Room‐Temperature Quantum Memories Based on Molecular Electron Spin Ensembles
Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long‐dist...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 33; H. 30; S. e2101673 - n/a |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.07.2021
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long‐distance quantum communication. Current quantum memories operate at cryogenic, mostly sub‐Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature.
Ensembles of weakly exchange coupled organic radicals form strongly coupled systems with 3D microwave resonators. Time‐domain pulsed microwave investigations reveal long, largely temperature‐independent quantum coherence times. The room‐temperature storage and retrieval of microwave pulses is demonstrated. |
|---|---|
| AbstractList | Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long‐distance quantum communication. Current quantum memories operate at cryogenic, mostly sub‐Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature.
Ensembles of weakly exchange coupled organic radicals form strongly coupled systems with 3D microwave resonators. Time‐domain pulsed microwave investigations reveal long, largely temperature‐independent quantum coherence times. The room‐temperature storage and retrieval of microwave pulses is demonstrated. Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long-distance quantum communication. Current quantum memories operate at cryogenic, mostly sub-Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature. Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long‐distance quantum communication. Current quantum memories operate at cryogenic, mostly sub‐Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature. Ensembles of weakly exchange coupled organic radicals form strongly coupled systems with 3D microwave resonators. Time‐domain pulsed microwave investigations reveal long, largely temperature‐independent quantum coherence times. The room‐temperature storage and retrieval of microwave pulses is demonstrated. Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long-distance quantum communication. Current quantum memories operate at cryogenic, mostly sub-Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature.Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential devices in the quantum technology palette and are needed for intermediate storage of quantum bit states and as quantum repeaters in long-distance quantum communication. Current quantum memories operate at cryogenic, mostly sub-Kelvin temperatures and require extensive and costly peripheral hardware. It is demonstrated that ensembles of weakly coupled molecular spins show long coherence times and can be used to store microwave pulses of arbitrary phase. These studies exploit strong coupling of the spin ensemble to special 3D microwave resonators. Most importantly, these systems operate at room temperature. |
| Author | Slageren, Joris Lenz, Samuel König, Dennis Hunger, David |
| AuthorAffiliation | 1 Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology University of Stuttgart Pfaffenwaldring 55 D‐70569 Stuttgart Germany |
| AuthorAffiliation_xml | – name: 1 Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology University of Stuttgart Pfaffenwaldring 55 D‐70569 Stuttgart Germany |
| Author_xml | – sequence: 1 givenname: Samuel surname: Lenz fullname: Lenz, Samuel organization: University of Stuttgart – sequence: 2 givenname: Dennis surname: König fullname: König, Dennis organization: University of Stuttgart – sequence: 3 givenname: David surname: Hunger fullname: Hunger, David organization: University of Stuttgart – sequence: 4 givenname: Joris orcidid: 0000-0002-0855-8960 surname: Slageren fullname: Slageren, Joris email: slageren@ipc.uni-stuttgart.de organization: University of Stuttgart |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34106491$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctuEzEUhi3UiqaFLUs0Ehs2k_o6Hq9QKKEgNSCgrC3P5Ay48iXYM6DueASekSepo5QAlRD2wkf29_8-l2N0EGIAhB4RPCcY01Oz9mZOMSWYNJLdQzMiKKk5VuIAzbBiolYNb4_Qcc5XGGPV4OY-OmKc4IYrMkNv3sfof37_cQl-A8mMU4Lq3WTCOPlqBT4mC7l6bjKsqxiqVXTQT86kalmCMZWrDxsbqmXI4DsH-QE6HIzL8PD2PEEfXy4vz17VF2_PX58tLuqeN4rVTEE3cNZ2RnTCSMk7CWJgUoAhDe0M48Ak8LIHiuW65dLIFlPgQw-0FMFO0LOd72bqPKx7CGMyTm-S9SZd62is_vsl2M_6U_yqCSkJ0JYUh6e3Dil-mSCP2tvcg3MmQJyypoIpQTmTtKBP7qBXcUqh1Feoslpael6ox3-mtM_lV68LMN8BfYo5Jxj2CMF6O0y9HabeD7MI-B1Bb0cz2rgtybp_y9RO9s06uP7PJ3rxYrX4rb0BB320ug |
| CitedBy_id | crossref_primary_10_1002_adma_202208998 crossref_primary_10_1007_s00723_022_01505_8 crossref_primary_10_1021_jacs_5c09638 crossref_primary_10_1088_2633_4356_ad8719 crossref_primary_10_1021_jacs_2c11760 crossref_primary_10_1039_D2CP00906D crossref_primary_10_1103_PhysRevApplied_18_064074 |
| Cites_doi | 10.1246/bcsj.67.31 10.1063/1.1734084 10.1063/1.1677580 10.1038/nature06184 10.1038/nmat2420 10.1103/PhysRevLett.110.067004 10.1364/JOSAB.2.000480 10.1140/epjd/e2010-00103-y 10.1109/PROC.1963.1664 10.1103/PhysRevLett.125.137701 10.1038/451664a 10.1103/PhysRevB.82.024413 10.1039/D0CC04841K 10.1103/PhysRevA.89.033820 10.1093/oso/9780198506348.001.0001 10.1103/PhysRev.124.1023 10.1103/PhysRev.170.379 10.1038/s41563-017-0008-y 10.1063/1.1721955 10.1103/PhysRevLett.105.140503 10.1038/nmat3182 10.1038/s41534-020-00296-9 10.1103/PhysRevLett.105.140501 10.1103/PhysRevA.93.063855 10.1063/1.4959095 10.1103/PhysRevLett.110.157001 10.1038/s41598-017-13271-w 10.1063/1.4899141 10.1103/PhysRevA.85.012333 10.1063/1.4932658 10.1103/PhysRevLett.118.037701 10.1103/PhysRevLett.112.120501 10.1038/nature16944 10.1103/PhysRevLett.110.250503 10.1038/nature09081 10.1038/nphoton.2009.231 10.1103/PhysRevLett.107.060502 10.1039/C9CC02184A 10.1063/1.5002540 10.1039/C6DT01953F 10.1103/PhysRev.58.1098 10.1016/j.jmr.2013.04.004 10.1007/s11432-020-2881-9 10.1103/PhysRevLett.105.140502 10.1103/PhysRevA.84.063810 10.1007/s11128-009-0100-6 10.1038/s42005-018-0057-9 10.1103/PhysRevB.90.075112 10.1103/PhysRevA.92.020301 10.1103/PhysRevLett.125.137702 10.1016/j.jmr.2019.106662 10.1021/acsnano.0c03167 10.1038/nphys3050 10.1063/1.4941730 10.1103/RevModPhys.85.623 10.1038/nphoton.2016.225 10.1103/PhysRevLett.119.147701 10.1103/PhysRevA.83.053852 10.1007/s00723-008-0141-5 10.1103/PhysRevB.94.054433 10.1103/PhysRev.135.A640 10.1103/PhysRevApplied.2.054002 10.1103/PhysRevLett.4.13 10.1038/s41586-020-2401-y 10.1088/1361-6463/aa97b3 10.1021/jp201978w 10.1016/j.crhy.2016.07.006 10.1063/1.1721903 10.1063/1.3601930 10.1063/1.4946893 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1002/adma.202101673 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | PMC11469281 34106491 10_1002_adma_202101673 ADMA202101673 |
| Genre | article Journal Article |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c4693-39ebf438ba5b5a774b7e5f375ea162ba34e37e4e4ef207d847a7802e4fce20963 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659165800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Tue Nov 04 02:05:53 EST 2025 Wed Oct 01 14:44:45 EDT 2025 Fri Jul 25 04:33:26 EDT 2025 Thu Apr 03 06:54:05 EDT 2025 Sat Nov 29 07:20:57 EST 2025 Tue Nov 18 21:51:55 EST 2025 Wed Jan 22 16:28:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 30 |
| Keywords | quantum technologies quantum memories organic radicals molecular quantum bits microwave pulse storage |
| Language | English |
| License | Attribution 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4693-39ebf438ba5b5a774b7e5f375ea162ba34e37e4e4ef207d847a7802e4fce20963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0855-8960 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202101673 |
| PMID | 34106491 |
| PQID | 2555582521 |
| PQPubID | 2045203 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469281 proquest_miscellaneous_2539524372 proquest_journals_2555582521 pubmed_primary_34106491 crossref_primary_10_1002_adma_202101673 crossref_citationtrail_10_1002_adma_202101673 wiley_primary_10_1002_adma_202101673_ADMA202101673 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2017; 119 2011; 115 2017; 7 2010; 58 1960; 4 2020; 63 2016; 109 2010; 105 2016; 108 2019; 55 2010; 465 1994; 67 1968; 170 2020; 14 2011; 98 2008; 35 1940; 58 2020; 56 2015; 107 2020; 125 2017; 111 2012; 11 2017; 118 1964; 135 2020; 6 2014; 4 2014; 2 2001 2016; 119 2018; 1 2013; 231 2013; 110 1972; 56 1963; 39 2016; 45 2014; 10 1955; 26 2007; 449 2014; 90 2015; 92 2020; 582 1985; 2 2011; 84 2013; 85 2011; 83 2016; 94 2016; 93 2016; 17 2014; 89 2014; 112 2010; 82 2016; 11 2017; 50 2014; 105 2018; 17 2011; 107 1963; 51 2016; 531 2009; 8 1961; 124 2017 2020; 310 2009; 3 2008; 451 2012; 85 Rose B. C. (e_1_2_9_22_1) 2017; 7 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 Grezes C. (e_1_2_9_32_1) 2014; 4 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 84 year: 2011 publication-title: Phys. Rev. A – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 58 start-page: 1 year: 2010 publication-title: Eur. Phys. J. D – volume: 105 year: 2014 publication-title: Appl. Phys. Lett. – volume: 4 year: 2014 publication-title: Phys. Rev. X – year: 2001 – volume: 17 start-page: 693 year: 2016 publication-title: C. R. Phys. – volume: 17 start-page: 313 year: 2018 publication-title: Nat. Mater. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 35 start-page: 95 year: 2008 publication-title: Appl. Magn. Reson. – volume: 92 year: 2015 publication-title: Phys. Rev. A – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 3 start-page: 706 year: 2009 publication-title: Nat. Photonics – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – volume: 89 year: 2014 publication-title: Phys. Rev. A – volume: 83 year: 2011 publication-title: Phys. Rev. A – volume: 531 start-page: 74 year: 2016 publication-title: Nature – volume: 51 start-page: 89 year: 1963 publication-title: Proc. IEEE – volume: 4 start-page: 13 year: 1960 publication-title: Phys. Rev. Lett. – volume: 55 start-page: 7163 year: 2019 publication-title: Chem. Commun. – volume: 58 start-page: 1098 year: 1940 publication-title: Phys. Rev. – volume: 124 start-page: 1023 year: 1961 publication-title: Phys. Rev. – volume: 14 start-page: 8707 year: 2020 publication-title: ACS Nano – volume: 465 start-page: 1052 year: 2010 publication-title: Nature – volume: 7 year: 2017 publication-title: Phys. Rev. X – volume: 310 year: 2020 publication-title: J. Magn. Reson. – volume: 10 start-page: 720 year: 2014 publication-title: Nat. Phys. – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 56 start-page: 2555 year: 1972 publication-title: J. Chem. Phys. – volume: 26 start-page: 1324 year: 1955 publication-title: J. Appl. Phys. – volume: 449 start-page: 443 year: 2007 publication-title: Nature – volume: 67 start-page: 31 year: 1994 publication-title: Bull. Chem. Soc. Jpn. – volume: 115 start-page: 7986 year: 2011 publication-title: J. Phys. Chem. B – volume: 1 start-page: 55 year: 2018 publication-title: Commun. Phys. – volume: 39 start-page: 2694 year: 1963 publication-title: J. Chem. Phys. – volume: 8 start-page: 105 year: 2009 publication-title: Quantum Inf. Process. – volume: 451 start-page: 664 year: 2008 publication-title: Nature – volume: 170 start-page: 379 year: 1968 publication-title: Phys. Rev. – volume: 26 start-page: 170 year: 1955 publication-title: J. Appl. Phys. – volume: 119 year: 2016 publication-title: J. Appl. Phys. – volume: 125 year: 2020 publication-title: Phys. Rev. Lett. – volume: 90 year: 2014 publication-title: Phys. Rev. B – volume: 93 year: 2016 publication-title: Phys. Rev. A – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 45 year: 2016 publication-title: Dalton Trans. – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 50 year: 2017 publication-title: J. Phys. D Appl. Phys. – volume: 6 start-page: 68 year: 2020 publication-title: npj Quantum Inf. – volume: 582 start-page: 501 year: 2020 publication-title: Nature – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 135 start-page: A640 year: 1964 publication-title: Phys. Rev. A – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 36 year: 2016 publication-title: Nat. Photon – volume: 85 start-page: 623 year: 2013 publication-title: Rev. Mod. Phys. – volume: 231 start-page: 133 year: 2013 publication-title: J. Magn. Reson. – volume: 85 year: 2012 publication-title: Phys. Rev. A – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 480 year: 1985 publication-title: J. Opt. Soc. Am. B – year: 2017 – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 63 year: 2020 publication-title: Sci. China Technol. Sci. – volume: 8 start-page: 383 year: 2009 publication-title: Nat. Mater. – volume: 2 year: 2014 publication-title: Phys. Rev. Applied – volume: 11 start-page: 143 year: 2012 publication-title: Nat. Mater. – ident: e_1_2_9_53_1 doi: 10.1246/bcsj.67.31 – ident: e_1_2_9_57_1 doi: 10.1063/1.1734084 – ident: e_1_2_9_55_1 doi: 10.1063/1.1677580 – ident: e_1_2_9_7_1 doi: 10.1038/nature06184 – ident: e_1_2_9_10_1 doi: 10.1038/nmat2420 – ident: e_1_2_9_31_1 doi: 10.1103/PhysRevLett.110.067004 – ident: e_1_2_9_49_1 doi: 10.1364/JOSAB.2.000480 – ident: e_1_2_9_4_1 doi: 10.1140/epjd/e2010-00103-y – ident: e_1_2_9_48_1 doi: 10.1109/PROC.1963.1664 – ident: e_1_2_9_45_1 doi: 10.1103/PhysRevLett.125.137701 – ident: e_1_2_9_1_1 doi: 10.1038/451664a – ident: e_1_2_9_19_1 doi: 10.1103/PhysRevB.82.024413 – ident: e_1_2_9_20_1 doi: 10.1039/D0CC04841K – ident: e_1_2_9_26_1 doi: 10.1103/PhysRevA.89.033820 – ident: e_1_2_9_61_1 doi: 10.1093/oso/9780198506348.001.0001 – ident: e_1_2_9_54_1 doi: 10.1103/PhysRev.124.1023 – ident: e_1_2_9_14_1 doi: 10.1103/PhysRev.170.379 – ident: e_1_2_9_43_1 doi: 10.1038/s41563-017-0008-y – ident: e_1_2_9_67_1 doi: 10.1063/1.1721955 – ident: e_1_2_9_33_1 doi: 10.1103/PhysRevLett.105.140503 – ident: e_1_2_9_9_1 doi: 10.1038/nmat3182 – ident: e_1_2_9_46_1 doi: 10.1038/s41534-020-00296-9 – ident: e_1_2_9_28_1 doi: 10.1103/PhysRevLett.105.140501 – ident: e_1_2_9_17_1 doi: 10.1103/PhysRevA.93.063855 – ident: e_1_2_9_25_1 doi: 10.1063/1.4959095 – ident: e_1_2_9_34_1 doi: 10.1103/PhysRevLett.110.157001 – ident: e_1_2_9_37_1 doi: 10.1038/s41598-017-13271-w – ident: e_1_2_9_60_1 – ident: e_1_2_9_12_1 doi: 10.1063/1.4899141 – ident: e_1_2_9_30_1 doi: 10.1103/PhysRevA.85.012333 – ident: e_1_2_9_21_1 doi: 10.1063/1.4932658 – ident: e_1_2_9_11_1 doi: 10.1103/PhysRevLett.118.037701 – ident: e_1_2_9_38_1 doi: 10.1103/PhysRevLett.112.120501 – ident: e_1_2_9_64_1 doi: 10.1038/nature16944 – ident: e_1_2_9_51_1 doi: 10.1103/PhysRevLett.110.250503 – ident: e_1_2_9_71_1 doi: 10.1038/nature09081 – ident: e_1_2_9_8_1 doi: 10.1038/nphoton.2009.231 – ident: e_1_2_9_27_1 doi: 10.1103/PhysRevLett.107.060502 – ident: e_1_2_9_47_1 doi: 10.1039/C9CC02184A – ident: e_1_2_9_65_1 doi: 10.1063/1.5002540 – ident: e_1_2_9_36_1 doi: 10.1039/C6DT01953F – ident: e_1_2_9_50_1 doi: 10.1103/PhysRev.58.1098 – ident: e_1_2_9_18_1 doi: 10.1016/j.jmr.2013.04.004 – ident: e_1_2_9_2_1 doi: 10.1007/s11432-020-2881-9 – ident: e_1_2_9_23_1 doi: 10.1103/PhysRevLett.105.140502 – ident: e_1_2_9_59_1 doi: 10.1103/PhysRevA.84.063810 – ident: e_1_2_9_3_1 doi: 10.1007/s11128-009-0100-6 – ident: e_1_2_9_72_1 doi: 10.1038/s42005-018-0057-9 – ident: e_1_2_9_35_1 doi: 10.1103/PhysRevB.90.075112 – ident: e_1_2_9_69_1 doi: 10.1103/PhysRevA.92.020301 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevLett.125.137702 – ident: e_1_2_9_52_1 doi: 10.1016/j.jmr.2019.106662 – ident: e_1_2_9_13_1 doi: 10.1021/acsnano.0c03167 – ident: e_1_2_9_42_1 doi: 10.1038/nphys3050 – ident: e_1_2_9_40_1 doi: 10.1063/1.4941730 – volume: 7 start-page: 031002 year: 2017 ident: e_1_2_9_22_1 publication-title: Phys. Rev. X – ident: e_1_2_9_6_1 doi: 10.1103/RevModPhys.85.623 – volume: 4 start-page: 021049 year: 2014 ident: e_1_2_9_32_1 publication-title: Phys. Rev. X – ident: e_1_2_9_29_1 doi: 10.1038/nphoton.2016.225 – ident: e_1_2_9_16_1 doi: 10.1103/PhysRevLett.119.147701 – ident: e_1_2_9_58_1 doi: 10.1103/PhysRevA.83.053852 – ident: e_1_2_9_73_1 doi: 10.1007/s00723-008-0141-5 – ident: e_1_2_9_41_1 doi: 10.1103/PhysRevB.94.054433 – ident: e_1_2_9_56_1 doi: 10.1103/PhysRev.135.A640 – ident: e_1_2_9_39_1 doi: 10.1103/PhysRevApplied.2.054002 – ident: e_1_2_9_63_1 doi: 10.1103/PhysRevLett.4.13 – ident: e_1_2_9_5_1 doi: 10.1038/s41586-020-2401-y – ident: e_1_2_9_70_1 doi: 10.1088/1361-6463/aa97b3 – ident: e_1_2_9_62_1 doi: 10.1021/jp201978w – ident: e_1_2_9_68_1 doi: 10.1016/j.crhy.2016.07.006 – ident: e_1_2_9_66_1 doi: 10.1063/1.1721903 – ident: e_1_2_9_15_1 doi: 10.1063/1.3601930 – ident: e_1_2_9_24_1 doi: 10.1063/1.4946893 |
| SSID | ssj0009606 |
| Score | 2.4664197 |
| Snippet | Whilst quantum computing has recently taken great leaps ahead, the development of quantum memories has decidedly lagged behind. Quantum memories are essential... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2101673 |
| SubjectTerms | Coupling (molecular) Cryogenic temperature Electron spin Materials science microwave pulse storage molecular quantum bits organic radicals Quantum computing quantum memories quantum technologies Qubits (quantum computing) Repeaters Room temperature |
| Title | Room‐Temperature Quantum Memories Based on Molecular Electron Spin Ensembles |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202101673 https://www.ncbi.nlm.nih.gov/pubmed/34106491 https://www.proquest.com/docview/2555582521 https://www.proquest.com/docview/2539524372 https://pubmed.ncbi.nlm.nih.gov/PMC11469281 |
| Volume | 33 |
| WOSCitedRecordID | wos000659165800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOvB8LpTISEqeoGz9i-7jQXXHorkpppb1FtjMRK7XZquly5ifwG_kljJNsuqsKIYEiRUnsUeLHeL6J7W8A3oeyUJnANEl5aRKpPI2DmS-TMFQYDEqPriFxPdKzmZnP7fHGLv6WH6L_4RY1oxmvo4I7Xx_ckIa6ouEN4tH91OIu7KapMDF4A5fHN7S7WRNdM872JTaTZk3bOOQH2_LbZukW1ry9ZHITyja2aPLo_0vxGB52OJSN2o7zBO5g9RQebLATPoPZCYHqXz9-niJB65Z6mX1ZUUusLtg0LtAlJ5t9JCtYsGXFpus4u2zcRdZhXy8XFRtXNV74c6yfw9lkfPrpc9KFX0gC-cwiERZ9KYXxTnnlCCZ6jaoUWqFLM-6dkCg0SjpKPtQFmTmnzZCjLANyqnnxAnaqZYWvgEnLMRCyI3xlpZbOqGAFPTCFMpabYgDJuvbz0HGTxxAZ53nLqszzWE95X08D-NDnv2xZOf6Yc2_dmHmnnXVObpRS5BrzdADv-mTSqzhZ4ipcrmIeYVVka-QDeNm2ff8qsvyE5CxJm61e0WeInN3bKdXiW8PdHTeBU4lJlDfd4i-fn48Op6P-7vW_CL2B-_G6XWK8BzvXVyt8C_fC9-tFfbXfqAud9dzsw-7hyeTs6Dd-Bhf6 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED9tMGnbw8Y2thUYeNKkPUW0_pPYjx20YqKtNlYk3iLbuWiVIEWU7nkfgc_IJ-GcpIEKTUgTylNiO4ntO9_v_Od3AF98nqlYYCfq8FxHUjkaB2OXR76t0GuUDm1J4jpIRiN9cmJ-1LsJw1mYih-imXALmlGO10HBw4T07i1rqM1K4iAe_M9EPIVVSbJEQr66f9Q_Htwy78ZlgM2w4BeZWOoFc2Ob7y6_Ydky3YOb93dN3kWzpTnqv36EiqzBqxqLsm4lPG_gCRZv4eUdhsJ3MDoiYH3992qMBK8r-mX2c069MT9jw7BJlxxt9o0sYcamBRsuYu2yXh1dh_06nxSsV8zwzJ3ibB2O-73x3kFUh2CIPPnNIhIGXS6FdlY5ZQkqugRVLhKFthNzZ4VEkaCkK-ftJCNTZxPd5ihzj5yaXryHlWJa4Edg0nD0hO4IYxmZSKuVN4Ie6Expw3XWgmjR_Kmv-clDmIzTtGJW5mlop7RppxZ8bfKfV8wc_8y5tejNtNbQWUqulFLkHvNOCz43yaRbYcHEFjidhzzCqMDYyFvwoer85lNk_QnNGSqtl8SiyRB4u5dTisnvkr87HASnGlNRXsrFA7-fdveH3eZu438K7cDzg_FwkA6-jw434UV4Xm053oKVy4s5foJn_s_lZHaxXWvPDfhIGvg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4aHULwwLhsUBhgJCSeorW-JPZjoa2GaKsxNmlvke2caJW2tFpXnvkJ-437JRwnabZqQpMQylN8SeJjH5_vxPZ3AD75PFOxwG7U5bmOpHI0D8Yuj3xHodcoHdqSxHWUTCb65MQc1LsJw1mYih-i-eEWNKOcr4OC4zzL925YQ21WEgfx4H8m4gFsyhBJpgWb_cPh8eiGeTcuA2yGBb_IxFKvmBs7fG_9CeuW6Q7cvLtr8jaaLc3RcOs_NOQZPK2xKOtVg-c5bGDxAp7cYih8CZNDAtbXv6-OkOB1Rb_MfiypN5bnbBw26ZKjzb6QJczYrGDjVaxdNqij67Cf82nBBsUCz90ZLrbheDg4-rof1SEYIk9-s4iEQZdLoZ1VTlmCii5BlYtEoe3G3FkhUSQo6cp5J8nI1NlEdzjK3CMn0YsdaBWzAl8Dk4ajJ3RHGMvIRFqtvBGUoDOlDddZG6KV-FNf85OHMBlnacWszNMgp7SRUxs-N-XnFTPHX0vurnozrTV0kZIrpRS5x7zbho9NNulWWDCxBc6WoYwwKjA28ja8qjq_eRVZf0JzhmrrtWHRFAi83es5xfS05O8OB8GpxVSVl-Pins9Pe_1xr7l78y-VPsCjg_4wHX2bfH8Lj0NyteN4F1qXF0t8Bw_9r8vp4uJ9rTx_AFwvGnM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-Temperature+Quantum+Memories+Based+on+Molecular+Electron+Spin+Ensembles&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lenz%2C+Samuel&rft.au=K%C3%B6nig%2C+Dennis&rft.au=Hunger%2C+David&rft.au=van+Slageren%2C+Joris&rft.date=2021-07-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=30&rft.spage=e2101673&rft_id=info:doi/10.1002%2Fadma.202101673&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |