Predictive models for clinical decision making: Deep dives in practical machine learning
The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine le...
Uloženo v:
| Vydáno v: | Journal of internal medicine Ročník 292; číslo 2; s. 278 - 295 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.08.2022
|
| Témata: | |
| ISSN: | 0954-6820, 1365-2796, 1365-2796 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data‐driven (hypothesis‐less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision‐making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine.
|
|---|---|
| AbstractList | The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data-driven (hypothesis-less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision-making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine.The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data-driven (hypothesis-less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision-making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine. The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data‐driven (hypothesis‐less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision‐making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine. The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data‐driven (hypothesis‐less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision‐making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine. The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data-driven (hypothesis-less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision-making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine. |
| Author | Eloranta, Sandra Boman, Magnus |
| Author_xml | – sequence: 1 givenname: Sandra orcidid: 0000-0001-5806-0573 surname: Eloranta fullname: Eloranta, Sandra email: sandra.eloranta@ki.se organization: Karolinska Institutet – sequence: 2 givenname: Magnus surname: Boman fullname: Boman, Magnus organization: Karolinska Institutet |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35426190$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323269$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan) http://kipublications.ki.se/Default.aspx?queryparsed=id:149350074$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNp90U1v1DAQBmALFdHtwoUfgCJxQUgp_ooTc6taPoqKygEQN8uxx613kzi1E6r-e7xk6aFC9cWW9cxoRu8ROhjCAAi9JPiY5PNuE3x_TBhv2BO0IkxUJa2lOEArLCteiobiQ3SU0gZjwrDAz9AhqzgVROIV-vUtgvVm8r-h6IOFLhUuxMJ0fvBGd4UF45MPQ9HrrR-u3hdnAGNhM0-FH4ox6ly7g702136AogMdhyyfo6dOdwle7O81-vHxw_fTz-XF5afz05OL0nAhWckBcyu4baWuSKtZ4_IitIGauoq30FjKrabS1bVpG2Gds66tWmNBU8dE27A1Kpe-6RbGuVVj9L2Odypor_Zf2_wCxSuOBXnUn_mfJyrEK7WdrhWjjOYJ1-jN4scYbmZIk-p9MtB1eoAwJ0VFRTKjNcv09QO6CXMc8vZZSVLLWso6q1d7Nbc92PsB_mWSwdsFmBhSiuDuCcFqF7jaBa7-Bp4xfoCNn_SUE5ui9t3_S8hScus7uHukufpyef51qfkDfCq-Zw |
| CitedBy_id | crossref_primary_10_1038_s41467_024_50415_9 crossref_primary_10_1038_s41746_025_01868_9 crossref_primary_10_1007_s12020_024_03977_z crossref_primary_10_1038_s41398_025_03367_7 crossref_primary_10_1007_s00701_024_06375_6 crossref_primary_10_1016_j_ijmedinf_2025_106025 crossref_primary_10_1109_OJITS_2025_3564361 crossref_primary_10_1016_j_iot_2025_101744 crossref_primary_10_3390_bioengineering11040337 crossref_primary_10_1007_s11306_024_02182_3 crossref_primary_10_1016_j_compbiomed_2025_110572 crossref_primary_10_1016_j_comcom_2025_108055 crossref_primary_10_1016_j_compchemeng_2025_109382 crossref_primary_10_1186_s12911_024_02734_6 crossref_primary_10_3390_info16010054 crossref_primary_10_1007_s11596_025_00081_9 crossref_primary_10_1038_s41746_025_01447_y crossref_primary_10_1038_s41598_024_52429_1 crossref_primary_10_4329_wjr_v17_i6_106682 crossref_primary_10_3389_fmolb_2023_1167730 crossref_primary_10_3390_children11040381 crossref_primary_10_12677_jcpm_2025_43341 crossref_primary_10_1038_s41598_024_58527_4 crossref_primary_10_1016_j_psychres_2024_116277 crossref_primary_10_3390_diagnostics15091119 crossref_primary_10_3390_ijms26189178 crossref_primary_10_1016_j_matt_2024_04_030 crossref_primary_10_3390_microorganisms13092112 crossref_primary_10_2196_63809 crossref_primary_10_1186_s12905_023_02779_1 crossref_primary_10_1016_j_ijmedinf_2025_106082 crossref_primary_10_3390_jcm12041292 crossref_primary_10_1016_j_csbr_2025_100051 crossref_primary_10_1213_ANE_0000000000006832 crossref_primary_10_1371_journal_pone_0300442 crossref_primary_10_1007_s41666_023_00148_z crossref_primary_10_1016_j_jdent_2024_105467 crossref_primary_10_3390_cancers17111828 crossref_primary_10_3748_wjg_v31_i11_101903 crossref_primary_10_1016_j_biopha_2024_116997 crossref_primary_10_2196_60162 crossref_primary_10_3390_ejihpe15010006 crossref_primary_10_1007_s12553_025_01001_6 crossref_primary_10_1177_14604582241290725 crossref_primary_10_1007_s44206_023_00076_w crossref_primary_10_1089_aipo_2024_0007 crossref_primary_10_1016_j_cjcpc_2022_12_001 crossref_primary_10_1109_TNNLS_2024_3440498 crossref_primary_10_1192_bja_2025_10133 |
| Cites_doi | 10.1007/s13748-019-00192-0 10.1111/ecog.02881 10.1055/s-0041-1729752 10.1109/CVPR.2017.369 10.1145/3214306 10.1037/ccp0000462 10.1080/17453674.2021.1918389 10.7717/peerj-cs.804 10.18653/v1/2021.eacl-main.46 10.1136/bmjhci-2020-100251 10.1016/j.ijmedinf.2021.104510 10.1161/JAHA.119.012788 10.1038/s41591-018-0300-7 10.1038/35000501 10.1111/joim.13030 10.1007/978-0-387-45528-0 10.1056/NEJMra2027612 10.1038/sj.bjc.6601118 10.1056/NEJMc2104626 10.1214/ss/1009213726 10.1002/cam4.1271 10.1136/bmjopen-2020-048008 10.1111/bjh.16915 10.1080/10428194.2018.1540044 10.1109/RBME.2020.3007816 10.3348/kjr.2021.0223 10.1038/s41408-020-00403-1 10.2196/10200 10.1186/s12874-020-01058-z 10.1200/CCI.18.00025 10.1007/s10067-020-05196-z 10.3389/fmed.2021.678047 10.1177/0272989X8300300203 10.1002/sim.4780140108 10.1016/j.ccell.2020.03.015 10.1182/blood-2015-07-658401 10.1002/cpt.1796 10.1088/1741-2552/abbff2 10.1016/j.beth.2020.05.002 10.1001/jamacardio.2021.0139 10.1186/s12874‐019–0681–4 10.1186/1471-244X-9-26 10.1080/17474086.2019.1660159 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. 2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. – notice: 2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7QL C1K K9. 7X8 ADTPV AFDQA AOWAS D8T D8V ZZAVC |
| DOI | 10.1111/joim.13483 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Psychology |
| EISSN | 1365-2796 |
| EndPage | 295 |
| ExternalDocumentID | oai_swepub_ki_se_454061 oai_DiVA_org_kth_323269 35426190 10_1111_joim_13483 JOIM13483 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29K 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F D-I DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI TR2 UB1 V8K V9Y VH1 VVN W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZCG ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM 7QL C1K K9. 7X8 ADTPV AFDQA AOWAS D8T D8V ZZAVC |
| ID | FETCH-LOGICAL-c4693-4e04d64db9a51ba38f13428e72f54be8d24da29f77cb86dffdfb5bcdea2f36b83 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786597900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0954-6820 1365-2796 |
| IngestDate | Tue Nov 25 03:37:42 EST 2025 Tue Nov 04 16:52:42 EST 2025 Fri Jul 11 07:41:24 EDT 2025 Sun Nov 30 04:13:46 EST 2025 Wed Feb 19 02:25:20 EST 2025 Tue Nov 18 21:53:40 EST 2025 Sat Nov 29 01:51:25 EST 2025 Wed Jan 22 16:24:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | precision medicine physician clinical decision-making machine learning artificial intelligence |
| Language | English |
| License | Attribution 2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4693-4e04d64db9a51ba38f13428e72f54be8d24da29f77cb86dffdfb5bcdea2f36b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-5806-0573 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoim.13483 |
| PMID | 35426190 |
| PQID | 2691797997 |
| PQPubID | 30713 |
| PageCount | 18 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_454061 swepub_primary_oai_DiVA_org_kth_323269 proquest_miscellaneous_2651693273 proquest_journals_2691797997 pubmed_primary_35426190 crossref_primary_10_1111_joim_13483 crossref_citationtrail_10_1111_joim_13483 wiley_primary_10_1111_joim_13483_JOIM13483 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Journal of internal medicine |
| PublicationTitleAlternate | J Intern Med |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2019; 8 2017; 40 2021; 8 2021; 7 2021; 6 2019; 51 2021; 22 2020; 20 1983; 3 1995; 14 2021; 28 2019; 12 2020; 17 1997 2019; 19 2020; 37 2020; 107 2006 2020; 14 2021; 384 2020; 288 2016; 127 2021; 385 1957 2021; 92 2018; 7 2019; 60 2018; 2 2021; 12 2018; 5 2021; 11 2020; 51 2021 2000; 403 2019; 25 2021; 192 2009; 9 2018 2017 2021; 153 2001; 16 2020; 88 2021; 40 2003; 89 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_38_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_25_1 e_1_2_12_26_1 Firth JR (e_1_2_12_29_1) 1957 e_1_2_12_47_1 Mitchell TM (e_1_2_12_5_1) 1997 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – volume: 20 start-page: 179 issue: 1 year: 2020 article-title: Directed acyclic graphs and causal thinking in clinical risk prediction modeling publication-title: BMC Medical Res Methodol. – volume: 40 start-page: 11 issue: 1 year: 2021 end-page: 23 article-title: The basics of data, big data, and machine learning in clinical practice publication-title: Clin Rheumatol. – volume: 8 issue: 17 year: 2019 article-title: Artificial intelligence: Practical primer for clinical research in cardiovascular disease publication-title: J Am Heart Assoc. – volume: 88 start-page: 311 issue: 4 year: 2020 article-title: Predicting treatment failure in regular care internet‐delivered cognitive behavior therapy for depression and anxiety using only weekly symptom measures publication-title: J Consult Clin Psychol. – volume: 28 issue: 1 year: 2021 article-title: Clinician checklist for assessing suitability of machine learning applications in healthcare publication-title: BMJ Health Care Inform. – volume: 384 start-page: 842 issue: 9 year: 2021 end-page: 58 article-title: Diffuse large B‐cell lymphoma publication-title: N Engl J Med. – volume: 12 start-page: 407 issue: 2 year: 2021 end-page: 16 article-title: Rethinking PICO in the machine learning era: Ml‐PICO publication-title: Appl Clin Inform. – volume: 192 start-page: 239 issue: 2 year: 2021 end-page: 50 article-title: Machine learning and artificial intelligence in haematology publication-title: Br J Haematol. – start-page: 2097 year: 2017 end-page: 106 article-title: Chestx‐ray8: Hospital‐scale chest x‐ray database and benchmarks on weakly‐supervised classification and localization of common thorax diseases – year: 2018 article-title: Bert: Pre‐training of deep bidirectional transformers for language understanding – volume: 89 start-page: 232 issue: 2 year: 2003 end-page: 8 article-title: Survival analysis part I: Basic concepts and first analyses publication-title: Br J Cancer. – volume: 14 start-page: 73 issue: 1 year: 1995 end-page: 82 article-title: A neural network model for survival data publication-title: Stat Med. – volume: 92 start-page: 513 issue: 5 year: 2021 end-page: 25 article-title: Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a clinical AI research (CAIR) checklist proposal publication-title: Acta Orthop. – volume: 40 start-page: 913 issue: 8 year: 2017 end-page: 29 article-title: Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure publication-title: Ecography. – volume: 12 start-page: 959 issue: 11 year: 2019 end-page: 73 article-title: Remaining challenges in predicting patient outcomes for diffuse large B‐cell lymphoma publication-title: Expert Rev Hematol. – volume: 17 start-page: 19 issue: 6 year: 2020 article-title: Supervised machine learning tools: a tutorial for clinicians publication-title: J Neural Eng. – volume: 22 start-page: 1697 issue: 10 year: 2021 end-page: 707 article-title: Review of statistical methods for evaluating the performance of survival or other time‐to‐event prediction models (from conventional to deep learning approaches) publication-title: Korean J Radiol. – volume: 37 start-page: 551 issue: 4 year: 2020 end-page: 68 article-title: A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications publication-title: Cancer Cell. – volume: 11 start-page: 9 issue: 1 year: 2021 article-title: Incidence of relapsed/refractory diffuse large B‐cell lymphoma (DLBCL) including CNS relapse in a population‐based cohort of 4243 patients in Sweden publication-title: Blood Cancer J. – volume: 11 issue: 7 year: 2021 article-title: Protocol for development of a reporting guideline (TRIPOD‐AI) and risk of bias tool (PROBAST‐AI) for diagnostic and prognostic prediction model studies based on artificial intelligence publication-title: BMJ Open. – volume: 3 start-page: 155 issue: 2 year: 1983 end-page: 68 article-title: Derived thresholds: determining the diagnostic probabilities at which clinicians initiate testing and treatment publication-title: Med Decis Mak. – volume: 107 start-page: 871 issue: 4 year: 2020 end-page: 85 article-title: An introduction to machine learning publication-title: Clin Pharmacol Ther. – volume: 51 start-page: 1 issue: 6 year: 2019 end-page: 36 article-title: Machine learning for survival analysis: A survey publication-title: ACM Comput Surv. – volume: 16 start-page: 199 issue: 3 year: 2001 end-page: 231 article-title: Statistical modeling: the two cultures publication-title: Statist Sci. – volume: 19 start-page: 64 issue: 1 year: 2019 article-title: Machine learning in medicine: a practical introduction publication-title: BMC Med Res Methodol. – year: 1957 – start-page: 575 year: 2021 end-page: 80 article-title: Predicting treatment outcome from patient texts: The case of internet‐based cognitive behavioural therapy – volume: 5 issue: 3 year: 2018 article-title: Measurement of symptom change following web‐based psychotherapy: Statistical characteristics and analytical methods for measuring and interpreting change publication-title: JMIR Ment Health. – volume: 8 start-page: 475 issue: 4 year: 2019 end-page: 85 article-title: Learning machines in internet delivered psychological treatment publication-title: Prog Artif Intell. – volume: 288 start-page: 62 issue: 1 year: 2020 end-page: 81 article-title: Artificial intelligence as the next step towards precision pathology publication-title: J Intern Med. – volume: 2 start-page: 1 year: 2018 end-page: 13 article-title: Optimizing outcome prediction in diffuse large B‐cell lymphoma by use of machine learning and nationwide lymphoma registries: A nordic lymphoma group study publication-title: JCO Clin Cancer Inform. – volume: 403 start-page: 503 issue: 6769 year: 2000 end-page: 11 article-title: Distinct types of diffuse large B‐cell lymphoma identified by gene expression profiling publication-title: Nature. – year: 2006 – volume: 14 start-page: 116 year: 2020 end-page: 26 article-title: Machine learning for clinical outcome prediction publication-title: IEEE Rev Biomed Eng. – volume: 6 start-page: 621 issue: 6 year: 2021 end-page: 3 article-title: Incremental benefits of machine learning‐when do we need a better mousetrap? publication-title: JAMA Cardiol. – year: 1997 – volume: 60 start-page: 1580 issue: 6 year: 2019 end-page: 3 article-title: Clinical prognostic scores are poor predictors of overall survival in various types of malignant lymphomas publication-title: Leuk Lymphoma. – volume: 127 start-page: 181 issue: 2 year: 2016 end-page: 6 article-title: Clinical impact of molecular features in diffuse large B‐cell lymphoma and follicular lymphoma publication-title: Blood. – volume: 385 start-page: 283 issue: 3 year: 2021 end-page: 6 article-title: The clinician and dataset shift in artificial intelligence publication-title: NEJM. – volume: 153 year: 2021 article-title: The need to separate the wheat from the chaff in medical informatics: Introducing a comprehensive checklist for the (self)‐assessment of medical AI studies publication-title: Int J Med Inform. – volume: 7 year: 2021 article-title: Comparing supervised and unsupervised approaches to multimodal emotion recognition publication-title: PeerJ Comput Sci. – volume: 7 start-page: 114 issue: 1 year: 2018 end-page: 22 article-title: Simplicity at the cost of predictive accuracy in diffuse large B‐cell lymphoma: a critical assessment of the R‐IPI, IPI, and NCCN‐IPI publication-title: Cancer Med. – volume: 25 start-page: 44 issue: 1 year: 2019 end-page: 56 article-title: High‐performance medicine: the convergence of human and artificial intelligence publication-title: Nat Med. – volume: 51 start-page: 675 issue: 5 year: 2020 end-page: 87 article-title: Supervised machine learning: A brief primer publication-title: Behav Ther. – volume: 9 start-page: 1 issue: 1 year: 2009 end-page: 6 article-title: The self‐reported Montgomery‐Åsberg depression rating scale is a useful evaluative tool in major depressive disorder publication-title: BMC Psychiatry. – volume: 8 year: 2021 article-title: Big data, data science, and causal inference: A primer for clinicians publication-title: Front Med (Lausanne). – ident: e_1_2_12_23_1 doi: 10.1007/s13748-019-00192-0 – ident: e_1_2_12_40_1 doi: 10.1111/ecog.02881 – ident: e_1_2_12_10_1 doi: 10.1055/s-0041-1729752 – ident: e_1_2_12_18_1 doi: 10.1109/CVPR.2017.369 – ident: e_1_2_12_34_1 doi: 10.1145/3214306 – ident: e_1_2_12_24_1 doi: 10.1037/ccp0000462 – ident: e_1_2_12_12_1 doi: 10.1080/17453674.2021.1918389 – ident: e_1_2_12_21_1 doi: 10.7717/peerj-cs.804 – ident: e_1_2_12_26_1 doi: 10.18653/v1/2021.eacl-main.46 – volume-title: Machine learning year: 1997 ident: e_1_2_12_5_1 – ident: e_1_2_12_13_1 doi: 10.1136/bmjhci-2020-100251 – ident: e_1_2_12_11_1 doi: 10.1016/j.ijmedinf.2021.104510 – ident: e_1_2_12_16_1 doi: 10.1161/JAHA.119.012788 – ident: e_1_2_12_19_1 doi: 10.1038/s41591-018-0300-7 – ident: e_1_2_12_43_1 doi: 10.1038/35000501 – ident: e_1_2_12_32_1 doi: 10.1111/joim.13030 – ident: e_1_2_12_20_1 doi: 10.1007/978-0-387-45528-0 – ident: e_1_2_12_30_1 doi: 10.1056/NEJMra2027612 – ident: e_1_2_12_31_1 doi: 10.1038/sj.bjc.6601118 – ident: e_1_2_12_47_1 doi: 10.1056/NEJMc2104626 – ident: e_1_2_12_2_1 doi: 10.1214/ss/1009213726 – ident: e_1_2_12_38_1 doi: 10.1002/cam4.1271 – ident: e_1_2_12_9_1 doi: 10.1136/bmjopen-2020-048008 – ident: e_1_2_12_15_1 doi: 10.1111/bjh.16915 – ident: e_1_2_12_39_1 doi: 10.1080/10428194.2018.1540044 – ident: e_1_2_12_41_1 doi: 10.1109/RBME.2020.3007816 – volume-title: Studies in linguistic analysis year: 1957 ident: e_1_2_12_29_1 – ident: e_1_2_12_35_1 doi: 10.3348/kjr.2021.0223 – ident: e_1_2_12_36_1 doi: 10.1038/s41408-020-00403-1 – ident: e_1_2_12_27_1 doi: 10.2196/10200 – ident: e_1_2_12_3_1 doi: 10.1186/s12874-020-01058-z – ident: e_1_2_12_37_1 doi: 10.1200/CCI.18.00025 – ident: e_1_2_12_14_1 doi: 10.1007/s10067-020-05196-z – ident: e_1_2_12_4_1 doi: 10.3389/fmed.2021.678047 – ident: e_1_2_12_25_1 doi: 10.1177/0272989X8300300203 – ident: e_1_2_12_33_1 doi: 10.1002/sim.4780140108 – ident: e_1_2_12_44_1 doi: 10.1016/j.ccell.2020.03.015 – ident: e_1_2_12_45_1 doi: 10.1182/blood-2015-07-658401 – ident: e_1_2_12_7_1 doi: 10.1002/cpt.1796 – ident: e_1_2_12_6_1 doi: 10.1088/1741-2552/abbff2 – ident: e_1_2_12_17_1 doi: 10.1016/j.beth.2020.05.002 – ident: e_1_2_12_42_1 doi: 10.1001/jamacardio.2021.0139 – ident: e_1_2_12_8_1 doi: 10.1186/s12874‐019–0681–4 – ident: e_1_2_12_22_1 doi: 10.1186/1471-244X-9-26 – ident: e_1_2_12_46_1 doi: 10.1080/17474086.2019.1660159 – ident: e_1_2_12_28_1 |
| SSID | ssj0013060 |
| Score | 2.5947595 |
| SecondaryResourceType | review_article |
| Snippet | The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in... |
| SourceID | swepub proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 278 |
| SubjectTerms | Artificial intelligence bioinformatics biostatistics Clinical Clinical decision making clinical decision support system clinical outcome clinical research Data science Decision making Decision Support Systems Epidemiology human Humans learning algorithm Learning algorithms Literature reviews Lymphoma Machine learning medical genetics Natural language processing personalized medicine physician Precision medicine prediction Prediction models predictive model procedures Psychiatry psychology Review risk assessment statistical reasoning survival analysis Taxonomy Terminology workflow |
| Title | Predictive models for clinical decision making: Deep dives in practical machine learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoim.13483 https://www.ncbi.nlm.nih.gov/pubmed/35426190 https://www.proquest.com/docview/2691797997 https://www.proquest.com/docview/2651693273 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323269 http://kipublications.ki.se/Default.aspx?queryparsed=id:149350074 |
| Volume | 292 |
| WOSCitedRecordID | wos000786597900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1365-2796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013060 issn: 1365-2796 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1365-2796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013060 issn: 1365-2796 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDSFeYHyHfcgIhARSUGM7sY14mVYqhlipEIO-WXZsj2o0ndqOv3-244ZNmyYhXiInviSO4_Pd-Xz3A3gVVu0xD5vCiFO5l_g259Yxz1fCMFdowus6gk2w4ZCPx2K0Bh9WsTBtfohuwS1wRpyvA4MrvbjI5LPJ9F1BKCe3YKMoCA_ADZiO_voQejFG2OsQNK-8oEvJSeM-nu7ey-Loio7ZJRC9rLtG4TO4_3_N3oR7SelEe-0oeQBrtnkIdw6TW_0RjEfzUA4zH4rQOAvkdVm0ippEJgHxoGnErnqP-taeIhMy1qJJg1KklSecxq2ZFiUsiuPHcDT4-H3_U54gF_La28kkp7ZHTUWNFqostCLc-aZibhl2JdWWG0yNwsIxVmteGeeM06WujVXYkUpz8gTWm1ljnwGigvS0EVhz_whTFMpxVyqtaidcyYTK4M2q52Wd8pEHWIzfsrNLfFfJ2FUZvOxoT9ssHNdSba9-oEycuJC48gZp8F2yDF501Z6HgmNENXZ2FmiCt5B4TS6Dp-2P715Dymhk9jJ43Y6EriYk5u5PfuzJ2fxYnix_SeK100pcT5gunfiSlSHrYVVk8DYOlBu-SH7-enAYS8__hXgL7uIQpRH3KW7D-nJ-Znfgdv1nOVnMdyOX-CMb813Y6H8bHH3xZz8Phud5phps |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQIwXvj8CA4xASCAFNbaT2LxNjGmFtexhQN8sO7a3ajSd2o6_H5_jBiYmJMSblVwSx_b57nx3vwN4iaf2VGBQGPM6DxLf5cL5OvCVtLUvDBNNE4tN1OOxmEzkQYrNwVyYDh-iP3BDzoj7NTI4Hkj_zuXz6extwbhgl-EKD5oGVm74Nhz_ciIMYpJwUCJ4XgVJl9BJYyBP_-x5efSHktkjiJ5XXqP02b35n_2-BTeS2km2u3VyGy659g5cGyXH-l2YHCywjXsficVxliRos2SdN0lsKsVDZrF61Tuy49wpsYhZS6YtSblWgXAWgzMdSdUoju7Bl90Ph-_38lR0IW-Cpcxy7gbcVtwaqcvCaCZ86CoVrqa-5MYJS7nVVPq6boyorPfWm9I01mnqWWUEuw8b7bx1D4FwyQbGSmpEeIUtCu2FL7XRjZe-rKXO4PV66FWTEMmxMMZ31VsmYahUHKoMXvS0px0Ox4VUW-sZVIkXl4pWwSRF72WdwfP-duAidI3o1s3PkAb9hSzochk86Ga-_wwro5k5yOBVtxT6OwjNvTP9uq3miyN1sjpWLOinlbyYMF06CS2nEPewKjJ4E1fKX_5Iffw8HMXWo38hfgabe4ejfbU_HH96DNcp5mzEqMUt2FgtztwTuNr8WE2Xi6eRZX4CzVYbLQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tHZp4gcHGCAwwAiGBlKmxncTe20RXMdhKNTHUN8uO7VGNplXb8fdjO27YtAkJ8WYll8Sxfb4738cP4K0_tcfMB4URK1Mn8U3KjC0dX3Fd2kwRVlUBbKIcDNhoxIcxNsfnwjT1IdoDN88ZYb_2DG5m2l7n8ul4sp8Rysg6bFCPItOBjd5Z__zkjxuhG9KEnRpB08LJulifNITytE_flEi31My2huhN9TXIn_7D_-z5FjyIiic6bFbKI1gz9WPYPI2u9W0YDee-7Xc_FOBxFsjps2iVOYl0BONBk4BfdYB6xsyQ9lVr0bhGMdvKEU5CeKZBEY_iYgfO-0ffPn5KI-xCWjlbmaTUdKkuqFZc5pmShFnXVcxMiW1OlWEaUy0xt2VZKVZoa7VVuaq0kdiSQjHyBDr1tDZPAVFOukpzrJh7hc4yaZnNpZKV5TYvuUzg_WroRRVrkntojJ-itU3cUIkwVAm8aWlnTSWOO6n2VjMoIjcuBC6cUer9l2UCr9vbjo-8c0TWZnrlabzHkDhtLoHdZubbz5A8GJrdBN41S6G944tz98bfD8V0fiEulz8EcRpqwe8mjJcuXcsIX_mwyBL4EFbKX_5IfP56fBpaz_6F-BVsDnt9cXI8-PIc7mOftBHCFvegs5xfmRdwr_q1HC_mLyPP_AamDBvW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+models+for+clinical+decision+making&rft.jtitle=Journal+of+internal+medicine&rft.au=Eloranta%2C+Sandra&rft.au=Boman%2C+Magnus&rft.date=2022-08-01&rft.issn=1365-2796&rft.volume=292&rft.issue=2&rft.spage=278&rft_id=info:doi/10.1111%2Fjoim.13483&rft.externalDocID=oai_DiVA_org_kth_323269 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-6820&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-6820&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-6820&client=summon |