Room‐Temperature Quantum Memories Based on Molecular Electron Spin Ensembles

Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long‐dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 33; H. 30; S. e2101673 - n/a
Hauptverfasser: Lenz, Samuel, König, Dennis, Hunger, David, Slageren, Joris
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.07.2021
John Wiley and Sons Inc
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long‐distance quantum communication. Current quantum memories operate at cryogenic, mostly sub‐Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature. Ensembles of weakly exchange coupled organic radicals form strongly coupled systems with 3D microwave resonators. Time‐domain pulsed microwave investigations reveal long, largely temperature‐independent quantum coherence times. The room‐temperature storage and retrieval of microwave pulses is demonstrated.
AbstractList Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long‐distance quantum communication. Current quantum memories operate at cryogenic, mostly sub‐Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature. Ensembles of weakly exchange coupled organic radicals form strongly coupled systems with 3D microwave resonators. Time‐domain pulsed microwave investigations reveal long, largely temperature‐independent quantum coherence times. The room‐temperature storage and retrieval of microwave pulses is demonstrated.
Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long-distance quantum communication. Current quantum memories operate at cryogenic, mostly sub-Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature.
Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long‐distance quantum communication. Current quantum memories operate at cryogenic, mostly sub‐Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature. Ensembles of weakly exchange coupled organic radicals form strongly coupled systems with 3D microwave resonators. Time‐domain pulsed microwave investigations reveal long, largely temperature‐independent quantum coherence times. The room‐temperature storage and retrieval of microwave pulses is demonstrated.
Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long-distance quantum communication. Current quantum memories operate at cryogenic, mostly sub-Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature.Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long-distance quantum communication. Current quantum memories operate at cryogenic, mostly sub-Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature.
Author Slageren, Joris
Lenz, Samuel
König, Dennis
Hunger, David
AuthorAffiliation 1 Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology University of Stuttgart Pfaffenwaldring 55 D‐70569 Stuttgart Germany
AuthorAffiliation_xml – name: 1 Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology University of Stuttgart Pfaffenwaldring 55 D‐70569 Stuttgart Germany
Author_xml – sequence: 1
  givenname: Samuel
  surname: Lenz
  fullname: Lenz, Samuel
  organization: University of Stuttgart
– sequence: 2
  givenname: Dennis
  surname: König
  fullname: König, Dennis
  organization: University of Stuttgart
– sequence: 3
  givenname: David
  surname: Hunger
  fullname: Hunger, David
  organization: University of Stuttgart
– sequence: 4
  givenname: Joris
  orcidid: 0000-0002-0855-8960
  surname: Slageren
  fullname: Slageren, Joris
  email: slageren@ipc.uni-stuttgart.de
  organization: University of Stuttgart
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34106491$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi3UiqaFLUs0Ehs2k_o6Hq9QKKEgNSCgrC3P5Ay48iXYM6DueASekSepo5QAlRD2wkf29_8-l2N0EGIAhB4RPCcY01Oz9mZOMSWYNJLdQzMiKKk5VuIAzbBiolYNb4_Qcc5XGGPV4OY-OmKc4IYrMkNv3sfof37_cQl-A8mMU4Lq3WTCOPlqBT4mC7l6bjKsqxiqVXTQT86kalmCMZWrDxsbqmXI4DsH-QE6HIzL8PD2PEEfXy4vz17VF2_PX58tLuqeN4rVTEE3cNZ2RnTCSMk7CWJgUoAhDe0M48Ak8LIHiuW65dLIFlPgQw-0FMFO0LOd72bqPKx7CGMyTm-S9SZd62is_vsl2M_6U_yqCSkJ0JYUh6e3Dil-mSCP2tvcg3MmQJyypoIpQTmTtKBP7qBXcUqh1Feoslpael6ox3-mtM_lV68LMN8BfYo5Jxj2CMF6O0y9HabeD7MI-B1Bb0cz2rgtybp_y9RO9s06uP7PJ3rxYrX4rb0BB320ug
CitedBy_id crossref_primary_10_1002_adma_202208998
crossref_primary_10_1007_s00723_022_01505_8
crossref_primary_10_1021_jacs_5c09638
crossref_primary_10_1088_2633_4356_ad8719
crossref_primary_10_1021_jacs_2c11760
crossref_primary_10_1039_D2CP00906D
crossref_primary_10_1103_PhysRevApplied_18_064074
Cites_doi 10.1246/bcsj.67.31
10.1063/1.1734084
10.1063/1.1677580
10.1038/nature06184
10.1038/nmat2420
10.1103/PhysRevLett.110.067004
10.1364/JOSAB.2.000480
10.1140/epjd/e2010-00103-y
10.1109/PROC.1963.1664
10.1103/PhysRevLett.125.137701
10.1038/451664a
10.1103/PhysRevB.82.024413
10.1039/D0CC04841K
10.1103/PhysRevA.89.033820
10.1093/oso/9780198506348.001.0001
10.1103/PhysRev.124.1023
10.1103/PhysRev.170.379
10.1038/s41563-017-0008-y
10.1063/1.1721955
10.1103/PhysRevLett.105.140503
10.1038/nmat3182
10.1038/s41534-020-00296-9
10.1103/PhysRevLett.105.140501
10.1103/PhysRevA.93.063855
10.1063/1.4959095
10.1103/PhysRevLett.110.157001
10.1038/s41598-017-13271-w
10.1063/1.4899141
10.1103/PhysRevA.85.012333
10.1063/1.4932658
10.1103/PhysRevLett.118.037701
10.1103/PhysRevLett.112.120501
10.1038/nature16944
10.1103/PhysRevLett.110.250503
10.1038/nature09081
10.1038/nphoton.2009.231
10.1103/PhysRevLett.107.060502
10.1039/C9CC02184A
10.1063/1.5002540
10.1039/C6DT01953F
10.1103/PhysRev.58.1098
10.1016/j.jmr.2013.04.004
10.1007/s11432-020-2881-9
10.1103/PhysRevLett.105.140502
10.1103/PhysRevA.84.063810
10.1007/s11128-009-0100-6
10.1038/s42005-018-0057-9
10.1103/PhysRevB.90.075112
10.1103/PhysRevA.92.020301
10.1103/PhysRevLett.125.137702
10.1016/j.jmr.2019.106662
10.1021/acsnano.0c03167
10.1038/nphys3050
10.1063/1.4941730
10.1103/RevModPhys.85.623
10.1038/nphoton.2016.225
10.1103/PhysRevLett.119.147701
10.1103/PhysRevA.83.053852
10.1007/s00723-008-0141-5
10.1103/PhysRevB.94.054433
10.1103/PhysRev.135.A640
10.1103/PhysRevApplied.2.054002
10.1103/PhysRevLett.4.13
10.1038/s41586-020-2401-y
10.1088/1361-6463/aa97b3
10.1021/jp201978w
10.1016/j.crhy.2016.07.006
10.1063/1.1721903
10.1063/1.3601930
10.1063/1.4946893
ContentType Journal Article
Copyright 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.202101673
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC11469281
34106491
10_1002_adma_202101673
ADMA202101673
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c4693-39ebf438ba5b5a774b7e5f375ea162ba34e37e4e4ef207d847a7802e4fce20963
IEDL.DBID 24P
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659165800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Tue Nov 04 02:05:53 EST 2025
Wed Oct 01 14:44:45 EDT 2025
Fri Jul 25 04:33:26 EDT 2025
Thu Apr 03 06:54:05 EDT 2025
Sat Nov 29 07:20:57 EST 2025
Tue Nov 18 21:51:55 EST 2025
Wed Jan 22 16:28:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords quantum technologies
quantum memories
organic radicals
molecular quantum bits
microwave pulse storage
Language English
License Attribution
2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4693-39ebf438ba5b5a774b7e5f375ea162ba34e37e4e4ef207d847a7802e4fce20963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0855-8960
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202101673
PMID 34106491
PQID 2555582521
PQPubID 2045203
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469281
proquest_miscellaneous_2539524372
proquest_journals_2555582521
pubmed_primary_34106491
crossref_primary_10_1002_adma_202101673
crossref_citationtrail_10_1002_adma_202101673
wiley_primary_10_1002_adma_202101673_ADMA202101673
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 119
2011; 115
2017; 7
2010; 58
1960; 4
2020; 63
2016; 109
2010; 105
2016; 108
2019; 55
2010; 465
1994; 67
1968; 170
2020; 14
2011; 98
2008; 35
1940; 58
2020; 56
2015; 107
2020; 125
2017; 111
2012; 11
2017; 118
1964; 135
2020; 6
2014; 4
2014; 2
2001
2016; 119
2018; 1
2013; 231
2013; 110
1972; 56
1963; 39
2016; 45
2014; 10
1955; 26
2007; 449
2014; 90
2015; 92
2020; 582
1985; 2
2011; 84
2013; 85
2011; 83
2016; 94
2016; 93
2016; 17
2014; 89
2014; 112
2010; 82
2016; 11
2017; 50
2014; 105
2018; 17
2011; 107
1963; 51
2016; 531
2009; 8
1961; 124
2017
2020; 310
2009; 3
2008; 451
2012; 85
Rose B. C. (e_1_2_9_22_1) 2017; 7
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
Grezes C. (e_1_2_9_32_1) 2014; 4
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 84
  year: 2011
  publication-title: Phys. Rev. A
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 58
  start-page: 1
  year: 2010
  publication-title: Eur. Phys. J. D
– volume: 105
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2014
  publication-title: Phys. Rev. X
– year: 2001
– volume: 17
  start-page: 693
  year: 2016
  publication-title: C. R. Phys.
– volume: 17
  start-page: 313
  year: 2018
  publication-title: Nat. Mater.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 35
  start-page: 95
  year: 2008
  publication-title: Appl. Magn. Reson.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. A
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 706
  year: 2009
  publication-title: Nat. Photonics
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 89
  year: 2014
  publication-title: Phys. Rev. A
– volume: 83
  year: 2011
  publication-title: Phys. Rev. A
– volume: 531
  start-page: 74
  year: 2016
  publication-title: Nature
– volume: 51
  start-page: 89
  year: 1963
  publication-title: Proc. IEEE
– volume: 4
  start-page: 13
  year: 1960
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 7163
  year: 2019
  publication-title: Chem. Commun.
– volume: 58
  start-page: 1098
  year: 1940
  publication-title: Phys. Rev.
– volume: 124
  start-page: 1023
  year: 1961
  publication-title: Phys. Rev.
– volume: 14
  start-page: 8707
  year: 2020
  publication-title: ACS Nano
– volume: 465
  start-page: 1052
  year: 2010
  publication-title: Nature
– volume: 7
  year: 2017
  publication-title: Phys. Rev. X
– volume: 310
  year: 2020
  publication-title: J. Magn. Reson.
– volume: 10
  start-page: 720
  year: 2014
  publication-title: Nat. Phys.
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 56
  start-page: 2555
  year: 1972
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 1324
  year: 1955
  publication-title: J. Appl. Phys.
– volume: 449
  start-page: 443
  year: 2007
  publication-title: Nature
– volume: 67
  start-page: 31
  year: 1994
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 115
  start-page: 7986
  year: 2011
  publication-title: J. Phys. Chem. B
– volume: 1
  start-page: 55
  year: 2018
  publication-title: Commun. Phys.
– volume: 39
  start-page: 2694
  year: 1963
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 105
  year: 2009
  publication-title: Quantum Inf. Process.
– volume: 451
  start-page: 664
  year: 2008
  publication-title: Nature
– volume: 170
  start-page: 379
  year: 1968
  publication-title: Phys. Rev.
– volume: 26
  start-page: 170
  year: 1955
  publication-title: J. Appl. Phys.
– volume: 119
  year: 2016
  publication-title: J. Appl. Phys.
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– volume: 93
  year: 2016
  publication-title: Phys. Rev. A
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 45
  year: 2016
  publication-title: Dalton Trans.
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 50
  year: 2017
  publication-title: J. Phys. D Appl. Phys.
– volume: 6
  start-page: 68
  year: 2020
  publication-title: npj Quantum Inf.
– volume: 582
  start-page: 501
  year: 2020
  publication-title: Nature
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 135
  start-page: A640
  year: 1964
  publication-title: Phys. Rev. A
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 36
  year: 2016
  publication-title: Nat. Photon
– volume: 85
  start-page: 623
  year: 2013
  publication-title: Rev. Mod. Phys.
– volume: 231
  start-page: 133
  year: 2013
  publication-title: J. Magn. Reson.
– volume: 85
  year: 2012
  publication-title: Phys. Rev. A
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 480
  year: 1985
  publication-title: J. Opt. Soc. Am. B
– year: 2017
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 63
  year: 2020
  publication-title: Sci. China Technol. Sci.
– volume: 8
  start-page: 383
  year: 2009
  publication-title: Nat. Mater.
– volume: 2
  year: 2014
  publication-title: Phys. Rev. Applied
– volume: 11
  start-page: 143
  year: 2012
  publication-title: Nat. Mater.
– ident: e_1_2_9_53_1
  doi: 10.1246/bcsj.67.31
– ident: e_1_2_9_57_1
  doi: 10.1063/1.1734084
– ident: e_1_2_9_55_1
  doi: 10.1063/1.1677580
– ident: e_1_2_9_7_1
  doi: 10.1038/nature06184
– ident: e_1_2_9_10_1
  doi: 10.1038/nmat2420
– ident: e_1_2_9_31_1
  doi: 10.1103/PhysRevLett.110.067004
– ident: e_1_2_9_49_1
  doi: 10.1364/JOSAB.2.000480
– ident: e_1_2_9_4_1
  doi: 10.1140/epjd/e2010-00103-y
– ident: e_1_2_9_48_1
  doi: 10.1109/PROC.1963.1664
– ident: e_1_2_9_45_1
  doi: 10.1103/PhysRevLett.125.137701
– ident: e_1_2_9_1_1
  doi: 10.1038/451664a
– ident: e_1_2_9_19_1
  doi: 10.1103/PhysRevB.82.024413
– ident: e_1_2_9_20_1
  doi: 10.1039/D0CC04841K
– ident: e_1_2_9_26_1
  doi: 10.1103/PhysRevA.89.033820
– ident: e_1_2_9_61_1
  doi: 10.1093/oso/9780198506348.001.0001
– ident: e_1_2_9_54_1
  doi: 10.1103/PhysRev.124.1023
– ident: e_1_2_9_14_1
  doi: 10.1103/PhysRev.170.379
– ident: e_1_2_9_43_1
  doi: 10.1038/s41563-017-0008-y
– ident: e_1_2_9_67_1
  doi: 10.1063/1.1721955
– ident: e_1_2_9_33_1
  doi: 10.1103/PhysRevLett.105.140503
– ident: e_1_2_9_9_1
  doi: 10.1038/nmat3182
– ident: e_1_2_9_46_1
  doi: 10.1038/s41534-020-00296-9
– ident: e_1_2_9_28_1
  doi: 10.1103/PhysRevLett.105.140501
– ident: e_1_2_9_17_1
  doi: 10.1103/PhysRevA.93.063855
– ident: e_1_2_9_25_1
  doi: 10.1063/1.4959095
– ident: e_1_2_9_34_1
  doi: 10.1103/PhysRevLett.110.157001
– ident: e_1_2_9_37_1
  doi: 10.1038/s41598-017-13271-w
– ident: e_1_2_9_60_1
– ident: e_1_2_9_12_1
  doi: 10.1063/1.4899141
– ident: e_1_2_9_30_1
  doi: 10.1103/PhysRevA.85.012333
– ident: e_1_2_9_21_1
  doi: 10.1063/1.4932658
– ident: e_1_2_9_11_1
  doi: 10.1103/PhysRevLett.118.037701
– ident: e_1_2_9_38_1
  doi: 10.1103/PhysRevLett.112.120501
– ident: e_1_2_9_64_1
  doi: 10.1038/nature16944
– ident: e_1_2_9_51_1
  doi: 10.1103/PhysRevLett.110.250503
– ident: e_1_2_9_71_1
  doi: 10.1038/nature09081
– ident: e_1_2_9_8_1
  doi: 10.1038/nphoton.2009.231
– ident: e_1_2_9_27_1
  doi: 10.1103/PhysRevLett.107.060502
– ident: e_1_2_9_47_1
  doi: 10.1039/C9CC02184A
– ident: e_1_2_9_65_1
  doi: 10.1063/1.5002540
– ident: e_1_2_9_36_1
  doi: 10.1039/C6DT01953F
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRev.58.1098
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jmr.2013.04.004
– ident: e_1_2_9_2_1
  doi: 10.1007/s11432-020-2881-9
– ident: e_1_2_9_23_1
  doi: 10.1103/PhysRevLett.105.140502
– ident: e_1_2_9_59_1
  doi: 10.1103/PhysRevA.84.063810
– ident: e_1_2_9_3_1
  doi: 10.1007/s11128-009-0100-6
– ident: e_1_2_9_72_1
  doi: 10.1038/s42005-018-0057-9
– ident: e_1_2_9_35_1
  doi: 10.1103/PhysRevB.90.075112
– ident: e_1_2_9_69_1
  doi: 10.1103/PhysRevA.92.020301
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevLett.125.137702
– ident: e_1_2_9_52_1
  doi: 10.1016/j.jmr.2019.106662
– ident: e_1_2_9_13_1
  doi: 10.1021/acsnano.0c03167
– ident: e_1_2_9_42_1
  doi: 10.1038/nphys3050
– ident: e_1_2_9_40_1
  doi: 10.1063/1.4941730
– volume: 7
  start-page: 031002
  year: 2017
  ident: e_1_2_9_22_1
  publication-title: Phys. Rev. X
– ident: e_1_2_9_6_1
  doi: 10.1103/RevModPhys.85.623
– volume: 4
  start-page: 021049
  year: 2014
  ident: e_1_2_9_32_1
  publication-title: Phys. Rev. X
– ident: e_1_2_9_29_1
  doi: 10.1038/nphoton.2016.225
– ident: e_1_2_9_16_1
  doi: 10.1103/PhysRevLett.119.147701
– ident: e_1_2_9_58_1
  doi: 10.1103/PhysRevA.83.053852
– ident: e_1_2_9_73_1
  doi: 10.1007/s00723-008-0141-5
– ident: e_1_2_9_41_1
  doi: 10.1103/PhysRevB.94.054433
– ident: e_1_2_9_56_1
  doi: 10.1103/PhysRev.135.A640
– ident: e_1_2_9_39_1
  doi: 10.1103/PhysRevApplied.2.054002
– ident: e_1_2_9_63_1
  doi: 10.1103/PhysRevLett.4.13
– ident: e_1_2_9_5_1
  doi: 10.1038/s41586-020-2401-y
– ident: e_1_2_9_70_1
  doi: 10.1088/1361-6463/aa97b3
– ident: e_1_2_9_62_1
  doi: 10.1021/jp201978w
– ident: e_1_2_9_68_1
  doi: 10.1016/j.crhy.2016.07.006
– ident: e_1_2_9_66_1
  doi: 10.1063/1.1721903
– ident: e_1_2_9_15_1
  doi: 10.1063/1.3601930
– ident: e_1_2_9_24_1
  doi: 10.1063/1.4946893
SSID ssj0009606
Score 2.4664197
Snippet Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2101673
SubjectTerms Coupling (molecular)
Cryogenic temperature
Electron spin
Materials science
microwave pulse storage
molecular quantum bits
organic radicals
Quantum computing
quantum memories
quantum technologies
Qubits (quantum computing)
Repeaters
Room temperature
Title Room‐Temperature Quantum Memories Based on Molecular Electron Spin Ensembles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202101673
https://www.ncbi.nlm.nih.gov/pubmed/34106491
https://www.proquest.com/docview/2555582521
https://www.proquest.com/docview/2539524372
https://pubmed.ncbi.nlm.nih.gov/PMC11469281
Volume 33
WOSCitedRecordID wos000659165800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOvB8LpTISEqeoGz9i-7jQXXHorkpppb1FtjMRK7XZquly5ifwG_kljJNsuqsKIYEiRUnsUeLHeL6J7W8A3oeyUJnANEl5aRKpPI2DmS-TMFQYDEqPriFxPdKzmZnP7fHGLv6WH6L_4RY1oxmvo4I7Xx_ckIa6ouEN4tH91OIu7KapMDF4A5fHN7S7WRNdM872JTaTZk3bOOQH2_LbZukW1ry9ZHITyja2aPLo_0vxGB52OJSN2o7zBO5g9RQebLATPoPZCYHqXz9-niJB65Z6mX1ZUUusLtg0LtAlJ5t9JCtYsGXFpus4u2zcRdZhXy8XFRtXNV74c6yfw9lkfPrpc9KFX0gC-cwiERZ9KYXxTnnlCCZ6jaoUWqFLM-6dkCg0SjpKPtQFmTmnzZCjLANyqnnxAnaqZYWvgEnLMRCyI3xlpZbOqGAFPTCFMpabYgDJuvbz0HGTxxAZ53nLqszzWE95X08D-NDnv2xZOf6Yc2_dmHmnnXVObpRS5BrzdADv-mTSqzhZ4ipcrmIeYVVka-QDeNm2ff8qsvyE5CxJm61e0WeInN3bKdXiW8PdHTeBU4lJlDfd4i-fn48Op6P-7vW_CL2B-_G6XWK8BzvXVyt8C_fC9-tFfbXfqAud9dzsw-7hyeTs6Dd-Bhf6
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED9tMGnbw8Y2thUYeNKkPUW0_pPYjx20YqKtNlYk3iLbuWiVIEWU7nkfgc_IJ-GcpIEKTUgTylNiO4ntO9_v_Od3AF98nqlYYCfq8FxHUjkaB2OXR76t0GuUDm1J4jpIRiN9cmJ-1LsJw1mYih-imXALmlGO10HBw4T07i1rqM1K4iAe_M9EPIVVSbJEQr66f9Q_Htwy78ZlgM2w4BeZWOoFc2Ob7y6_Ydky3YOb93dN3kWzpTnqv36EiqzBqxqLsm4lPG_gCRZv4eUdhsJ3MDoiYH3992qMBK8r-mX2c069MT9jw7BJlxxt9o0sYcamBRsuYu2yXh1dh_06nxSsV8zwzJ3ibB2O-73x3kFUh2CIPPnNIhIGXS6FdlY5ZQkqugRVLhKFthNzZ4VEkaCkK-ftJCNTZxPd5ihzj5yaXryHlWJa4Edg0nD0hO4IYxmZSKuVN4Ie6Expw3XWgmjR_Kmv-clDmIzTtGJW5mlop7RppxZ8bfKfV8wc_8y5tejNtNbQWUqulFLkHvNOCz43yaRbYcHEFjidhzzCqMDYyFvwoer85lNk_QnNGSqtl8SiyRB4u5dTisnvkr87HASnGlNRXsrFA7-fdveH3eZu438K7cDzg_FwkA6-jw434UV4Xm053oKVy4s5foJn_s_lZHaxXWvPDfhIGvg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4aHULwwLhsUBhgJCSeorW-JPZjoa2GaKsxNmlvke2caJW2tFpXnvkJ-437JRwnabZqQpMQylN8SeJjH5_vxPZ3AD75PFOxwG7U5bmOpHI0D8Yuj3xHodcoHdqSxHWUTCb65MQc1LsJw1mYih-i-eEWNKOcr4OC4zzL925YQ21WEgfx4H8m4gFsyhBJpgWb_cPh8eiGeTcuA2yGBb_IxFKvmBs7fG_9CeuW6Q7cvLtr8jaaLc3RcOs_NOQZPK2xKOtVg-c5bGDxAp7cYih8CZNDAtbXv6-OkOB1Rb_MfiypN5bnbBw26ZKjzb6QJczYrGDjVaxdNqij67Cf82nBBsUCz90ZLrbheDg4-rof1SEYIk9-s4iEQZdLoZ1VTlmCii5BlYtEoe3G3FkhUSQo6cp5J8nI1NlEdzjK3CMn0YsdaBWzAl8Dk4ajJ3RHGMvIRFqtvBGUoDOlDddZG6KV-FNf85OHMBlnacWszNMgp7SRUxs-N-XnFTPHX0vurnozrTV0kZIrpRS5x7zbho9NNulWWDCxBc6WoYwwKjA28ja8qjq_eRVZf0JzhmrrtWHRFAi83es5xfS05O8OB8GpxVSVl-Pins9Pe_1xr7l78y-VPsCjg_4wHX2bfH8Lj0NyteN4F1qXF0t8Bw_9r8vp4uJ9rTx_AFwvGnM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-Temperature+Quantum+Memories+Based+on+Molecular+Electron+Spin+Ensembles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lenz%2C+Samuel&rft.au=K%C3%B6nig%2C+Dennis&rft.au=Hunger%2C+David&rft.au=van+Slageren%2C+Joris&rft.date=2021-07-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=30&rft.spage=e2101673&rft_id=info:doi/10.1002%2Fadma.202101673&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon