Predictive models for clinical decision making: Deep dives in practical machine learning

The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine le...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of internal medicine Ročník 292; číslo 2; s. 278 - 295
Hlavní autoři: Eloranta, Sandra, Boman, Magnus
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishing Ltd 01.08.2022
Témata:
ISSN:0954-6820, 1365-2796, 1365-2796
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data‐driven (hypothesis‐less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision‐making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine.   
AbstractList The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data-driven (hypothesis-less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision-making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine.The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data-driven (hypothesis-less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision-making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine.
The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data‐driven (hypothesis‐less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision‐making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine.
The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data‐driven (hypothesis‐less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision‐making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine.   
The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in the clinical community, thus meriting further investigations into its broader use. In an introduction to predictive modelling using machine learning, we conducted a review of the recent literature that explains standard taxonomies, terminology and central concepts to a broad clinical readership. Articles aimed at readers with little or no prior experience of commonly used methods or typical workflows were summarised and key references are highlighted. Continual interdisciplinary developments in data science, biostatistics and epidemiology also motivated us to further discuss emerging topics in predictive and data-driven (hypothesis-less) analytics with machine learning. Through two methodological deep dives using examples from precision psychiatry and outcome prediction after lymphoma, we highlight how the use of, for example, natural language processing can outperform established clinical risk scores and aid dynamic prediction and adaptive care strategies. Such realistic and detailed examples allow for critical analysis of the importance of new technological advances in artificial intelligence for clinical decision-making. New clinical decision support systems can assist in prevention and care by leveraging precision medicine. 
Author Eloranta, Sandra
Boman, Magnus
Author_xml – sequence: 1
  givenname: Sandra
  orcidid: 0000-0001-5806-0573
  surname: Eloranta
  fullname: Eloranta, Sandra
  email: sandra.eloranta@ki.se
  organization: Karolinska Institutet
– sequence: 2
  givenname: Magnus
  surname: Boman
  fullname: Boman, Magnus
  organization: Karolinska Institutet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35426190$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323269$$DView record from Swedish Publication Index (Kungliga Tekniska Högskolan)
http://kipublications.ki.se/Default.aspx?queryparsed=id:149350074$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNp90U1v1DAQBmALFdHtwoUfgCJxQUgp_ooTc6taPoqKygEQN8uxx613kzi1E6r-e7xk6aFC9cWW9cxoRu8ROhjCAAi9JPiY5PNuE3x_TBhv2BO0IkxUJa2lOEArLCteiobiQ3SU0gZjwrDAz9AhqzgVROIV-vUtgvVm8r-h6IOFLhUuxMJ0fvBGd4UF45MPQ9HrrR-u3hdnAGNhM0-FH4ox6ly7g702136AogMdhyyfo6dOdwle7O81-vHxw_fTz-XF5afz05OL0nAhWckBcyu4baWuSKtZ4_IitIGauoq30FjKrabS1bVpG2Gds66tWmNBU8dE27A1Kpe-6RbGuVVj9L2Odypor_Zf2_wCxSuOBXnUn_mfJyrEK7WdrhWjjOYJ1-jN4scYbmZIk-p9MtB1eoAwJ0VFRTKjNcv09QO6CXMc8vZZSVLLWso6q1d7Nbc92PsB_mWSwdsFmBhSiuDuCcFqF7jaBa7-Bp4xfoCNn_SUE5ui9t3_S8hScus7uHukufpyef51qfkDfCq-Zw
CitedBy_id crossref_primary_10_1038_s41467_024_50415_9
crossref_primary_10_1038_s41746_025_01868_9
crossref_primary_10_1007_s12020_024_03977_z
crossref_primary_10_1038_s41398_025_03367_7
crossref_primary_10_1007_s00701_024_06375_6
crossref_primary_10_1016_j_ijmedinf_2025_106025
crossref_primary_10_1109_OJITS_2025_3564361
crossref_primary_10_1016_j_iot_2025_101744
crossref_primary_10_3390_bioengineering11040337
crossref_primary_10_1007_s11306_024_02182_3
crossref_primary_10_1016_j_compbiomed_2025_110572
crossref_primary_10_1016_j_comcom_2025_108055
crossref_primary_10_1016_j_compchemeng_2025_109382
crossref_primary_10_1186_s12911_024_02734_6
crossref_primary_10_3390_info16010054
crossref_primary_10_1007_s11596_025_00081_9
crossref_primary_10_1038_s41746_025_01447_y
crossref_primary_10_1038_s41598_024_52429_1
crossref_primary_10_4329_wjr_v17_i6_106682
crossref_primary_10_3389_fmolb_2023_1167730
crossref_primary_10_3390_children11040381
crossref_primary_10_12677_jcpm_2025_43341
crossref_primary_10_1038_s41598_024_58527_4
crossref_primary_10_1016_j_psychres_2024_116277
crossref_primary_10_3390_diagnostics15091119
crossref_primary_10_3390_ijms26189178
crossref_primary_10_1016_j_matt_2024_04_030
crossref_primary_10_3390_microorganisms13092112
crossref_primary_10_2196_63809
crossref_primary_10_1186_s12905_023_02779_1
crossref_primary_10_1016_j_ijmedinf_2025_106082
crossref_primary_10_3390_jcm12041292
crossref_primary_10_1016_j_csbr_2025_100051
crossref_primary_10_1213_ANE_0000000000006832
crossref_primary_10_1371_journal_pone_0300442
crossref_primary_10_1007_s41666_023_00148_z
crossref_primary_10_1016_j_jdent_2024_105467
crossref_primary_10_3390_cancers17111828
crossref_primary_10_3748_wjg_v31_i11_101903
crossref_primary_10_1016_j_biopha_2024_116997
crossref_primary_10_2196_60162
crossref_primary_10_3390_ejihpe15010006
crossref_primary_10_1007_s12553_025_01001_6
crossref_primary_10_1177_14604582241290725
crossref_primary_10_1007_s44206_023_00076_w
crossref_primary_10_1089_aipo_2024_0007
crossref_primary_10_1016_j_cjcpc_2022_12_001
crossref_primary_10_1109_TNNLS_2024_3440498
crossref_primary_10_1192_bja_2025_10133
Cites_doi 10.1007/s13748-019-00192-0
10.1111/ecog.02881
10.1055/s-0041-1729752
10.1109/CVPR.2017.369
10.1145/3214306
10.1037/ccp0000462
10.1080/17453674.2021.1918389
10.7717/peerj-cs.804
10.18653/v1/2021.eacl-main.46
10.1136/bmjhci-2020-100251
10.1016/j.ijmedinf.2021.104510
10.1161/JAHA.119.012788
10.1038/s41591-018-0300-7
10.1038/35000501
10.1111/joim.13030
10.1007/978-0-387-45528-0
10.1056/NEJMra2027612
10.1038/sj.bjc.6601118
10.1056/NEJMc2104626
10.1214/ss/1009213726
10.1002/cam4.1271
10.1136/bmjopen-2020-048008
10.1111/bjh.16915
10.1080/10428194.2018.1540044
10.1109/RBME.2020.3007816
10.3348/kjr.2021.0223
10.1038/s41408-020-00403-1
10.2196/10200
10.1186/s12874-020-01058-z
10.1200/CCI.18.00025
10.1007/s10067-020-05196-z
10.3389/fmed.2021.678047
10.1177/0272989X8300300203
10.1002/sim.4780140108
10.1016/j.ccell.2020.03.015
10.1182/blood-2015-07-658401
10.1002/cpt.1796
10.1088/1741-2552/abbff2
10.1016/j.beth.2020.05.002
10.1001/jamacardio.2021.0139
10.1186/s12874‐019–0681–4
10.1186/1471-244X-9-26
10.1080/17474086.2019.1660159
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
– notice: 2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QL
C1K
K9.
7X8
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1111/joim.13483
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Psychology
EISSN 1365-2796
EndPage 295
ExternalDocumentID oai_swepub_ki_se_454061
oai_DiVA_org_kth_323269
35426190
10_1111_joim_13483
JOIM13483
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29K
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
TR2
UB1
V8K
V9Y
VH1
VVN
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZCG
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
NPM
7QL
C1K
K9.
7X8
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c4693-4e04d64db9a51ba38f13428e72f54be8d24da29f77cb86dffdfb5bcdea2f36b83
IEDL.DBID 24P
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000786597900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0954-6820
1365-2796
IngestDate Tue Nov 25 03:37:42 EST 2025
Tue Nov 04 16:52:42 EST 2025
Fri Jul 11 07:41:24 EDT 2025
Sun Nov 30 04:13:46 EST 2025
Wed Feb 19 02:25:20 EST 2025
Tue Nov 18 21:53:40 EST 2025
Sat Nov 29 01:51:25 EST 2025
Wed Jan 22 16:24:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords precision medicine
physician
clinical decision-making
machine learning
artificial intelligence
Language English
License Attribution
2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4693-4e04d64db9a51ba38f13428e72f54be8d24da29f77cb86dffdfb5bcdea2f36b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5806-0573
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoim.13483
PMID 35426190
PQID 2691797997
PQPubID 30713
PageCount 18
ParticipantIDs swepub_primary_oai_swepub_ki_se_454061
swepub_primary_oai_DiVA_org_kth_323269
proquest_miscellaneous_2651693273
proquest_journals_2691797997
pubmed_primary_35426190
crossref_primary_10_1111_joim_13483
crossref_citationtrail_10_1111_joim_13483
wiley_primary_10_1111_joim_13483_JOIM13483
PublicationCentury 2000
PublicationDate August 2022
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of internal medicine
PublicationTitleAlternate J Intern Med
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2019; 8
2017; 40
2021; 8
2021; 7
2021; 6
2019; 51
2021; 22
2020; 20
1983; 3
1995; 14
2021; 28
2019; 12
2020; 17
1997
2019; 19
2020; 37
2020; 107
2006
2020; 14
2021; 384
2020; 288
2016; 127
2021; 385
1957
2021; 92
2018; 7
2019; 60
2018; 2
2021; 12
2018; 5
2021; 11
2020; 51
2021
2000; 403
2019; 25
2021; 192
2009; 9
2018
2017
2021; 153
2001; 16
2020; 88
2021; 40
2003; 89
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_38_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_25_1
e_1_2_12_26_1
Firth JR (e_1_2_12_29_1) 1957
e_1_2_12_47_1
Mitchell TM (e_1_2_12_5_1) 1997
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 20
  start-page: 179
  issue: 1
  year: 2020
  article-title: Directed acyclic graphs and causal thinking in clinical risk prediction modeling
  publication-title: BMC Medical Res Methodol.
– volume: 40
  start-page: 11
  issue: 1
  year: 2021
  end-page: 23
  article-title: The basics of data, big data, and machine learning in clinical practice
  publication-title: Clin Rheumatol.
– volume: 8
  issue: 17
  year: 2019
  article-title: Artificial intelligence: Practical primer for clinical research in cardiovascular disease
  publication-title: J Am Heart Assoc.
– volume: 88
  start-page: 311
  issue: 4
  year: 2020
  article-title: Predicting treatment failure in regular care internet‐delivered cognitive behavior therapy for depression and anxiety using only weekly symptom measures
  publication-title: J Consult Clin Psychol.
– volume: 28
  issue: 1
  year: 2021
  article-title: Clinician checklist for assessing suitability of machine learning applications in healthcare
  publication-title: BMJ Health Care Inform.
– volume: 384
  start-page: 842
  issue: 9
  year: 2021
  end-page: 58
  article-title: Diffuse large B‐cell lymphoma
  publication-title: N Engl J Med.
– volume: 12
  start-page: 407
  issue: 2
  year: 2021
  end-page: 16
  article-title: Rethinking PICO in the machine learning era: Ml‐PICO
  publication-title: Appl Clin Inform.
– volume: 192
  start-page: 239
  issue: 2
  year: 2021
  end-page: 50
  article-title: Machine learning and artificial intelligence in haematology
  publication-title: Br J Haematol.
– start-page: 2097
  year: 2017
  end-page: 106
  article-title: Chestx‐ray8: Hospital‐scale chest x‐ray database and benchmarks on weakly‐supervised classification and localization of common thorax diseases
– year: 2018
  article-title: Bert: Pre‐training of deep bidirectional transformers for language understanding
– volume: 89
  start-page: 232
  issue: 2
  year: 2003
  end-page: 8
  article-title: Survival analysis part I: Basic concepts and first analyses
  publication-title: Br J Cancer.
– volume: 14
  start-page: 73
  issue: 1
  year: 1995
  end-page: 82
  article-title: A neural network model for survival data
  publication-title: Stat Med.
– volume: 92
  start-page: 513
  issue: 5
  year: 2021
  end-page: 25
  article-title: Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a clinical AI research (CAIR) checklist proposal
  publication-title: Acta Orthop.
– volume: 40
  start-page: 913
  issue: 8
  year: 2017
  end-page: 29
  article-title: Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
  publication-title: Ecography.
– volume: 12
  start-page: 959
  issue: 11
  year: 2019
  end-page: 73
  article-title: Remaining challenges in predicting patient outcomes for diffuse large B‐cell lymphoma
  publication-title: Expert Rev Hematol.
– volume: 17
  start-page: 19
  issue: 6
  year: 2020
  article-title: Supervised machine learning tools: a tutorial for clinicians
  publication-title: J Neural Eng.
– volume: 22
  start-page: 1697
  issue: 10
  year: 2021
  end-page: 707
  article-title: Review of statistical methods for evaluating the performance of survival or other time‐to‐event prediction models (from conventional to deep learning approaches)
  publication-title: Korean J Radiol.
– volume: 37
  start-page: 551
  issue: 4
  year: 2020
  end-page: 68
  article-title: A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
  publication-title: Cancer Cell.
– volume: 11
  start-page: 9
  issue: 1
  year: 2021
  article-title: Incidence of relapsed/refractory diffuse large B‐cell lymphoma (DLBCL) including CNS relapse in a population‐based cohort of 4243 patients in Sweden
  publication-title: Blood Cancer J.
– volume: 11
  issue: 7
  year: 2021
  article-title: Protocol for development of a reporting guideline (TRIPOD‐AI) and risk of bias tool (PROBAST‐AI) for diagnostic and prognostic prediction model studies based on artificial intelligence
  publication-title: BMJ Open.
– volume: 3
  start-page: 155
  issue: 2
  year: 1983
  end-page: 68
  article-title: Derived thresholds: determining the diagnostic probabilities at which clinicians initiate testing and treatment
  publication-title: Med Decis Mak.
– volume: 107
  start-page: 871
  issue: 4
  year: 2020
  end-page: 85
  article-title: An introduction to machine learning
  publication-title: Clin Pharmacol Ther.
– volume: 51
  start-page: 1
  issue: 6
  year: 2019
  end-page: 36
  article-title: Machine learning for survival analysis: A survey
  publication-title: ACM Comput Surv.
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  end-page: 231
  article-title: Statistical modeling: the two cultures
  publication-title: Statist Sci.
– volume: 19
  start-page: 64
  issue: 1
  year: 2019
  article-title: Machine learning in medicine: a practical introduction
  publication-title: BMC Med Res Methodol.
– year: 1957
– start-page: 575
  year: 2021
  end-page: 80
  article-title: Predicting treatment outcome from patient texts: The case of internet‐based cognitive behavioural therapy
– volume: 5
  issue: 3
  year: 2018
  article-title: Measurement of symptom change following web‐based psychotherapy: Statistical characteristics and analytical methods for measuring and interpreting change
  publication-title: JMIR Ment Health.
– volume: 8
  start-page: 475
  issue: 4
  year: 2019
  end-page: 85
  article-title: Learning machines in internet delivered psychological treatment
  publication-title: Prog Artif Intell.
– volume: 288
  start-page: 62
  issue: 1
  year: 2020
  end-page: 81
  article-title: Artificial intelligence as the next step towards precision pathology
  publication-title: J Intern Med.
– volume: 2
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Optimizing outcome prediction in diffuse large B‐cell lymphoma by use of machine learning and nationwide lymphoma registries: A nordic lymphoma group study
  publication-title: JCO Clin Cancer Inform.
– volume: 403
  start-page: 503
  issue: 6769
  year: 2000
  end-page: 11
  article-title: Distinct types of diffuse large B‐cell lymphoma identified by gene expression profiling
  publication-title: Nature.
– year: 2006
– volume: 14
  start-page: 116
  year: 2020
  end-page: 26
  article-title: Machine learning for clinical outcome prediction
  publication-title: IEEE Rev Biomed Eng.
– volume: 6
  start-page: 621
  issue: 6
  year: 2021
  end-page: 3
  article-title: Incremental benefits of machine learning‐when do we need a better mousetrap?
  publication-title: JAMA Cardiol.
– year: 1997
– volume: 60
  start-page: 1580
  issue: 6
  year: 2019
  end-page: 3
  article-title: Clinical prognostic scores are poor predictors of overall survival in various types of malignant lymphomas
  publication-title: Leuk Lymphoma.
– volume: 127
  start-page: 181
  issue: 2
  year: 2016
  end-page: 6
  article-title: Clinical impact of molecular features in diffuse large B‐cell lymphoma and follicular lymphoma
  publication-title: Blood.
– volume: 385
  start-page: 283
  issue: 3
  year: 2021
  end-page: 6
  article-title: The clinician and dataset shift in artificial intelligence
  publication-title: NEJM.
– volume: 153
  year: 2021
  article-title: The need to separate the wheat from the chaff in medical informatics: Introducing a comprehensive checklist for the (self)‐assessment of medical AI studies
  publication-title: Int J Med Inform.
– volume: 7
  year: 2021
  article-title: Comparing supervised and unsupervised approaches to multimodal emotion recognition
  publication-title: PeerJ Comput Sci.
– volume: 7
  start-page: 114
  issue: 1
  year: 2018
  end-page: 22
  article-title: Simplicity at the cost of predictive accuracy in diffuse large B‐cell lymphoma: a critical assessment of the R‐IPI, IPI, and NCCN‐IPI
  publication-title: Cancer Med.
– volume: 25
  start-page: 44
  issue: 1
  year: 2019
  end-page: 56
  article-title: High‐performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med.
– volume: 51
  start-page: 675
  issue: 5
  year: 2020
  end-page: 87
  article-title: Supervised machine learning: A brief primer
  publication-title: Behav Ther.
– volume: 9
  start-page: 1
  issue: 1
  year: 2009
  end-page: 6
  article-title: The self‐reported Montgomery‐Åsberg depression rating scale is a useful evaluative tool in major depressive disorder
  publication-title: BMC Psychiatry.
– volume: 8
  year: 2021
  article-title: Big data, data science, and causal inference: A primer for clinicians
  publication-title: Front Med (Lausanne).
– ident: e_1_2_12_23_1
  doi: 10.1007/s13748-019-00192-0
– ident: e_1_2_12_40_1
  doi: 10.1111/ecog.02881
– ident: e_1_2_12_10_1
  doi: 10.1055/s-0041-1729752
– ident: e_1_2_12_18_1
  doi: 10.1109/CVPR.2017.369
– ident: e_1_2_12_34_1
  doi: 10.1145/3214306
– ident: e_1_2_12_24_1
  doi: 10.1037/ccp0000462
– ident: e_1_2_12_12_1
  doi: 10.1080/17453674.2021.1918389
– ident: e_1_2_12_21_1
  doi: 10.7717/peerj-cs.804
– ident: e_1_2_12_26_1
  doi: 10.18653/v1/2021.eacl-main.46
– volume-title: Machine learning
  year: 1997
  ident: e_1_2_12_5_1
– ident: e_1_2_12_13_1
  doi: 10.1136/bmjhci-2020-100251
– ident: e_1_2_12_11_1
  doi: 10.1016/j.ijmedinf.2021.104510
– ident: e_1_2_12_16_1
  doi: 10.1161/JAHA.119.012788
– ident: e_1_2_12_19_1
  doi: 10.1038/s41591-018-0300-7
– ident: e_1_2_12_43_1
  doi: 10.1038/35000501
– ident: e_1_2_12_32_1
  doi: 10.1111/joim.13030
– ident: e_1_2_12_20_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_12_30_1
  doi: 10.1056/NEJMra2027612
– ident: e_1_2_12_31_1
  doi: 10.1038/sj.bjc.6601118
– ident: e_1_2_12_47_1
  doi: 10.1056/NEJMc2104626
– ident: e_1_2_12_2_1
  doi: 10.1214/ss/1009213726
– ident: e_1_2_12_38_1
  doi: 10.1002/cam4.1271
– ident: e_1_2_12_9_1
  doi: 10.1136/bmjopen-2020-048008
– ident: e_1_2_12_15_1
  doi: 10.1111/bjh.16915
– ident: e_1_2_12_39_1
  doi: 10.1080/10428194.2018.1540044
– ident: e_1_2_12_41_1
  doi: 10.1109/RBME.2020.3007816
– volume-title: Studies in linguistic analysis
  year: 1957
  ident: e_1_2_12_29_1
– ident: e_1_2_12_35_1
  doi: 10.3348/kjr.2021.0223
– ident: e_1_2_12_36_1
  doi: 10.1038/s41408-020-00403-1
– ident: e_1_2_12_27_1
  doi: 10.2196/10200
– ident: e_1_2_12_3_1
  doi: 10.1186/s12874-020-01058-z
– ident: e_1_2_12_37_1
  doi: 10.1200/CCI.18.00025
– ident: e_1_2_12_14_1
  doi: 10.1007/s10067-020-05196-z
– ident: e_1_2_12_4_1
  doi: 10.3389/fmed.2021.678047
– ident: e_1_2_12_25_1
  doi: 10.1177/0272989X8300300203
– ident: e_1_2_12_33_1
  doi: 10.1002/sim.4780140108
– ident: e_1_2_12_44_1
  doi: 10.1016/j.ccell.2020.03.015
– ident: e_1_2_12_45_1
  doi: 10.1182/blood-2015-07-658401
– ident: e_1_2_12_7_1
  doi: 10.1002/cpt.1796
– ident: e_1_2_12_6_1
  doi: 10.1088/1741-2552/abbff2
– ident: e_1_2_12_17_1
  doi: 10.1016/j.beth.2020.05.002
– ident: e_1_2_12_42_1
  doi: 10.1001/jamacardio.2021.0139
– ident: e_1_2_12_8_1
  doi: 10.1186/s12874‐019–0681–4
– ident: e_1_2_12_22_1
  doi: 10.1186/1471-244X-9-26
– ident: e_1_2_12_46_1
  doi: 10.1080/17474086.2019.1660159
– ident: e_1_2_12_28_1
SSID ssj0013060
Score 2.5947595
SecondaryResourceType review_article
Snippet The deployment of machine learning for tasks relevant to complementing standard of care and advancing tools for precision health has gained much attention in...
SourceID swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 278
SubjectTerms Artificial intelligence
bioinformatics
biostatistics
Clinical
Clinical decision making
clinical decision support system
clinical outcome
clinical research
Data science
Decision making
Decision Support Systems
Epidemiology
human
Humans
learning algorithm
Learning algorithms
Literature reviews
Lymphoma
Machine learning
medical genetics
Natural language processing
personalized medicine
physician
Precision medicine
prediction
Prediction models
predictive model
procedures
Psychiatry
psychology
Review
risk assessment
statistical reasoning
survival analysis
Taxonomy
Terminology
workflow
Title Predictive models for clinical decision making: Deep dives in practical machine learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoim.13483
https://www.ncbi.nlm.nih.gov/pubmed/35426190
https://www.proquest.com/docview/2691797997
https://www.proquest.com/docview/2651693273
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-323269
http://kipublications.ki.se/Default.aspx?queryparsed=id:149350074
Volume 292
WOSCitedRecordID wos000786597900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1365-2796
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013060
  issn: 1365-2796
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1365-2796
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013060
  issn: 1365-2796
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDSFeYHyHfcgIhARSUGM7sY14mVYqhlipEIO-WXZsj2o0ndqOv3-244ZNmyYhXiInviSO4_Pd-Xz3A3gVVu0xD5vCiFO5l_g259Yxz1fCMFdowus6gk2w4ZCPx2K0Bh9WsTBtfohuwS1wRpyvA4MrvbjI5LPJ9F1BKCe3YKMoCA_ADZiO_voQejFG2OsQNK-8oEvJSeM-nu7ey-Loio7ZJRC9rLtG4TO4_3_N3oR7SelEe-0oeQBrtnkIdw6TW_0RjEfzUA4zH4rQOAvkdVm0ippEJgHxoGnErnqP-taeIhMy1qJJg1KklSecxq2ZFiUsiuPHcDT4-H3_U54gF_La28kkp7ZHTUWNFqostCLc-aZibhl2JdWWG0yNwsIxVmteGeeM06WujVXYkUpz8gTWm1ljnwGigvS0EVhz_whTFMpxVyqtaidcyYTK4M2q52Wd8pEHWIzfsrNLfFfJ2FUZvOxoT9ssHNdSba9-oEycuJC48gZp8F2yDF501Z6HgmNENXZ2FmiCt5B4TS6Dp-2P715Dymhk9jJ43Y6EriYk5u5PfuzJ2fxYnix_SeK100pcT5gunfiSlSHrYVVk8DYOlBu-SH7-enAYS8__hXgL7uIQpRH3KW7D-nJ-Znfgdv1nOVnMdyOX-CMb813Y6H8bHH3xZz8Phud5phps
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQIwXvj8CA4xASCAFNbaT2LxNjGmFtexhQN8sO7a3ajSd2o6_H5_jBiYmJMSblVwSx_b57nx3vwN4iaf2VGBQGPM6DxLf5cL5OvCVtLUvDBNNE4tN1OOxmEzkQYrNwVyYDh-iP3BDzoj7NTI4Hkj_zuXz6extwbhgl-EKD5oGVm74Nhz_ciIMYpJwUCJ4XgVJl9BJYyBP_-x5efSHktkjiJ5XXqP02b35n_2-BTeS2km2u3VyGy659g5cGyXH-l2YHCywjXsficVxliRos2SdN0lsKsVDZrF61Tuy49wpsYhZS6YtSblWgXAWgzMdSdUoju7Bl90Ph-_38lR0IW-Cpcxy7gbcVtwaqcvCaCZ86CoVrqa-5MYJS7nVVPq6boyorPfWm9I01mnqWWUEuw8b7bx1D4FwyQbGSmpEeIUtCu2FL7XRjZe-rKXO4PV66FWTEMmxMMZ31VsmYahUHKoMXvS0px0Ox4VUW-sZVIkXl4pWwSRF72WdwfP-duAidI3o1s3PkAb9hSzochk86Ga-_wwro5k5yOBVtxT6OwjNvTP9uq3miyN1sjpWLOinlbyYMF06CS2nEPewKjJ4E1fKX_5Iffw8HMXWo38hfgabe4ejfbU_HH96DNcp5mzEqMUt2FgtztwTuNr8WE2Xi6eRZX4CzVYbLQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tHZp4gcHGCAwwAiGBlKmxncTe20RXMdhKNTHUN8uO7VGNplXb8fdjO27YtAkJ8WYll8Sxfb4738cP4K0_tcfMB4URK1Mn8U3KjC0dX3Fd2kwRVlUBbKIcDNhoxIcxNsfnwjT1IdoDN88ZYb_2DG5m2l7n8ul4sp8Rysg6bFCPItOBjd5Z__zkjxuhG9KEnRpB08LJulifNITytE_flEi31My2huhN9TXIn_7D_-z5FjyIiic6bFbKI1gz9WPYPI2u9W0YDee-7Xc_FOBxFsjps2iVOYl0BONBk4BfdYB6xsyQ9lVr0bhGMdvKEU5CeKZBEY_iYgfO-0ffPn5KI-xCWjlbmaTUdKkuqFZc5pmShFnXVcxMiW1OlWEaUy0xt2VZKVZoa7VVuaq0kdiSQjHyBDr1tDZPAVFOukpzrJh7hc4yaZnNpZKV5TYvuUzg_WroRRVrkntojJ-itU3cUIkwVAm8aWlnTSWOO6n2VjMoIjcuBC6cUer9l2UCr9vbjo-8c0TWZnrlabzHkDhtLoHdZubbz5A8GJrdBN41S6G944tz98bfD8V0fiEulz8EcRpqwe8mjJcuXcsIX_mwyBL4EFbKX_5IfP56fBpaz_6F-BVsDnt9cXI8-PIc7mOftBHCFvegs5xfmRdwr_q1HC_mLyPP_AamDBvW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+models+for+clinical+decision+making&rft.jtitle=Journal+of+internal+medicine&rft.au=Eloranta%2C+Sandra&rft.au=Boman%2C+Magnus&rft.date=2022-08-01&rft.issn=1365-2796&rft.volume=292&rft.issue=2&rft.spage=278&rft_id=info:doi/10.1111%2Fjoim.13483&rft.externalDocID=oai_DiVA_org_kth_323269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-6820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-6820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-6820&client=summon