Seran, Larsen, Murry (bib0145) 2011; 76 Baddeley, Wrench (bib0015) 1956 Elvers, Wright (bib0065) 1995; 20 Giroux, Nadeau, Han (bib0085) 2000; 41 ÓLeary, ÓConnor, Dobson (bib0180) 2002; 26 Small (bib0205) 1989; 8 Teufel, Mascaraque, Ismail, Voss, Perera, Eisenreich, Haehnel, Fuchs (bib0230) 2010; 107 Taqui Khan, Halligudi, Abdi (bib0225) 1988; 44 Kim, Hao (bib0125) 1999; 33 N.J. Stuart, A.S. Sanders, Phenyl propionic acids U.S. patent 3385886 (Boots Pure Drug Co., Ltd.) 1968. V. Elango, M.A. Murphy, B.L. Smith, K.G. Davenport, G.N. Mott, E.G. Zey, G.L. Moss, Method for producing ibuprofen. US patent 4981995 (BHC Company) 1991. K. Kagawa, N. Kanda, F. Masuko, H. Nakanishi, Synthesis of substituted phenylacetic acid. US patent 4220592 (Sumitomo Chemical Company) 1980. Miyamoto, Okuro, Ohta (bib0150) 2007; 48 Mooney, Ward, ÓConnor (bib0160) 2006; 72 D.D. Lindley, T.A. Curtis, T.R. Ryan, E.M. de la Garza, C.B. Hilton, T.M. Kenesson, Process for the production of 4'-isobutylacetophenone US patent 5068448 A (Hoechst Celanese Corporation, BHC Company) 1991. (2,6-dichloroanilino)-phenylacetic acid U.S. patent 4410724 (Zenyaku Kogyo Kabushiki Kaisha) 1983. Wagner, Larson, Beno, Bosse, Darbyshire, Gao, Gates, He, Henry, Hernandez, Hutchinson, Jiang, Kati, Klein, Koev, Kohlbrenner, Krueger, Liu, Liu, Long, Maring, Masse, Middleton, Montgomery, Pratt, Stuart, Molla, Kempf (bib0245) 2009; 52 Baggi, Boga, Catelani, Galli, Treccani (bib0020) 1983; 4 Aramini, Sablone, Bianchini, Amore, Fanì, Perrone, Dolce, Allegretti (bib0010) 2009; 65 Corse, Jones, Soper, Whitehead, Behrens (bib0045) 1948; 70 Gilligan (10.1016/j.btre.2015.01.003_bib0080) 1993; 39 Sosedov (10.1016/j.btre.2015.01.003_bib0210) 2010; 76 Giroux (10.1016/j.btre.2015.01.003_bib0085) 2000; 41 Ghorai (10.1016/j.btre.2015.01.003_bib0075) 2008; 51 10.1016/j.btre.2015.01.003_bib0140 Itoh (10.1016/j.btre.2015.01.003_bib0110) 1997; 61 Milne (10.1016/j.btre.2015.01.003_bib0145) 2011; 76 10.1016/j.btre.2015.01.003_bib0220 Zhu (10.1016/j.btre.2015.01.003_bib0255) 2011; 124 Trott (10.1016/j.btre.2015.01.003_bib0240) 2001; 147 Baddeley (10.1016/j.btre.2015.01.003_bib0015) 1956 Small (10.1016/j.btre.2015.01.003_bib0205) 1989; 8 Al-Janabi (10.1016/j.btre.2015.01.003_bib0005) 2010; 2 (10.1016/j.btre.2015.01.003_bib0070) 2012 Mooney (10.1016/j.btre.2015.01.003_bib0160) 2006; 72 Montersino (10.1016/j.btre.2015.01.003_bib0155) 2011; 353 Kim (10.1016/j.btre.2015.01.003_bib0125) 1999; 33 (10.1016/j.btre.2015.01.003_bib0030) 2005 Chen (10.1016/j.btre.2015.01.003_bib0040) 1999; 64 Skoutakis (10.1016/j.btre.2015.01.003_bib0200) 1988; 22 Toda (10.1016/j.btre.2015.01.003_bib0235) 2012; 113 Dorn (10.1016/j.btre.2015.01.003_bib0050) 1974; 99 Kohler (10.1016/j.btre.2015.01.003_bib0135) 1988; 54 Beltrametti (10.1016/j.btre.2015.01.003_bib0025) 1997; 63 Taqui Khan (10.1016/j.btre.2015.01.003_bib0225) 1988; 44 ÓConnor (10.1016/j.btre.2015.01.003_bib0165) 1995; 61 Elvers (10.1016/j.btre.2015.01.003_bib0065) 1995; 20 Gorlatov (10.1016/j.btre.2015.01.003_bib0090) 1989; 58 (10.1016/j.btre.2015.01.003_bib0115) 2012 Teufel (10.1016/j.btre.2015.01.003_bib0230) 2010; 107 Hartmans (10.1016/j.btre.2015.01.003_bib0100) 1989; 55 10.1016/j.btre.2015.01.003_bib0120 Shiina (10.1016/j.btre.2015.01.003_bib0195) 2010; 132 Miyamoto (10.1016/j.btre.2015.01.003_bib0150) 2007; 48 Douma (10.1016/j.btre.2015.01.003_bib0055) 2012; 28 10.1016/j.btre.2015.01.003_bib0060 Baggi (10.1016/j.btre.2015.01.003_bib0020) 1983; 4 Corse (10.1016/j.btre.2015.01.003_bib0045) 1948; 70 Oelschlägel (10.1016/j.btre.2015.01.003_bib0175) 2014; 160 Oelschlägel (10.1016/j.btre.2015.01.003_bib0170) 2012; 78 Olivera (10.1016/j.btre.2015.01.003_bib0190) 1998; 95 Wagner (10.1016/j.btre.2015.01.003_bib0245) 2009; 52 10.1016/j.btre.2015.01.003_bib0215 Olivera (10.1016/j.btre.2015.01.003_bib0185) 1994; 221 Bestetti (10.1016/j.btre.2015.01.003_bib0035) 2004; 54 Warhurst (10.1016/j.btre.2015.01.003_bib0250) 1994; 60 Aramini (10.1016/j.btre.2015.01.003_bib0010) 2009; 65 Ishibashi (10.1016/j.btre.2015.01.003_bib0105) 1999; 55 Knackmuss (10.1016/j.btre.2015.01.003_bib0130) 1976; 2 Gualtieri (10.1016/j.btre.2015.01.003_bib0095) 1994; 37 ÓLeary (10.1016/j.btre.2015.01.003_bib0180) 2002; 26 20382812 - Appl Environ Microbiol. 2010 Jun;76(11):3668-74 22223600 - Biotechnol Prog. 2012 Mar-Apr;28(2):337-48 27396882 - Biosci Biotechnol Biochem. 1997 Jan;61(12):2058-62 9600981 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6419-24 9172343 - Appl Environ Microbiol. 1997 Jun;63(6):2232-9 18882513 - J Am Chem Soc. 1948 Sep;70(9):2837-43 16823552 - Appl Microbiol Biotechnol. 2006 Aug;72(1):1-10 20606962 - J Glob Infect Dis. 2010 May;2(2):105-8 11429459 - Microbiology. 2001 Jul;147(Pt 7):1815-24 2670397 - Clin Pharm. 1989 Aug;8(8):545-58 7765904 - Lett Appl Microbiol. 1995 Feb;20(2):82-4 3069424 - Drug Intell Clin Pharm. 1988 Nov;22(11):850-9 22504818 - Appl Environ Microbiol. 2012 Jun;78(12):4330-7 8168524 - Eur J Biochem. 1994 Apr 1;221(1):375-81 21988471 - J Org Chem. 2011 Nov 18;76(22):9519-24 20681552 - J Am Chem Soc. 2010 Aug 25;132(33):11629-41 18950149 - J Med Chem. 2008 Nov 27;51(22):7193-204 12413667 - FEMS Microbiol Rev. 2002 Nov;26(4):403-17 7574594 - Appl Environ Microbiol. 1995 Feb;61(2):544-8 4852581 - Arch Microbiol. 1974;99(1):61-70 8201605 - J Med Chem. 1994 May 27;37(11):1704-11 21996027 - J Biosci Bioeng. 2012 Jan;113(1):12-9 3140725 - Appl Environ Microbiol. 1988 Aug;54(8):1940-5 8017910 - Appl Environ Microbiol. 1994 Apr;60(4):1137-45 25187627 - Microbiology. 2014 Nov;160(Pt 11):2481-91 20660314 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14390-5 7764117 - Appl Microbiol Biotechnol. 1993 Aug;39(6):720-5 16348047 - Appl Environ Microbiol. 1989 Nov;55(11):2850-5 19226162 - J Med Chem. 2009 Mar 26;52(6):1659-69 23196308 - Syst Appl Microbiol. 1983;4(1):141-7 |
| References_xml | – volume: 4 start-page: 141 year: 1983 end-page: 147 ident: bib0020 article-title: Styrene catabolism by a strain of publication-title: Syst. Appl. Microbiol. – volume: 113 start-page: 12 year: 2012 end-page: 19 ident: bib0235 article-title: Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria publication-title: J. Biosci. Bioeng. – volume: 51 start-page: 7193 year: 2008 end-page: 7204 ident: bib0075 article-title: Acylguanidines as bioisosteres of guanidines: publication-title: J. Med. Chem. – volume: 160 start-page: 2481 year: 2014 end-page: 2491 ident: bib0175 article-title: Styrene oxide isomerase of publication-title: Microbiology – volume: 60 start-page: 1137 year: 1994 end-page: 1145 ident: bib0250 article-title: Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259 publication-title: Appl. Environ. Microbiol. – volume: 39 start-page: 720 year: 1993 end-page: 725 ident: bib0080 article-title: Production of publication-title: Appl. Microbiol. Biotechnol. – volume: 54 start-page: 183 year: 2004 end-page: 187 ident: bib0035 article-title: Characterization of styrene catabolic pathway in publication-title: Int. Biodeterior. Biodegr. – volume: 124 start-page: 298 year: 2011 end-page: 302 ident: bib0255 article-title: Antityrosinase and antimicrobial activities of 2-phenylethanol: 2-phenylacetaldehyde and 2-phenylacetic acid publication-title: Food Chem. – volume: 76 start-page: 3668 year: 2010 end-page: 3674 ident: bib0210 article-title: Construction and application of variants of the publication-title: Appl. Environ. Microbiol. – volume: 58 start-page: 802 year: 1989 end-page: 806 ident: bib0090 article-title: Degradation of chlorophenols by a culture of publication-title: Mikrobiologiya – volume: 8 start-page: 545 year: 1989 end-page: 558 ident: bib0205 article-title: Diclofenac sodium publication-title: Clin. Pharm. – volume: 2 start-page: 267 year: 1976 end-page: 276 ident: bib0130 article-title: Cometabolism of 3-methylbenzoate and methylcatechols by a 3-chlorobenzoate utilizing publication-title: Eur. J. Appl. Microbiol. Biotechnol. – volume: 2 start-page: 105 year: 2010 end-page: 108 ident: bib0005 article-title: In vitro antibacterial activity of ibuprofen and acetaminophen publication-title: J. Glob. Infect. Dis. – year: 2012 ident: bib0115 article-title: Styrene publication-title: Ullmann’s Encyclopedia of Industrial Chemistry – volume: 99 start-page: 61 year: 1974 end-page: 70 ident: bib0050 article-title: Isolation and characterization of a 3-chlorobenzoate-degrading pseudomonad publication-title: Arch. Microbiol. – volume: 55 start-page: 6075 year: 1999 end-page: 6080 ident: bib0105 article-title: A modification of the asymmetric dihydroxylation approach to the synthesis of (S)-2-arylpropanoic acids publication-title: Tetrahedron – volume: 95 start-page: 6419 year: 1998 end-page: 6424 ident: bib0190 article-title: Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 20 start-page: 82 year: 1995 end-page: 84 ident: bib0065 article-title: Antibacterial activity of the anti-inflammatory compound ibuprofen publication-title: Lett. Appl. Microbiol. – reference: V. Elango, M.A. Murphy, B.L. Smith, K.G. Davenport, G.N. Mott, E.G. Zey, G.L. Moss, Method for producing ibuprofen. US patent 4981995 (BHC Company) 1991. – volume: 107 start-page: 14390 year: 2010 end-page: 14395 ident: bib0230 article-title: Bacterial phenylalanine and phenylacetate catabolic pathway revealed publication-title: Proc. Natl. Acad. Sci. U.S.A. – reference: K. Kagawa, N. Kanda, F. Masuko, H. Nakanishi, Synthesis of substituted phenylacetic acid. US patent 4220592 (Sumitomo Chemical Company) 1980. – start-page: 4943 year: 1956 end-page: 4945 ident: bib0015 article-title: The interaction of alkylbenzenes with excess of Friedel-Crafts acetylating agent publication-title: J. Chem. Soc. – volume: 147 start-page: 1815 year: 2001 end-page: 1824 ident: bib0240 article-title: Genetic and biochemical characterization of an enantioselective amidase publication-title: Microbiology – volume: 54 start-page: 1940 year: 1988 end-page: 1945 ident: bib0135 article-title: Cometabolism of polychlorinated biphenyls: enhanced transformation of Arochlor 1254 by growing bacterial cells publication-title: Appl. Environ. Microbiol. – volume: 26 start-page: 403 year: 2002 end-page: 417 ident: bib0180 article-title: Biochemistry, genetics and physiology of microbial styrene degradation publication-title: FEMS Microbiol. Rev. – volume: 22 start-page: 850 year: 1988 end-page: 859 ident: bib0200 article-title: Review of diclofenac and evaluation of its place in therapy as a nonsteroidal antiinflammatory agent publication-title: Drug Intel. Clin. Pharm. – volume: 44 start-page: 179 year: 1988 end-page: 181 ident: bib0225 article-title: Carbonylation of benzyl chloride to phenylacetic acid and its ester using water-soluble Ru(III)-EDTA complex catalyst publication-title: J. Mol. Catal. – volume: 52 start-page: 1659 year: 2009 end-page: 1669 ident: bib0245 article-title: Inhibitors of hepatitis C virus polymerase: synthesis and biological characterization of unsymmetrical dialkyl-hydroxynaphthalenoyl-benzothiadiazines publication-title: J. Med. Chem. – volume: 78 start-page: 4330 year: 2012 end-page: 4337 ident: bib0170 article-title: Styrene oxide isomerase of publication-title: Appl. Environ. Microbiol. – year: 2005 ident: bib0030 article-title: Carbonylation publication-title: Ullmann’s Encyclopedia of Industrial Chemistry – volume: 65 start-page: 2015 year: 2009 end-page: 2021 ident: bib0010 article-title: Facile one-pot preparation of 2-arylpropionic acids from cyanohydrins by treatment with aqueous HI publication-title: Tetrahedron – volume: 70 start-page: 2837 year: 1948 end-page: 2843 ident: bib0045 article-title: Biosynthesis of penicillins. V. Substituted phenylacetic acid derivatives as penicillin precursors publication-title: J. Am. Chem. Soc. – reference: D.D. Lindley, T.A. Curtis, T.R. Ryan, E.M. de la Garza, C.B. Hilton, T.M. Kenesson, Process for the production of 4'-isobutylacetophenone US patent 5068448 A (Hoechst Celanese Corporation, BHC Company) 1991. – volume: 61 start-page: 2058 year: 1997 end-page: 2062 ident: bib0110 article-title: Characterization of styrene oxide isomerase: a key enzyme of styrene and styrene oxide metabolism in publication-title: Biosci. Biotechnol. Biochem. – volume: 132 start-page: 11629 year: 2010 end-page: 11641 ident: bib0195 article-title: Kinetic resolution of racemic α-arylalkanoic acids with achiral alcohols via the asymmetric esterification using carboxylic anhydrides and acyl-transfer catalysts publication-title: J. Am. Chem. Soc. – reference: M. Takase, T. Nakamura, K. Kamiya, T. Takezawa, H. Yamazaki, T. Iwaki, Process for production of – volume: 33 start-page: 562 year: 1999 end-page: 574 ident: bib0125 article-title: Cometabolic degradation of chlorophenols by publication-title: Water Res. – volume: 61 start-page: 544 year: 1995 end-page: 548 ident: bib0165 article-title: Possible regulatory role for nonaromatic carbon sources in styrene degradation by publication-title: Appl. Environ. Microbiol. – year: 2012 ident: bib0070 article-title: Flavors and fragrances publication-title: Ullmann's Encyclopedia of Industrial Chemistry – volume: 221 start-page: 375 year: 1994 end-page: 381 ident: bib0185 article-title: Catabolism of aromatics in publication-title: Eur. J. Biochem. – volume: 37 start-page: 1704 year: 1994 end-page: 1711 ident: bib0095 article-title: Presynaptic cholinergic modulators as potent cognition enhancers and analgestic drugs: 1 Tropic and 2-phenylpropionic acid esters publication-title: J. Med. Chem. – volume: 353 start-page: 2301 year: 2011 end-page: 2319 ident: bib0155 article-title: Catalytic and structural features of flavoprotein hydroxylases and epoxidases publication-title: Adv. Synth. Catal. – volume: 41 start-page: 7601 year: 2000 end-page: 7604 ident: bib0085 article-title: Synthesis of phenylacetic acids under rhodium-catalyzed carbonylation conditions publication-title: Tetrahedron Lett. – volume: 64 start-page: 9704 year: 1999 end-page: 9710 ident: bib0040 article-title: Catalytic asymmetric hydrocarboxylation and hydrohydroxymethylation: a two-step approach to the enantioselective functionalization of vinylarenes publication-title: J. Org. Chem. – volume: 48 start-page: 3255 year: 2007 end-page: 3257 ident: bib0150 article-title: Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from publication-title: Tetrahedron Lett. – volume: 55 start-page: 2850 year: 1989 end-page: 2855 ident: bib0100 article-title: Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X publication-title: Microbiology – volume: 28 start-page: 337 year: 2012 end-page: 348 ident: bib0055 article-title: Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in publication-title: Biotechnol. Prog. – reference: -(2,6-dichloroanilino)-phenylacetic acid U.S. patent 4410724 (Zenyaku Kogyo Kabushiki Kaisha) 1983. – volume: 76 start-page: 9519 year: 2011 end-page: 9524 ident: bib0145 article-title: Iodide-catalyzed reductions: development of a synthesis of phenylacetic acids publication-title: J. Org. Chem. – volume: 72 start-page: 1 year: 2006 end-page: 10 ident: bib0160 article-title: Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications publication-title: Appl. Microbiol. Biotechnol. – volume: 63 start-page: 2232 year: 1997 end-page: 2239 ident: bib0025 article-title: Sequencing and functional analysis of styrene catabolism genes from publication-title: Appl. Environ. Microbiol. – reference: N.J. Stuart, A.S. Sanders, Phenyl propionic acids U.S. patent 3385886 (Boots Pure Drug Co., Ltd.) 1968. – volume: 78 start-page: 4330 year: 2012 ident: 10.1016/j.btre.2015.01.003_bib0170 article-title: Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.07641-11 – volume: 76 start-page: 3668 year: 2010 ident: 10.1016/j.btre.2015.01.003_bib0210 article-title: Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00341-10 – volume: 20 start-page: 82 year: 1995 ident: 10.1016/j.btre.2015.01.003_bib0065 article-title: Antibacterial activity of the anti-inflammatory compound ibuprofen publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.1995.tb01291.x – volume: 221 start-page: 375 year: 1994 ident: 10.1016/j.btre.2015.01.003_bib0185 article-title: Catabolism of aromatics in Pseudomonas putida U. Formal demonstration that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1994.tb18749.x – volume: 353 start-page: 2301 year: 2011 ident: 10.1016/j.btre.2015.01.003_bib0155 article-title: Catalytic and structural features of flavoprotein hydroxylases and epoxidases publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201100384 – volume: 132 start-page: 11629 year: 2010 ident: 10.1016/j.btre.2015.01.003_bib0195 article-title: Kinetic resolution of racemic α-arylalkanoic acids with achiral alcohols via the asymmetric esterification using carboxylic anhydrides and acyl-transfer catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103490h – volume: 2 start-page: 105 year: 2010 ident: 10.1016/j.btre.2015.01.003_bib0005 article-title: In vitro antibacterial activity of ibuprofen and acetaminophen publication-title: J. Glob. Infect. Dis. doi: 10.4103/0974-777X.62880 – volume: 113 start-page: 12 year: 2012 ident: 10.1016/j.btre.2015.01.003_bib0235 article-title: Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10 publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2011.08.028 – volume: 28 start-page: 337 year: 2012 ident: 10.1016/j.btre.2015.01.003_bib0055 article-title: Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in Penicillium chrysogenum publication-title: Biotechnol. Prog. doi: 10.1002/btpr.1503 – ident: 10.1016/j.btre.2015.01.003_bib0060 – volume: 60 start-page: 1137 year: 1994 ident: 10.1016/j.btre.2015.01.003_bib0250 article-title: Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.60.4.1137-1145.1994 – volume: 33 start-page: 562 year: 1999 ident: 10.1016/j.btre.2015.01.003_bib0125 article-title: Cometabolic degradation of chlorophenols by Acinetobacter species publication-title: Water Res. doi: 10.1016/S0043-1354(98)00228-0 – ident: 10.1016/j.btre.2015.01.003_bib0220 – volume: 39 start-page: 720 year: 1993 ident: 10.1016/j.btre.2015.01.003_bib0080 article-title: Production of S-(+)-2-phenylpropionic acid from (RS)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00164456 – volume: 2 start-page: 267 year: 1976 ident: 10.1016/j.btre.2015.01.003_bib0130 article-title: Cometabolism of 3-methylbenzoate and methylcatechols by a 3-chlorobenzoate utilizing Pseudomonas: accumulation of (+)-2,5-dihydro-4-methyl-and (+)-2,5-dihydro-2-methyl-5-oxo-furan-2-acetic acid publication-title: Eur. J. Appl. Microbiol. Biotechnol. doi: 10.1007/BF01278610 – ident: 10.1016/j.btre.2015.01.003_bib0140 – volume: 44 start-page: 179 year: 1988 ident: 10.1016/j.btre.2015.01.003_bib0225 article-title: Carbonylation of benzyl chloride to phenylacetic acid and its ester using water-soluble Ru(III)-EDTA complex catalyst publication-title: J. Mol. Catal. doi: 10.1016/0304-5102(88)80026-9 – volume: 124 start-page: 298 year: 2011 ident: 10.1016/j.btre.2015.01.003_bib0255 article-title: Antityrosinase and antimicrobial activities of 2-phenylethanol: 2-phenylacetaldehyde and 2-phenylacetic acid publication-title: Food Chem. doi: 10.1016/j.foodchem.2010.06.036 – volume: 48 start-page: 3255 year: 2007 ident: 10.1016/j.btre.2015.01.003_bib0150 article-title: Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from Pseudomonas putida S12 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2007.03.016 – volume: 51 start-page: 7193 year: 2008 ident: 10.1016/j.btre.2015.01.003_bib0075 article-title: Acylguanidines as bioisosteres of guanidines: NG-acylated imidazolylpropylguanidines, a new class of histamine H2 receptor agonists publication-title: J. Med. Chem. doi: 10.1021/jm800841w – volume: 147 start-page: 1815 year: 2001 ident: 10.1016/j.btre.2015.01.003_bib0240 article-title: Genetic and biochemical characterization of an enantioselective amidase Agrobacterium tumefaciens strain d3 publication-title: Microbiology doi: 10.1099/00221287-147-7-1815 – volume: 99 start-page: 61 year: 1974 ident: 10.1016/j.btre.2015.01.003_bib0050 article-title: Isolation and characterization of a 3-chlorobenzoate-degrading pseudomonad publication-title: Arch. Microbiol. doi: 10.1007/BF00696222 – volume: 160 start-page: 2481 year: 2014 ident: 10.1016/j.btre.2015.01.003_bib0175 article-title: Styrene oxide isomerase of Sphingopyxis species Kp5.2 publication-title: Microbiology doi: 10.1099/mic.0.080259-0 – volume: 107 start-page: 14390 year: 2010 ident: 10.1016/j.btre.2015.01.003_bib0230 article-title: Bacterial phenylalanine and phenylacetate catabolic pathway revealed publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1005399107 – volume: 72 start-page: 1 year: 2006 ident: 10.1016/j.btre.2015.01.003_bib0160 article-title: Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-006-0443-1 – ident: 10.1016/j.btre.2015.01.003_bib0120 – start-page: 4943 year: 1956 ident: 10.1016/j.btre.2015.01.003_bib0015 article-title: The interaction of alkylbenzenes with excess of Friedel-Crafts acetylating agent publication-title: J. Chem. Soc. doi: 10.1039/JR9560004943 – volume: 64 start-page: 9704 year: 1999 ident: 10.1016/j.btre.2015.01.003_bib0040 article-title: Catalytic asymmetric hydrocarboxylation and hydrohydroxymethylation: a two-step approach to the enantioselective functionalization of vinylarenes publication-title: J. Org. Chem. doi: 10.1021/jo9914216 – volume: 70 start-page: 2837 year: 1948 ident: 10.1016/j.btre.2015.01.003_bib0045 article-title: Biosynthesis of penicillins. V. Substituted phenylacetic acid derivatives as penicillin precursors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01189a001 – volume: 41 start-page: 7601 year: 2000 ident: 10.1016/j.btre.2015.01.003_bib0085 article-title: Synthesis of phenylacetic acids under rhodium-catalyzed carbonylation conditions publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)01327-7 – volume: 54 start-page: 1940 year: 1988 ident: 10.1016/j.btre.2015.01.003_bib0135 article-title: Cometabolism of polychlorinated biphenyls: enhanced transformation of Arochlor 1254 by growing bacterial cells publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.54.8.1940-1945.1988 – volume: 8 start-page: 545 year: 1989 ident: 10.1016/j.btre.2015.01.003_bib0205 article-title: Diclofenac sodium publication-title: Clin. Pharm. – year: 2012 ident: 10.1016/j.btre.2015.01.003_bib0115 article-title: Styrene – volume: 95 start-page: 6419 year: 1998 ident: 10.1016/j.btre.2015.01.003_bib0190 article-title: Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.11.6419 – volume: 4 start-page: 141 year: 1983 ident: 10.1016/j.btre.2015.01.003_bib0020 article-title: Styrene catabolism by a strain of Pseudomonas fluorescens publication-title: Syst. Appl. Microbiol. doi: 10.1016/S0723-2020(83)80042-3 – volume: 76 start-page: 9519 year: 2011 ident: 10.1016/j.btre.2015.01.003_bib0145 article-title: Iodide-catalyzed reductions: development of a synthesis of phenylacetic acids publication-title: J. Org. Chem. doi: 10.1021/jo2018087 – volume: 52 start-page: 1659 year: 2009 ident: 10.1016/j.btre.2015.01.003_bib0245 article-title: Inhibitors of hepatitis C virus polymerase: synthesis and biological characterization of unsymmetrical dialkyl-hydroxynaphthalenoyl-benzothiadiazines publication-title: J. Med. Chem. doi: 10.1021/jm8010965 – volume: 58 start-page: 802 year: 1989 ident: 10.1016/j.btre.2015.01.003_bib0090 article-title: Degradation of chlorophenols by a culture of Rhodococcus erythropolis publication-title: Mikrobiologiya – volume: 61 start-page: 544 year: 1995 ident: 10.1016/j.btre.2015.01.003_bib0165 article-title: Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.61.2.544-548.1995 – volume: 37 start-page: 1704 year: 1994 ident: 10.1016/j.btre.2015.01.003_bib0095 article-title: Presynaptic cholinergic modulators as potent cognition enhancers and analgestic drugs: 1 Tropic and 2-phenylpropionic acid esters publication-title: J. Med. Chem. doi: 10.1021/jm00037a022 – volume: 26 start-page: 403 year: 2002 ident: 10.1016/j.btre.2015.01.003_bib0180 article-title: Biochemistry, genetics and physiology of microbial styrene degradation publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2002.tb00622.x – volume: 55 start-page: 2850 year: 1989 ident: 10.1016/j.btre.2015.01.003_bib0100 article-title: Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X publication-title: Microbiology – year: 2005 ident: 10.1016/j.btre.2015.01.003_bib0030 article-title: Carbonylation – volume: 54 start-page: 183 year: 2004 ident: 10.1016/j.btre.2015.01.003_bib0035 article-title: Characterization of styrene catabolic pathway in Pseudomonas fluorescens ST publication-title: Int. Biodeterior. Biodegr. doi: 10.1016/j.ibiod.2004.06.005 – volume: 22 start-page: 850 year: 1988 ident: 10.1016/j.btre.2015.01.003_bib0200 article-title: Review of diclofenac and evaluation of its place in therapy as a nonsteroidal antiinflammatory agent publication-title: Drug Intel. Clin. Pharm. – volume: 61 start-page: 2058 year: 1997 ident: 10.1016/j.btre.2015.01.003_bib0110 article-title: Characterization of styrene oxide isomerase: a key enzyme of styrene and styrene oxide metabolism in Corynebacterium sp publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.61.2058 – ident: 10.1016/j.btre.2015.01.003_bib0215 – volume: 63 start-page: 2232 year: 1997 ident: 10.1016/j.btre.2015.01.003_bib0025 article-title: Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.63.6.2232-2239.1997 – year: 2012 ident: 10.1016/j.btre.2015.01.003_bib0070 article-title: Flavors and fragrances – volume: 65 start-page: 2015 year: 2009 ident: 10.1016/j.btre.2015.01.003_bib0010 article-title: Facile one-pot preparation of 2-arylpropionic acids from cyanohydrins by treatment with aqueous HI publication-title: Tetrahedron doi: 10.1016/j.tet.2009.01.005 – volume: 55 start-page: 6075 year: 1999 ident: 10.1016/j.btre.2015.01.003_bib0105 article-title: A modification of the asymmetric dihydroxylation approach to the synthesis of (S)-2-arylpropanoic acids publication-title: Tetrahedron doi: 10.1016/S0040-4020(99)00279-3 – reference: 4852581 - Arch Microbiol. 1974;99(1):61-70 – reference: 12413667 - FEMS Microbiol Rev. 2002 Nov;26(4):403-17 – reference: 23196308 - Syst Appl Microbiol. 1983;4(1):141-7 – reference: 21996027 - J Biosci Bioeng. 2012 Jan;113(1):12-9 – reference: 16348047 - Appl Environ Microbiol. 1989 Nov;55(11):2850-5 – reference: 7765904 - Lett Appl Microbiol. 1995 Feb;20(2):82-4 – reference: 20382812 - Appl Environ Microbiol. 2010 Jun;76(11):3668-74 – reference: 20606962 - J Glob Infect Dis. 2010 May;2(2):105-8 – reference: 3140725 - Appl Environ Microbiol. 1988 Aug;54(8):1940-5 – reference: 25187627 - Microbiology. 2014 Nov;160(Pt 11):2481-91 – reference: 7574594 - Appl Environ Microbiol. 1995 Feb;61(2):544-8 – reference: 20660314 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14390-5 – reference: 8201605 - J Med Chem. 1994 May 27;37(11):1704-11 – reference: 7764117 - Appl Microbiol Biotechnol. 1993 Aug;39(6):720-5 – reference: 18882513 - J Am Chem Soc. 1948 Sep;70(9):2837-43 – reference: 11429459 - Microbiology. 2001 Jul;147(Pt 7):1815-24 – reference: 27396882 - Biosci Biotechnol Biochem. 1997 Jan;61(12):2058-62 – reference: 16823552 - Appl Microbiol Biotechnol. 2006 Aug;72(1):1-10 – reference: 3069424 - Drug Intell Clin Pharm. 1988 Nov;22(11):850-9 – reference: 18950149 - J Med Chem. 2008 Nov 27;51(22):7193-204 – reference: 8017910 - Appl Environ Microbiol. 1994 Apr;60(4):1137-45 – reference: 21988471 - J Org Chem. 2011 Nov 18;76(22):9519-24 – reference: 2670397 - Clin Pharm. 1989 Aug;8(8):545-58 – reference: 9172343 - Appl Environ Microbiol. 1997 Jun;63(6):2232-9 – reference: 22504818 - Appl Environ Microbiol. 2012 Jun;78(12):4330-7 – reference: 8168524 - Eur J Biochem. 1994 Apr 1;221(1):375-81 – reference: 19226162 - J Med Chem. 2009 Mar 26;52(6):1659-69 – reference: 9600981 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6419-24 – reference: 22223600 - Biotechnol Prog. 2012 Mar-Apr;28(2):337-48 – reference: 20681552 - J Am Chem Soc. 2010 Aug 25;132(33):11629-41 |
| SSID | ssj0001340569 |
| Score | 2.121021 |
| Snippet | [Display omitted]
•Styrene degradation via phenylacetic acid was shown for the strains described.•Co-metabolic transformation of substituted styrenes was... Some soil bacteria are able to metabolize styrene via initial side-chain oxygenation. This catabolic route is of potential biotechnological relevance due to... • Styrene degradation via phenylacetic acid was shown for the strains described. • Co-metabolic transformation of substituted styrenes was shown. • Formation... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 20 |
| SubjectTerms | Biocatalysis biotransformation Ibuprofen phenylacetic acid Pseudomonas fluorescens Rhodococcus opacus soil bacteria Sphingomonas styrene Styrene degradation |
| Title | Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria |
| URI | https://dx.doi.org/10.1016/j.btre.2015.01.003 https://www.ncbi.nlm.nih.gov/pubmed/28626693 https://www.proquest.com/docview/1911201443 https://www.proquest.com/docview/2000522935 https://pubmed.ncbi.nlm.nih.gov/PMC5466254 https://doaj.org/article/031e3aec5a814a80b8dfe1de42928e50 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2215-017X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340569 issn: 2215-017X databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gAH1PJMC5WRuKGIOI4T51gqqh5QxaFCe7P8GIugkq02W6T-e2biZLUL0nLhmtiOPDPOfGOPv2HsfQu1FJWLuSvbmCMirnNb2SZ3PmilmuAUjJr-0lxd6cWi_bpV6otywhI9cBLcRzQ6kBa8slpUVhdOhwgiAJVZ0pCidUQ9W8HUuLsiEYiM9exK9GkYLzeL6cZMSu5y6xVxZIrE2TlXzJq80kjev-Oc_gaff-ZQbjmli0P2dEKT_CzN4og9gP4Ze7LFMficfTtf5j9hjbq-6Tzf3FXky8gH_GmkTIHAKdXrnrbUcSRufRcG7u75QHvUPeSBKCXIy3GX2J3tC3Z98fn6_DKfiinkHiNgmbdSV1pCUZcglZW2bhuBXTwd6EJlUTetjVAXOrZO4l-wcLKIwROCasrg5Et20C97eM14tBJhXYCopKtcDVqBrHwdhai9l85nTMyyNH4iGqd6Fzdmzij7YUj-huRvCkH0pBn7sOlzm2g29rb-RCratCSK7PEBGo6ZDMf8y3AypmYFmwltJBSBQ3V7P_5utgaDS5HOV2wPy7vBYOgrSopQ97Qpx7NVxFgqY6-SBW2mUVJ0ibrKWLNjWzvz3H3Td99HSnBV1RjIVsf_QzAn7DFNN-XDvWEH69UdvGWP_K91N6xO2cNmoU_H1fYbLwwu7Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-metabolic+formation+of+substituted+phenylacetic+acids+by+styrene-degrading+bacteria&rft.jtitle=Biotechnology+reports+%28Amsterdam%2C+Netherlands%29&rft.au=Oelschl%C3%A4gel%2C+Michel&rft.au=Kaschabek%2C+Stefan+R.&rft.au=Zimmerling%2C+Juliane&rft.au=Schl%C3%B6mann%2C+Michael&rft.date=2015-06-01&rft.issn=2215-017X&rft.eissn=2215-017X&rft.volume=6&rft.spage=20&rft.epage=26&rft_id=info:doi/10.1016%2Fj.btre.2015.01.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_btre_2015_01_003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-017X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-017X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-017X&client=summon |