Emerging 2D Ferroelectric Devices for In‐Sensor and In‐Memory Computing
The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data tr...
Saved in:
| Published in: | Advanced materials (Weinheim) Vol. 37; no. 2; pp. e2400332 - n/a |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.01.2025
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in‐memory and in‐sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data‐intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling‐bond‐free surface, ultra‐fast polarization flipping, and ultra‐low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor‐memory and computing integration application field, leading to new possibilities for modern electronics.
This work reviews the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices are reviewed followed by the integration of perception, memory, and computing application. Notably, the 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. |
|---|---|
| AbstractList | The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in‐memory and in‐sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data‐intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling‐bond‐free surface, ultra‐fast polarization flipping, and ultra‐low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor‐memory and computing integration application field, leading to new possibilities for modern electronics. The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in‐memory and in‐sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data‐intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling‐bond‐free surface, ultra‐fast polarization flipping, and ultra‐low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor‐memory and computing integration application field, leading to new possibilities for modern electronics. This work reviews the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices are reviewed followed by the integration of perception, memory, and computing application. Notably, the 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics.The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics. The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in‐memory and in‐sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data‐intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling‐bond‐free surface, ultra‐fast polarization flipping, and ultra‐low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor‐memory and computing integration application field, leading to new possibilities for modern electronics. This work reviews the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices are reviewed followed by the integration of perception, memory, and computing application. Notably, the 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. |
| Author | Chen, Chunsheng Xu, Jianbin Pang, Yue Tong, Lei Zhou, Yaoqiang |
| AuthorAffiliation | 1 Department of Electronic Engineering and Materials Science and Technology Research Center The Chinese University of Hong Kong Hong Kong SAR China |
| AuthorAffiliation_xml | – name: 1 Department of Electronic Engineering and Materials Science and Technology Research Center The Chinese University of Hong Kong Hong Kong SAR China |
| Author_xml | – sequence: 1 givenname: Chunsheng surname: Chen fullname: Chen, Chunsheng organization: The Chinese University of Hong Kong – sequence: 2 givenname: Yaoqiang surname: Zhou fullname: Zhou, Yaoqiang organization: The Chinese University of Hong Kong – sequence: 3 givenname: Lei surname: Tong fullname: Tong, Lei organization: The Chinese University of Hong Kong – sequence: 4 givenname: Yue surname: Pang fullname: Pang, Yue organization: The Chinese University of Hong Kong – sequence: 5 givenname: Jianbin orcidid: 0000-0003-0509-9508 surname: Xu fullname: Xu, Jianbin email: jbxu@ee.cuhk.edu.hk organization: The Chinese University of Hong Kong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38739927$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1vEzEUtFARTQtXjmglLr0kPH-sd31CUdJCRSsOwNlyvG-Dq1072LtFufET-hv7S3CUEqAS4mRbnpn3ZuaEHPngkZCXFGYUgL0xTW9mDJgA4Jw9IRNaMjoVoMojMgHFy6mSoj4mJyndAICSIJ-RY15XXClWTciH8x7j2vl1wZbFBcYYsEM7RGeLJd46i6loQywu_f2Pu0_oU74b3-zf19iHuC0Wod-MQ5Z4Tp62pkv44uE8JV8uzj8v3k-vPr67XMyvplZIxaayMaaldYtADUpqGlg1tOEr0dTM2kpaySujgLWccdoKTkUNorbSrGgjZPZ5St7udTfjqsfGoh-i6fQmut7ErQ7G6b9_vPuq1-FWU1pxXnOaFc4eFGL4NmIadO-Sxa4zHsOYNIdS1DlStYO-fgS9CWP02Z_mtCxz2sB4Rr36c6XDLr-CzoDZHmBjSClie4BQ0Lsm9a5JfWgyE8QjgnWDGVzYWXLdv2lqT_vuOtz-Z4ieL6_nv7k_AVi-s3o |
| CitedBy_id | crossref_primary_10_1063_5_0266251 crossref_primary_10_3390_nano15181450 crossref_primary_10_1002_admt_202402121 crossref_primary_10_1002_adma_202414339 crossref_primary_10_1063_5_0228858 crossref_primary_10_1063_5_0253879 crossref_primary_10_1088_1361_648X_ada65a crossref_primary_10_1002_adfm_202503780 crossref_primary_10_1039_D5TC02077H crossref_primary_10_3389_felec_2025_1651937 crossref_primary_10_1002_adma_202418618 crossref_primary_10_1002_adfm_202516899 crossref_primary_10_1002_adma_202416837 crossref_primary_10_1002_adma_202504953 crossref_primary_10_1038_s41377_025_01874_2 crossref_primary_10_1002_adma_202504378 crossref_primary_10_1038_s41467_025_62822_7 crossref_primary_10_1039_D5NH00386E crossref_primary_10_3390_mi16050517 crossref_primary_10_1002_aelm_202400732 crossref_primary_10_1007_s40843_025_3322_5 crossref_primary_10_1021_acsami_5c01347 crossref_primary_10_1021_acsaelm_5c00808 crossref_primary_10_1109_TED_2025_3575739 crossref_primary_10_1038_s44335_025_00034_4 crossref_primary_10_26599_NR_2025_94907425 crossref_primary_10_1021_acsnano_5c05240 crossref_primary_10_1002_aisy_202500351 crossref_primary_10_1002_smll_202405709 crossref_primary_10_1021_acs_nanolett_5c00398 crossref_primary_10_1002_smll_202505797 crossref_primary_10_3390_nano15110863 crossref_primary_10_1002_smll_202503717 crossref_primary_10_1021_acsnano_5c02397 crossref_primary_10_1088_1361_6463_adc278 crossref_primary_10_1039_D5NR02639C crossref_primary_10_1016_j_device_2024_100509 crossref_primary_10_1021_acsami_5c13157 crossref_primary_10_1021_acsnano_5c00250 crossref_primary_10_1088_1361_6463_addad2 crossref_primary_10_1002_smm2_70005 crossref_primary_10_1021_acsaelm_5c00873 crossref_primary_10_1002_adma_202419678 crossref_primary_10_1103_j5tz_p9cd crossref_primary_10_1002_adfm_202407253 crossref_primary_10_1002_smll_202504001 crossref_primary_10_1002_advs_70011 crossref_primary_10_1088_1361_6463_ad865f |
| Cites_doi | 10.1063/1.124770 10.1016/j.neucom.2013.06.052 10.1038/ncomms7136 10.1038/s41928-023-01056-1 10.1002/adfm.202214745 10.1021/acs.nanolett.7b02198 10.1002/smll.201200752 10.1126/sciadv.aay5225 10.1038/s41467-020-16291-9 10.1021/acsami.0c09951 10.1007/s11431-020-1582-8 10.1021/acs.chemmater.6b01073 10.1038/lsa.2016.131 10.1021/acsaelm.1c00970 10.1002/adma.202211598 10.1038/s41565-019-0361-x 10.1126/science.246.4936.1400 10.1109/TNN.2003.820440 10.1038/ncomms14956 10.1038/s41586-018-0336-3 10.1063/1.4974072 10.1002/smm2.1020 10.1021/acs.jpclett.8b03654 10.1038/s41565-023-01539-4 10.1002/aelm.202200343 10.1038/s41928-018-0092-2 10.1038/s41565-022-01257-3 10.1126/science.abe8177 10.1002/adma.202204949 10.1038/s41586-020-2038-x 10.1002/adma.202005098 10.1038/ncomms12357 10.1063/1.4992113 10.1088/1361-6528/ac0ac5 10.1021/acsnano.9b07687 10.1002/smll.201900966 10.1016/j.nanoen.2021.106439 10.1021/acsami.9b23595 10.1039/D2NR05720D 10.1002/inf2.12490 10.1126/science.1168636 10.1038/ncomms11502 10.1002/inf2.12317 10.1038/s41563-023-01676-0 10.1002/adma.201908040 10.1021/acs.nanolett.1c03557 10.1038/s41467-023-39705-w 10.1063/1.882324 10.1002/adma.201504779 10.1126/science.aad8609 10.1162/089976602760407955 10.1021/acs.nanolett.9b01419 10.1002/adma.201901300 10.1002/adma.202107754 10.1038/s41467-018-05326-x 10.1126/science.abg3161 10.1038/s41928-017-0006-8 10.1002/adma.202004469 10.1002/adfm.202004609 10.1038/s41928-022-00872-1 10.1063/1.5035419 10.1002/adma.201002743 10.1007/s11433-022-2056-1 10.1002/adma.201803249 10.1038/s41928-019-0313-3 10.1038/s41467-017-02337-y 10.1038/36069 10.1103/PhysRevLett.117.097601 10.1002/advs.201900314 10.1002/adma.202370267 10.1038/s41467-020-20257-2 10.1038/s41565-019-0501-3 10.1126/sciadv.1501326 10.1038/s41467-022-28235-6 10.1002/adfm.202009999 10.1038/s41565-019-0466-2 10.1109/VLSIT.2018.8510652 10.1038/s41467-021-22047-w 10.1021/acs.nanolett.9b00180 10.1002/adfm.202313010 10.1002/aelm.202001276 10.1109/MSP.2012.2205597 10.1038/s41565-023-01343-0 10.1063/1.1494122 10.1038/s41565-020-0724-3 10.1007/s12274-020-2640-0 10.1002/adma.202005620 10.1021/acs.nanolett.5b00491 10.1109/IEDM.2017.8268425 10.1021/acs.inorgchem.8b01950 10.1021/acsnano.1c09136 10.1038/s41928-022-00778-y 10.1002/smll.202005217 10.1021/acs.nanolett.9b02312 10.1021/acs.nanolett.7b04852 10.1002/adfm.202304657 10.1038/nature06932 10.1038/s41928-019-0338-7 10.1038/s41699-019-0114-6 10.1038/s41928-020-00510-8 10.1021/acsnano.3c05771 10.1038/s41467-023-43097-2 10.1002/aelm.201900818 10.1126/science.1254642 10.1021/acsnano.8b02152 10.1038/s41928-019-0350-y 10.1038/s41699-018-0063-5 10.1021/acsami.3c00590 10.1038/s41928-023-01073-0 10.1038/s41467-021-22332-8 10.1021/acsnano.0c08921 10.1002/adfm.202306486 10.1038/s41563-019-0291-x 10.1016/j.chip.2023.100059 10.1038/s41928-023-01018-7 10.1021/acsnano.0c03869 10.1002/adfm.201705250 10.1038/s41467-024-44759-5 10.1002/advs.202305679 10.1002/aelm.201800600 10.1039/D0MH01863E 10.1038/s41467-021-27617-6 10.1038/s41928-020-0441-9 10.1038/s41467-022-31148-z 10.1038/s41565-021-01059-z 10.1038/nmat4703 10.1002/adma.201300757 10.1038/s41928-022-00847-2 10.1038/s41467-021-24296-1 10.1002/adfm.201808606 10.1103/PhysRevLett.118.236801 10.1038/s41467-019-09669-x 10.1002/adfm.201908210 10.1002/smll.201805431 10.1021/acsami.2c04032 10.1038/s41467-022-29171-1 10.1103/PhysRevLett.128.067601 10.1002/adfm.202011083 10.1002/adma.202008709 10.1038/s41928-020-00501-9 10.1002/adfm.202305822 10.1038/s41699-022-00298-5 10.1021/acsnano.5b04592 10.1038/nmat1797 10.1126/science.abm5734 10.1021/acsnano.2c07281 10.1021/acsnano.1c00968 10.1002/adma.201803732 10.15252/msb.20156651 10.1038/s41467-023-41991-3 10.1002/adma.202007081 10.1126/science.abd3230 10.1021/acs.nanolett.8b02688 10.1109/TCSVT.2019.2910119 10.1103/PhysRevLett.120.227601 10.1002/brx2.24 10.1126/sciadv.aar7720 10.1063/1.3119215 10.1002/smtd.202101583 10.1038/s41928-019-0331-1 10.1038/s41563-021-01099-9 10.1021/acs.nanolett.2c01768 10.1038/ncomms14736 10.1002/adma.202103376 10.1002/inf2.12198 10.1103/PhysRevLett.115.157401 10.1038/s41565-021-01003-1 10.1002/adfm.201803738 10.1073/pnas.2115703118 10.1002/adfm.202003683 10.1038/s41467-021-21320-2 10.1103/PhysRevLett.105.166602 10.1021/acsnano.8b01810 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1002/adma.202400332 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | PMC11733831 38739927 10_1002_adma_202400332 ADMA202400332 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Research Grants Council of Hong Kong funderid: AoE/P‐701/20; 14206721; 14220022; 14203623 – fundername: CRF Group Research Scheme funderid: C4050‐21EF; C1015‐21EF; C4028‐20EF – fundername: RGC Postdoctoral Fellowship funderid: PDFS2223‐4S06 – fundername: CUHK Postdoctoral Fellowship – fundername: CUHK Fund for Joint Research Labs – fundername: Basic and Applied Basic Research Foundation of Guangdong Province funderid: 2023B1515120049 – fundername: CUHK Group Research Scheme – fundername: Research Grants Council of Hong Kong grantid: 14203623 – fundername: CRF Group Research Scheme grantid: C1015-21EF – fundername: RGC Postdoctoral Fellowship grantid: PDFS2223-4S06 – fundername: CRF Group Research Scheme grantid: C4050-21EF – fundername: Basic and Applied Basic Research Foundation of Guangdong Province grantid: 2023B1515120049 – fundername: Research Grants Council of Hong Kong grantid: 14220022 – fundername: CRF Group Research Scheme grantid: C4028-20EF – fundername: Research Grants Council of Hong Kong grantid: AoE/P-701/20 – fundername: RGC Postdoctoral Fellowship grantid: PDFS2223‐4S06 – fundername: Research Grants Council of Hong Kong grantid: AoE/P‐701/20; 14206721; 14220022; 14203623 – fundername: CRF Group Research Scheme grantid: C4050‐21EF; C1015‐21EF; C4028‐20EF |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 53G 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c4692-6daaf18fe01ae61ad0bd1d3b4d82cc76c637a902f3231f43148048c6ab1d46003 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262177000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Tue Nov 04 02:04:49 EST 2025 Sun Nov 09 12:24:13 EST 2025 Fri Jul 25 22:38:30 EDT 2025 Thu Apr 03 07:02:27 EDT 2025 Tue Nov 18 20:57:42 EST 2025 Sat Nov 29 07:21:08 EST 2025 Wed Jan 22 17:12:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | ferroelectric device in‐memory computing in‐sensor computing neural network 2D materials |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4692-6daaf18fe01ae61ad0bd1d3b4d82cc76c637a902f3231f43148048c6ab1d46003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-0509-9508 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202400332 |
| PMID | 38739927 |
| PQID | 3155521023 |
| PQPubID | 2045203 |
| PageCount | 19 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11733831 proquest_miscellaneous_3054840091 proquest_journals_3155521023 pubmed_primary_38739927 crossref_primary_10_1002_adma_202400332 crossref_citationtrail_10_1002_adma_202400332 wiley_primary_10_1002_adma_202400332_ADMA202400332 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2018; 560 2002; 14 2014; 138 2010; 105 2019; 10 2019; 15 2019; 14 2020; 16 2019; 19 2020; 15 2019; 18 2020; 14 2020; 13 2020; 12 2020; 11 2024; 34 2022; 21 2022; 22 2010; 22 2018; 9 2018; 2 2023; 66 2018; 4 2009; 94 2018; 1 2024; 7 2022; 34 2007; 6 2019; 29 2020; 579 2018; 30 2012; 29 2018; 28 2019; 3 2019; 6 2019; 5 2019; 31 2019; 30 2019; 2 2002; 81 2024; 11 2020; 32 2024; 15 2024; 19 2016; 12 2016; 5 2018; 18 1998; 391 2016; 7 2016; 2 2015; 115 2020; 30 2022; 4 1989; 246 2022; 5 2022; 6 2022; 8 2022; 13 2022; 14 2021; 373 2021; 372 2018; 12 2016; 28 2022; 16 2022; 17 2018; 120 2022; 376 2017; 8 2021; 21 2023; 35 2013; 25 2023; 33 2017; 4 2020; 63 2023; 6 2018; 124 2003; 14 2023; 1 2023; 2 2017; 111 2017; 118 2020; 6 2021; 32 2020; 3 2021; 31 2023; 22 2021; 33 2021; 118 2016; 353 2016; 117 1998; 51 2022; 128 2009; 324 2021; 8 2015; 15 2021; 7 2015; 6 2023; 14 2021; 4 2021; 89 2021; 3 2021; 2 2023; 17 2023; 18 2023; 15 2015; 9 2021; 15 2021; 12 2023 2017; 17 2017; 16 2018 2017 1999; 75 2008; 453 2014; 345 2012; 8 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_171_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 Pang Y. (e_1_2_8_96_1) 2023 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_172_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_176_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 Albawi S. (e_1_2_8_170_1) 2017 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_173_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_177_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
| References_xml | – volume: 12 start-page: 6700 year: 2018 publication-title: ACS Nano – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 53 year: 2021 publication-title: Nat. Commun. – volume: 12 start-page: 878 year: 2016 publication-title: Mol. Syst. Biol. – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 29 year: 2024 publication-title: Nat. Electron. – volume: 2 start-page: 580 year: 2019 publication-title: Nat. Electron. – volume: 75 start-page: 1610 year: 1999 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 5109 year: 2019 publication-title: Nano Lett. – volume: 453 start-page: 80 year: 2008 publication-title: Nature – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 89 year: 2021 publication-title: Nano Energy – volume: 51 start-page: 22 year: 1998 publication-title: Phys. Today – volume: 3 start-page: 466 year: 2020 publication-title: Nat. Electron. – volume: 8 year: 2022 publication-title: Adv. Electron. Mater. – volume: 3 start-page: 904 year: 2021 publication-title: InfoMat – volume: 13 start-page: 574 year: 2022 publication-title: Nat. Commun. – volume: 19 start-page: 2044 year: 2019 publication-title: Nano Lett. – volume: 22 start-page: 5507 year: 2010 publication-title: Adv. Mater. – volume: 18 start-page: 55 year: 2023 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 2204 year: 2017 publication-title: Nat. Commun. – volume: 15 start-page: 5689 year: 2021 publication-title: ACS Nano – volume: 324 start-page: 63 year: 2009 publication-title: Science – volume: 14 start-page: 6778 year: 2023 publication-title: Nat. Commun. – volume: 2 start-page: 480 year: 2019 publication-title: Nat. Electron. – volume: 4 start-page: 54 year: 2021 publication-title: Nat. Electron. – volume: 18 start-page: 1253 year: 2018 publication-title: Nano Lett. – volume: 28 start-page: 4278 year: 2016 publication-title: Chem. Mater. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2428 year: 2020 publication-title: Nat. Commun. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 2 year: 2023 publication-title: Chip – volume: 14 start-page: 7304 year: 2023 publication-title: Nat. Commun. – volume: 6 start-page: 658 year: 2023 publication-title: Nat. Electron. – volume: 5 year: 2016 publication-title: Light: Sci. Appl. – volume: 391 start-page: 874 year: 1998 publication-title: Nature – volume: 17 start-page: 5508 year: 2017 publication-title: Nano Lett. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 173 year: 2024 publication-title: Nat. Nanotechnol. – volume: 18 start-page: 309 year: 2019 publication-title: Nat. Mater. – volume: 15 start-page: 513 year: 2024 publication-title: Nat. Commun. – volume: 5 start-page: 761 year: 2022 publication-title: Nat. Electron. – volume: 29 start-page: 82 year: 2012 publication-title: IEEE Signal Process. Mag. – volume: 12 start-page: 7291 year: 2021 publication-title: Nat. Commun. – volume: 81 start-page: 715 year: 2002 publication-title: Appl. Phys. Lett. – volume: 372 start-page: 1458 year: 2021 publication-title: Science – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 15 start-page: 1497 year: 2020 publication-title: ACS Nano – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 6 start-page: 8 year: 2007 publication-title: Nat. Mater. – volume: 4 year: 2017 publication-title: Appl. Phys. Rev. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 9 start-page: 3143 year: 2018 publication-title: Nat. Commun. – volume: 124 year: 2018 publication-title: J. Appl. Phys. – volume: 12 start-page: 1109 year: 2021 publication-title: Nat. Commun. – volume: 18 start-page: 6340 year: 2018 publication-title: Nano Lett. – volume: 353 start-page: 274 year: 2016 publication-title: Science – start-page: 1 year: 2017 end-page: 6 – volume: 560 start-page: 336 year: 2018 publication-title: Nature – volume: 14 start-page: 746 year: 2019 publication-title: ACS Nano – volume: 12 start-page: 2143 year: 2021 publication-title: Nat. Commun. – volume: 6 year: 2023 publication-title: InfoMat – volume: 2 start-page: 88 year: 2021 publication-title: SmartMat – volume: 32 year: 2021 publication-title: Nanotechnology – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 1485 year: 2022 publication-title: Nat. Commun. – volume: 14 start-page: 2531 year: 2002 publication-title: Neural Comput. – volume: 14 start-page: 776 year: 2019 publication-title: Nat. Nanotechnol. – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 16 start-page: 170 year: 2017 publication-title: Nat. Mater. – volume: 13 start-page: 1897 year: 2020 publication-title: Nano. Res. – start-page: 19.7.1 year: 2017 end-page: 19.7.4 – volume: 21 start-page: 9318 year: 2021 publication-title: Nano Lett. – volume: 4 year: 2022 publication-title: InfoMat – volume: 14 start-page: 1569 year: 2003 publication-title: IEEE Trans. Neural Networks – volume: 128 year: 2022 publication-title: Phys. Rev. Lett. – volume: 345 start-page: 668 year: 2014 publication-title: Science – year: 2023 publication-title: Small – volume: 15 start-page: 545 year: 2020 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 1775 year: 2019 publication-title: Nat. Commun. – volume: 16 start-page: 5418 year: 2022 publication-title: ACS Nano – volume: 18 start-page: 493 year: 2023 publication-title: Nat. Nanotechnol. – volume: 1 year: 2023 publication-title: Brain‐X – volume: 5 start-page: 715 year: 2022 publication-title: Nat. Electron. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 4 start-page: 598 year: 2022 publication-title: ACS Appl. Electron. Mater. – volume: 12 start-page: 4976 year: 2018 publication-title: ACS Nano – volume: 17 start-page: 367 year: 2022 publication-title: Nat. Nanotechnol. – volume: 6 year: 2022 publication-title: Small Methods – volume: 7 year: 2021 publication-title: Adv. Electron. Mater. – volume: 6 start-page: 18 year: 2022 publication-title: npj 2D Mater. Appl. – volume: 14 start-page: 668 year: 2019 publication-title: Nat. Nanotechnol. – volume: 246 start-page: 1400 year: 1989 publication-title: Science – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 17 start-page: 27 year: 2022 publication-title: Nat. Nanotechnol. – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 1 start-page: 22 year: 2018 publication-title: Nat. Electron. – volume: 111 year: 2017 publication-title: Appl. Phys. Lett. – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 14 start-page: 7628 year: 2020 publication-title: ACS Nano – volume: 22 start-page: 6435 year: 2022 publication-title: Nano Lett. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 372 start-page: 1462 year: 2021 publication-title: Science – volume: 15 start-page: 313 year: 2023 publication-title: Nanoscale – volume: 3 start-page: 31 year: 2019 publication-title: npj 2D Mater. Appl. – start-page: 89 year: 2018 end-page: 90 – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 3111 year: 2012 publication-title: Small – volume: 2 start-page: 596 year: 2019 publication-title: Nat. Electron. – volume: 14 start-page: 223 year: 2019 publication-title: Nat. Nanotechnol. – volume: 66 year: 2023 publication-title: Sci. China: Phys., Mech. Astron. – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 28 start-page: 2923 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 43 year: 2020 publication-title: Nat. Electron. – volume: 17 year: 2023 publication-title: ACS Nano – volume: 6 start-page: 852 year: 2023 publication-title: Nat. Electron. – volume: 6 start-page: 6136 year: 2015 publication-title: Nat. Commun. – volume: 14 start-page: 4270 year: 2023 publication-title: Nat. Commun. – volume: 13 start-page: 3587 year: 2022 publication-title: Nat. Commun. – volume: 21 start-page: 195 year: 2022 publication-title: Nat. Mater. – volume: 30 start-page: 1683 year: 2019 publication-title: IEEE Trans. Circuits Syst. Video – volume: 19 start-page: 5703 year: 2019 publication-title: Nano Lett. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 12 start-page: 4030 year: 2021 publication-title: Nat. Commun. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 579 start-page: 62 year: 2020 publication-title: Nature – volume: 94 year: 2009 publication-title: Appl. Phys. Lett. – volume: 15 year: 2019 publication-title: Small – volume: 22 start-page: 1499 year: 2023 publication-title: Nat. Mater. – volume: 1 start-page: 333 year: 2018 publication-title: Nat. Electron. – volume: 9 start-page: 7160 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 376 start-page: 973 year: 2022 publication-title: Science – volume: 8 start-page: 1472 year: 2021 publication-title: Mater. Horiz. – volume: 373 start-page: 1353 year: 2021 publication-title: Science – volume: 3 start-page: 664 year: 2020 publication-title: Nat. Electron. – volume: 25 start-page: 3357 year: 2013 publication-title: Adv. Mater. – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 57 year: 2018 publication-title: Inorg. Chem. – volume: 12 start-page: 1798 year: 2021 publication-title: Nat. Commun. – volume: 5 start-page: 386 year: 2022 publication-title: Nat. Electron. – volume: 63 start-page: 1612 year: 2020 publication-title: Sci. China Technol. Sci. – volume: 138 start-page: 3 year: 2014 publication-title: Neurocomputing – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 18 year: 2018 publication-title: npj 2D Mater. Appl. – volume: 15 start-page: 3808 year: 2015 publication-title: Nano Lett. – ident: e_1_2_8_23_1 doi: 10.1063/1.124770 – ident: e_1_2_8_180_1 doi: 10.1016/j.neucom.2013.06.052 – ident: e_1_2_8_69_1 doi: 10.1038/ncomms7136 – ident: e_1_2_8_92_1 doi: 10.1038/s41928-023-01056-1 – ident: e_1_2_8_146_1 doi: 10.1002/adfm.202214745 – ident: e_1_2_8_31_1 doi: 10.1021/acs.nanolett.7b02198 – ident: e_1_2_8_61_1 doi: 10.1002/smll.201200752 – ident: e_1_2_8_108_1 doi: 10.1126/sciadv.aay5225 – ident: e_1_2_8_29_1 doi: 10.1038/s41467-020-16291-9 – ident: e_1_2_8_68_1 doi: 10.1021/acsami.0c09951 – ident: e_1_2_8_171_1 doi: 10.1007/s11431-020-1582-8 – ident: e_1_2_8_54_1 doi: 10.1021/acs.chemmater.6b01073 – ident: e_1_2_8_35_1 doi: 10.1038/lsa.2016.131 – ident: e_1_2_8_125_1 doi: 10.1021/acsaelm.1c00970 – ident: e_1_2_8_172_1 doi: 10.1002/adma.202211598 – ident: e_1_2_8_3_1 doi: 10.1038/s41565-019-0361-x – ident: e_1_2_8_5_1 doi: 10.1126/science.246.4936.1400 – ident: e_1_2_8_179_1 doi: 10.1109/TNN.2003.820440 – ident: e_1_2_8_14_1 doi: 10.1038/ncomms14956 – ident: e_1_2_8_43_1 doi: 10.1038/s41586-018-0336-3 – ident: e_1_2_8_102_1 doi: 10.1063/1.4974072 – ident: e_1_2_8_120_1 doi: 10.1002/smm2.1020 – ident: e_1_2_8_9_1 doi: 10.1021/acs.jpclett.8b03654 – ident: e_1_2_8_91_1 doi: 10.1038/s41565-023-01539-4 – ident: e_1_2_8_123_1 doi: 10.1002/aelm.202200343 – ident: e_1_2_8_149_1 doi: 10.1038/s41928-018-0092-2 – ident: e_1_2_8_152_1 doi: 10.1038/s41565-022-01257-3 – ident: e_1_2_8_45_1 doi: 10.1126/science.abe8177 – ident: e_1_2_8_124_1 doi: 10.1002/adma.202204949 – ident: e_1_2_8_132_1 doi: 10.1038/s41586-020-2038-x – ident: e_1_2_8_25_1 doi: 10.1002/adma.202005098 – ident: e_1_2_8_12_1 doi: 10.1038/ncomms12357 – ident: e_1_2_8_66_1 doi: 10.1063/1.4992113 – ident: e_1_2_8_38_1 doi: 10.1088/1361-6528/ac0ac5 – ident: e_1_2_8_65_1 doi: 10.1021/acsnano.9b07687 – ident: e_1_2_8_107_1 doi: 10.1002/smll.201900966 – ident: e_1_2_8_113_1 doi: 10.1016/j.nanoen.2021.106439 – ident: e_1_2_8_119_1 doi: 10.1021/acsami.9b23595 – ident: e_1_2_8_167_1 doi: 10.1039/D2NR05720D – ident: e_1_2_8_82_1 doi: 10.1002/inf2.12490 – ident: e_1_2_8_162_1 doi: 10.1002/adma.202211598 – ident: e_1_2_8_8_1 doi: 10.1126/science.1168636 – ident: e_1_2_8_62_1 doi: 10.1038/ncomms11502 – start-page: 1 volume-title: 2017 Int. Conf. on Engineering and Technology (ICET) year: 2017 ident: e_1_2_8_170_1 – ident: e_1_2_8_118_1 doi: 10.1002/inf2.12317 – ident: e_1_2_8_138_1 doi: 10.1038/s41563-023-01676-0 – ident: e_1_2_8_77_1 doi: 10.1002/adma.201908040 – ident: e_1_2_8_83_1 doi: 10.1021/acs.nanolett.1c03557 – ident: e_1_2_8_97_1 doi: 10.1038/s41467-023-39705-w – ident: e_1_2_8_7_1 doi: 10.1063/1.882324 – ident: e_1_2_8_67_1 doi: 10.1002/adma.201504779 – ident: e_1_2_8_10_1 doi: 10.1126/science.aad8609 – ident: e_1_2_8_174_1 doi: 10.1162/089976602760407955 – ident: e_1_2_8_28_1 doi: 10.1021/acs.nanolett.9b01419 – ident: e_1_2_8_100_1 doi: 10.1002/adma.201901300 – ident: e_1_2_8_122_1 doi: 10.1002/adma.202107754 – ident: e_1_2_8_70_1 doi: 10.1038/s41467-018-05326-x – ident: e_1_2_8_155_1 doi: 10.1126/science.abg3161 – ident: e_1_2_8_151_1 doi: 10.1038/s41928-017-0006-8 – ident: e_1_2_8_16_1 doi: 10.1002/adma.202004469 – ident: e_1_2_8_95_1 doi: 10.1002/adfm.202004609 – ident: e_1_2_8_173_1 doi: 10.1038/s41928-022-00872-1 – ident: e_1_2_8_27_1 doi: 10.1063/1.5035419 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201002743 – ident: e_1_2_8_4_1 doi: 10.1007/s11433-022-2056-1 – ident: e_1_2_8_142_1 doi: 10.1002/adma.201803249 – ident: e_1_2_8_176_1 doi: 10.1038/s41928-019-0313-3 – ident: e_1_2_8_175_1 doi: 10.1038/s41467-017-02337-y – ident: e_1_2_8_58_1 doi: 10.1038/36069 – ident: e_1_2_8_11_1 doi: 10.1103/PhysRevLett.117.097601 – ident: e_1_2_8_143_1 doi: 10.1002/advs.201900314 – ident: e_1_2_8_85_1 doi: 10.1002/adma.202370267 – ident: e_1_2_8_161_1 doi: 10.1038/s41563-023-01676-0 – ident: e_1_2_8_99_1 doi: 10.1038/s41467-020-20257-2 – ident: e_1_2_8_131_1 doi: 10.1038/s41565-019-0501-3 – ident: e_1_2_8_105_1 doi: 10.1126/sciadv.1501326 – ident: e_1_2_8_39_1 doi: 10.1038/s41467-022-28235-6 – ident: e_1_2_8_94_1 doi: 10.1002/adfm.202009999 – ident: e_1_2_8_73_1 doi: 10.1038/s41565-019-0466-2 – ident: e_1_2_8_20_1 doi: 10.1109/VLSIT.2018.8510652 – ident: e_1_2_8_136_1 doi: 10.1038/s41467-021-22047-w – ident: e_1_2_8_158_1 doi: 10.1021/acs.nanolett.9b00180 – ident: e_1_2_8_140_1 doi: 10.1002/adfm.202313010 – ident: e_1_2_8_182_1 doi: 10.1002/aelm.202001276 – ident: e_1_2_8_166_1 doi: 10.1109/MSP.2012.2205597 – ident: e_1_2_8_128_1 doi: 10.1038/s41565-023-01343-0 – ident: e_1_2_8_24_1 doi: 10.1063/1.1494122 – ident: e_1_2_8_104_1 doi: 10.1038/s41565-020-0724-3 – ident: e_1_2_8_15_1 doi: 10.1007/s12274-020-2640-0 – ident: e_1_2_8_53_1 doi: 10.1002/adma.202005620 – ident: e_1_2_8_145_1 doi: 10.1021/acs.nanolett.5b00491 – ident: e_1_2_8_19_1 doi: 10.1109/IEDM.2017.8268425 – ident: e_1_2_8_34_1 doi: 10.1021/acs.inorgchem.8b01950 – ident: e_1_2_8_81_1 doi: 10.1021/acsnano.1c09136 – ident: e_1_2_8_133_1 doi: 10.1038/s41928-022-00778-y – ident: e_1_2_8_109_1 doi: 10.1002/smll.202005217 – ident: e_1_2_8_41_1 doi: 10.1021/acs.nanolett.9b02312 – ident: e_1_2_8_36_1 doi: 10.1021/acs.nanolett.7b04852 – ident: e_1_2_8_129_1 doi: 10.1002/adfm.202304657 – ident: e_1_2_8_147_1 doi: 10.1038/nature06932 – ident: e_1_2_8_21_1 doi: 10.1038/s41928-019-0338-7 – ident: e_1_2_8_181_1 doi: 10.1038/s41699-019-0114-6 – ident: e_1_2_8_137_1 doi: 10.1038/s41928-020-00510-8 – ident: e_1_2_8_126_1 doi: 10.1021/acsnano.3c05771 – ident: e_1_2_8_40_1 doi: 10.1038/s41467-023-43097-2 – ident: e_1_2_8_144_1 doi: 10.1002/aelm.201900818 – ident: e_1_2_8_150_1 doi: 10.1126/science.1254642 – ident: e_1_2_8_51_1 doi: 10.1021/acsnano.8b02152 – ident: e_1_2_8_71_1 doi: 10.1038/s41928-019-0350-y – ident: e_1_2_8_72_1 doi: 10.1038/s41699-018-0063-5 – ident: e_1_2_8_98_1 doi: 10.1021/acsami.3c00590 – ident: e_1_2_8_49_1 doi: 10.1038/s41928-023-01073-0 – ident: e_1_2_8_116_1 doi: 10.1038/s41467-021-22332-8 – ident: e_1_2_8_114_1 doi: 10.1021/acsnano.0c08921 – ident: e_1_2_8_163_1 doi: 10.1002/adfm.202306486 – ident: e_1_2_8_13_1 doi: 10.1002/adma.201803249 – ident: e_1_2_8_148_1 doi: 10.1038/s41563-019-0291-x – ident: e_1_2_8_101_1 doi: 10.1016/j.chip.2023.100059 – ident: e_1_2_8_56_1 doi: 10.1038/s41928-023-01018-7 – ident: e_1_2_8_168_1 doi: 10.1021/acsnano.0c03869 – ident: e_1_2_8_75_1 doi: 10.1002/adfm.201705250 – ident: e_1_2_8_63_1 doi: 10.1038/s41467-024-44759-5 – ident: e_1_2_8_103_1 doi: 10.1002/advs.202305679 – ident: e_1_2_8_154_1 doi: 10.1002/aelm.201800600 – ident: e_1_2_8_37_1 doi: 10.1039/D0MH01863E – ident: e_1_2_8_86_1 doi: 10.1038/s41467-021-27617-6 – ident: e_1_2_8_88_1 doi: 10.1038/s41928-020-0441-9 – ident: e_1_2_8_117_1 doi: 10.1038/s41467-022-31148-z – year: 2023 ident: e_1_2_8_96_1 publication-title: Small – ident: e_1_2_8_48_1 doi: 10.1038/s41565-021-01059-z – ident: e_1_2_8_2_1 doi: 10.1038/nmat4703 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201300757 – ident: e_1_2_8_178_1 doi: 10.1038/s41928-022-00847-2 – ident: e_1_2_8_57_1 doi: 10.1038/s41467-021-24296-1 – ident: e_1_2_8_76_1 doi: 10.1002/adfm.201808606 – ident: e_1_2_8_139_1 doi: 10.1021/acsnano.3c05771 – ident: e_1_2_8_157_1 doi: 10.1103/PhysRevLett.118.236801 – ident: e_1_2_8_42_1 doi: 10.1038/s41467-019-09669-x – ident: e_1_2_8_74_1 doi: 10.1002/adfm.201908210 – ident: e_1_2_8_106_1 doi: 10.1002/smll.201805431 – ident: e_1_2_8_90_1 doi: 10.1021/acsami.2c04032 – ident: e_1_2_8_134_1 doi: 10.1038/s41467-022-29171-1 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevLett.128.067601 – ident: e_1_2_8_111_1 doi: 10.1002/adfm.202011083 – ident: e_1_2_8_84_1 doi: 10.1002/adma.202008709 – ident: e_1_2_8_130_1 doi: 10.1038/s41928-020-00501-9 – ident: e_1_2_8_160_1 doi: 10.1002/adfm.202305822 – ident: e_1_2_8_47_1 doi: 10.1038/s41699-022-00298-5 – ident: e_1_2_8_64_1 doi: 10.1021/acsnano.5b04592 – ident: e_1_2_8_6_1 doi: 10.1038/nmat1797 – ident: e_1_2_8_50_1 doi: 10.1126/science.abm5734 – ident: e_1_2_8_55_1 doi: 10.1021/acsnano.2c07281 – ident: e_1_2_8_89_1 doi: 10.1021/acsnano.1c00968 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201803732 – ident: e_1_2_8_165_1 doi: 10.15252/msb.20156651 – ident: e_1_2_8_80_1 doi: 10.1038/s41467-023-41991-3 – ident: e_1_2_8_153_1 doi: 10.1002/adma.202007081 – ident: e_1_2_8_44_1 doi: 10.1126/science.abd3230 – ident: e_1_2_8_87_1 doi: 10.1021/acs.nanolett.8b02688 – ident: e_1_2_8_169_1 doi: 10.1109/TCSVT.2019.2910119 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevLett.120.227601 – ident: e_1_2_8_141_1 doi: 10.1002/brx2.24 – ident: e_1_2_8_30_1 doi: 10.1126/sciadv.aar7720 – ident: e_1_2_8_59_1 doi: 10.1063/1.3119215 – ident: e_1_2_8_93_1 doi: 10.1002/smtd.202101583 – ident: e_1_2_8_156_1 doi: 10.1038/s41928-019-0331-1 – ident: e_1_2_8_177_1 doi: 10.1038/s41563-021-01099-9 – ident: e_1_2_8_121_1 doi: 10.1021/acs.nanolett.2c01768 – ident: e_1_2_8_159_1 doi: 10.1038/ncomms14736 – ident: e_1_2_8_112_1 doi: 10.1002/adma.202103376 – ident: e_1_2_8_115_1 doi: 10.1002/inf2.12198 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.115.157401 – ident: e_1_2_8_52_1 doi: 10.1021/acsnano.2c07281 – ident: e_1_2_8_135_1 doi: 10.1038/s41565-021-01003-1 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201803738 – ident: e_1_2_8_26_1 doi: 10.1073/pnas.2115703118 – ident: e_1_2_8_110_1 doi: 10.1002/adfm.202003683 – ident: e_1_2_8_127_1 doi: 10.1038/s41563-023-01676-0 – ident: e_1_2_8_164_1 doi: 10.1002/advs.202305679 – ident: e_1_2_8_79_1 doi: 10.1038/s41467-021-21320-2 – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevLett.105.166602 – ident: e_1_2_8_78_1 doi: 10.1021/acsnano.8b01810 |
| SSID | ssj0009606 |
| Score | 2.6489847 |
| SecondaryResourceType | review_article |
| Snippet | The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2400332 |
| SubjectTerms | 2D materials Data transmission ferroelectric device Ferroelectric materials Ferroelectricity Ferroelectrics Free surfaces Image processing in‐memory computing in‐sensor computing Memory devices Network latency neural network Neural networks Review Sensors Two dimensional materials |
| Title | Emerging 2D Ferroelectric Devices for In‐Sensor and In‐Memory Computing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202400332 https://www.ncbi.nlm.nih.gov/pubmed/38739927 https://www.proquest.com/docview/3155521023 https://www.proquest.com/docview/3054840091 https://pubmed.ncbi.nlm.nih.gov/PMC11733831 |
| Volume | 37 |
| WOSCitedRecordID | wos001262177000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4h4NAeKH8taQEFCYlTRGxnY-9x1WUF4keoBbS3yLEddaUqW-0CEjcegWfsk3TG3g27QhUSXKJYHjuJPWN_tiffAOy3FK8qnmpCbjohCq1EC1MmXFVpKbmTwavy5kxeXKh-v3058xd_4IdoNtzIMvx4TQauy_HhM2motp43iHwghcBBeIkxIUmveXb5TLub--iadNqXtPNMTWkbU344X35-WnqBNV-6TM5CWT8X9T69_ytWYWWCQ-NOUJw1WHD1OnycYSfcgFPasKIYRjHvxj03Gg1DzJyBibvODzAxIt74pP77-PQTV8N4r2sb0ufkwPsQh5gRWMUmXPeOrr4fJ5PYC4nBBTNPcqt1xVTlUqZdzrRNS8usKDOruDEyN7mQup3ySiBArBCFZArHApPrktkMQZT4DIv1sHZbEBvLTOYQiWD3Z8K2NMU3FqgEAlNMZBEk06YvzISYnOJj_C4CpTIvqJGKppEiOGjk_wRKjv9Kbk97spiY5rgQiKBatNAVEew12WhUdFKiaze8QxkEsrjyRSwVwZfQ8c2jhJJE5isjUHMq0QgQYfd8Tj345Ym7GZO0I4CVcq8Tr7x-0emed5rU17cU-gYfOAUs9ntG27B4O7pzO7Bs7m8H49GutxW8yr7ahaXuj9712T8StRXK |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GOuj2sI_uy1u3uVDok4klObbyGJaZhCah9Iu8GVmSWWA4I20He9ufsL-xf0nvLMeNCWUw9mYhWbalO-l3p_PvAA57khcFDxUhNxUQhVaghM4DLoswT7hNXFTl5SSZzeR83j-pownpXxjHD9E43EgzqvWaFJwc0t171lBlKuIgCoIUAlfhnQhlqdeBneFpejG5Z96NqwSbdOAX9ONIrpkbQ95t99Dembbg5nbU5Caarbaj9Pl_-JAX8KzGov7ACc9LeGTLPXi6wVD4Co7JaUV5jHw-9FO7Wi1d3pyF9oe2WmR8RL3-uLz9_ecMLWK8VqVx5SkF8f7yXd4I7OI1XKRfz7-Mgjr_QqDRaOZBbJQqmCxsyJSNmTJhbpgReWQk1zqJdSwS1Q95IRAkFohEIonrgY5VzkyEQEq8gU65LO078LVhOrKIRlAEImF6inIcCxQEgSUmIg-C9dhnuiYnpxwZ3zNHq8wzGqSsGSQPjpr2Pxwtx4Mt99dTmdXqeZUJRFE9MnaFBwdNNSoWnZao0i5vsA2CWbR-EU958NbNfPMoIRMi9E08kC2ZaBoQaXe7plx8q8i7GUvIK4Cd8koo_vL62WA4HTSl9_9y02fYHZ1PJ9lkPDv-AE84JTCufEj70Lle3diP8Fj_vF5crT7VqnMHZncYvw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KUkp7SNL0EedVBwo9mViPtbXHJZslIcmykLTkZmRJJgvFGzYP6K0_Ib8xvyQzktfJEkKh5GZhSbalmdE30vgbgO8dxauKp5qQm06IQivRwpQJV1Va5tzlIary13E-HKrz8-6oiSakf2ECP0S74Uaa4e01Kbi7tNXuI2uotp44iIIghUArvCg7aGiJ3FmOHnl3M59ek477km4m1Yy3MeW78-3n16VnYPN5zORTLOsXo8HyK3zGCiw1SDTuBdH5CG9cvQofnvATfoIj2rKiLEYx78cDN51OQtacsYn7zpuYGDFvfFjf_707RX8Yr3VtQ_mEQnj_xCFrBHbxGX4O9s_2DpIm-0Ji0GXmSWa1rpiqXMq0y5i2aWmZFaW0ihuTZyYTue6mvBIIESvEIVKhNTCZLpmVCKPEF1ioJ7Vbg9hYZqRDLIICIIXtaMpwLFAMBJaYkBEks7EvTENNThkyfheBVJkXNEhFO0gR_GjrXwZSjhdrbs6msmiU86oQiKE65OqKCHba26hWdFaiaze5wToIZdH3RTQVwdcw8-2jhMqJzjePQM3JRFuBKLvn79TjC0_dzVhOewLYKfdC8Y_XL3r9k15bWv-fRt_g3ag_KI4Ph0cb8J5T9mK_gbQJC9fTG7cFb83t9fhquu315gHNPxao |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+2D+Ferroelectric+Devices+for+In%E2%80%90Sensor+and+In%E2%80%90Memory+Computing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Chunsheng&rft.au=Zhou%2C+Yaoqiang&rft.au=Tong%2C+Lei&rft.au=Pang%2C+Yue&rft.date=2025-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=2&rft_id=info:doi/10.1002%2Fadma.202400332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202400332 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |