Emerging 2D Ferroelectric Devices for In‐Sensor and In‐Memory Computing

The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 37; H. 2; S. e2400332 - n/a
Hauptverfasser: Chen, Chunsheng, Zhou, Yaoqiang, Tong, Lei, Pang, Yue, Xu, Jianbin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.01.2025
John Wiley and Sons Inc
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in‐memory and in‐sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data‐intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling‐bond‐free surface, ultra‐fast polarization flipping, and ultra‐low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor‐memory and computing integration application field, leading to new possibilities for modern electronics. This work reviews the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices are reviewed followed by the integration of perception, memory, and computing application. Notably, the 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing.
AbstractList The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in‐memory and in‐sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data‐intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling‐bond‐free surface, ultra‐fast polarization flipping, and ultra‐low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor‐memory and computing integration application field, leading to new possibilities for modern electronics.
The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics.The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics.
The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in‐memory and in‐sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data‐intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling‐bond‐free surface, ultra‐fast polarization flipping, and ultra‐low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor‐memory and computing integration application field, leading to new possibilities for modern electronics. This work reviews the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices are reviewed followed by the integration of perception, memory, and computing application. Notably, the 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing.
The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in‐memory and in‐sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data‐intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling‐bond‐free surface, ultra‐fast polarization flipping, and ultra‐low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor‐memory and computing integration application field, leading to new possibilities for modern electronics. This work reviews the recent progress of 2D ferroelectric devices for in‐sensing and in‐memory neuromorphic computing. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics‐integrated 2D devices and active ferroelectrics‐integrated 2D devices are reviewed followed by the integration of perception, memory, and computing application. Notably, the 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing.
Author Chen, Chunsheng
Xu, Jianbin
Pang, Yue
Tong, Lei
Zhou, Yaoqiang
AuthorAffiliation 1 Department of Electronic Engineering and Materials Science and Technology Research Center The Chinese University of Hong Kong Hong Kong SAR China
AuthorAffiliation_xml – name: 1 Department of Electronic Engineering and Materials Science and Technology Research Center The Chinese University of Hong Kong Hong Kong SAR China
Author_xml – sequence: 1
  givenname: Chunsheng
  surname: Chen
  fullname: Chen, Chunsheng
  organization: The Chinese University of Hong Kong
– sequence: 2
  givenname: Yaoqiang
  surname: Zhou
  fullname: Zhou, Yaoqiang
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: Lei
  surname: Tong
  fullname: Tong, Lei
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Yue
  surname: Pang
  fullname: Pang, Yue
  organization: The Chinese University of Hong Kong
– sequence: 5
  givenname: Jianbin
  orcidid: 0000-0003-0509-9508
  surname: Xu
  fullname: Xu, Jianbin
  email: jbxu@ee.cuhk.edu.hk
  organization: The Chinese University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38739927$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vEzEUtFARTQtXjmglLr0kPH-sd31CUdJCRSsOwNlyvG-Dq1072LtFufET-hv7S3CUEqAS4mRbnpn3ZuaEHPngkZCXFGYUgL0xTW9mDJgA4Jw9IRNaMjoVoMojMgHFy6mSoj4mJyndAICSIJ-RY15XXClWTciH8x7j2vl1wZbFBcYYsEM7RGeLJd46i6loQywu_f2Pu0_oU74b3-zf19iHuC0Wod-MQ5Z4Tp62pkv44uE8JV8uzj8v3k-vPr67XMyvplZIxaayMaaldYtADUpqGlg1tOEr0dTM2kpaySujgLWccdoKTkUNorbSrGgjZPZ5St7udTfjqsfGoh-i6fQmut7ErQ7G6b9_vPuq1-FWU1pxXnOaFc4eFGL4NmIadO-Sxa4zHsOYNIdS1DlStYO-fgS9CWP02Z_mtCxz2sB4Rr36c6XDLr-CzoDZHmBjSClie4BQ0Lsm9a5JfWgyE8QjgnWDGVzYWXLdv2lqT_vuOtz-Z4ieL6_nv7k_AVi-s3o
CitedBy_id crossref_primary_10_1063_5_0266251
crossref_primary_10_3390_nano15181450
crossref_primary_10_1002_admt_202402121
crossref_primary_10_1002_adma_202414339
crossref_primary_10_1063_5_0228858
crossref_primary_10_1063_5_0253879
crossref_primary_10_1088_1361_648X_ada65a
crossref_primary_10_1002_adfm_202503780
crossref_primary_10_1039_D5TC02077H
crossref_primary_10_3389_felec_2025_1651937
crossref_primary_10_1002_adma_202418618
crossref_primary_10_1002_adfm_202516899
crossref_primary_10_1002_adma_202416837
crossref_primary_10_1002_adma_202504953
crossref_primary_10_1038_s41377_025_01874_2
crossref_primary_10_1002_adma_202504378
crossref_primary_10_1038_s41467_025_62822_7
crossref_primary_10_1039_D5NH00386E
crossref_primary_10_3390_mi16050517
crossref_primary_10_1002_aelm_202400732
crossref_primary_10_1007_s40843_025_3322_5
crossref_primary_10_1021_acsami_5c01347
crossref_primary_10_1021_acsaelm_5c00808
crossref_primary_10_1109_TED_2025_3575739
crossref_primary_10_1038_s44335_025_00034_4
crossref_primary_10_26599_NR_2025_94907425
crossref_primary_10_1021_acsnano_5c05240
crossref_primary_10_1002_aisy_202500351
crossref_primary_10_1002_smll_202405709
crossref_primary_10_1021_acs_nanolett_5c00398
crossref_primary_10_1002_smll_202505797
crossref_primary_10_3390_nano15110863
crossref_primary_10_1002_smll_202503717
crossref_primary_10_1021_acsnano_5c02397
crossref_primary_10_1088_1361_6463_adc278
crossref_primary_10_1039_D5NR02639C
crossref_primary_10_1016_j_device_2024_100509
crossref_primary_10_1021_acsami_5c13157
crossref_primary_10_1021_acsnano_5c00250
crossref_primary_10_1088_1361_6463_addad2
crossref_primary_10_1002_smm2_70005
crossref_primary_10_1021_acsaelm_5c00873
crossref_primary_10_1002_adma_202419678
crossref_primary_10_1103_j5tz_p9cd
crossref_primary_10_1002_adfm_202407253
crossref_primary_10_1002_smll_202504001
crossref_primary_10_1002_advs_70011
crossref_primary_10_1088_1361_6463_ad865f
Cites_doi 10.1063/1.124770
10.1016/j.neucom.2013.06.052
10.1038/ncomms7136
10.1038/s41928-023-01056-1
10.1002/adfm.202214745
10.1021/acs.nanolett.7b02198
10.1002/smll.201200752
10.1126/sciadv.aay5225
10.1038/s41467-020-16291-9
10.1021/acsami.0c09951
10.1007/s11431-020-1582-8
10.1021/acs.chemmater.6b01073
10.1038/lsa.2016.131
10.1021/acsaelm.1c00970
10.1002/adma.202211598
10.1038/s41565-019-0361-x
10.1126/science.246.4936.1400
10.1109/TNN.2003.820440
10.1038/ncomms14956
10.1038/s41586-018-0336-3
10.1063/1.4974072
10.1002/smm2.1020
10.1021/acs.jpclett.8b03654
10.1038/s41565-023-01539-4
10.1002/aelm.202200343
10.1038/s41928-018-0092-2
10.1038/s41565-022-01257-3
10.1126/science.abe8177
10.1002/adma.202204949
10.1038/s41586-020-2038-x
10.1002/adma.202005098
10.1038/ncomms12357
10.1063/1.4992113
10.1088/1361-6528/ac0ac5
10.1021/acsnano.9b07687
10.1002/smll.201900966
10.1016/j.nanoen.2021.106439
10.1021/acsami.9b23595
10.1039/D2NR05720D
10.1002/inf2.12490
10.1126/science.1168636
10.1038/ncomms11502
10.1002/inf2.12317
10.1038/s41563-023-01676-0
10.1002/adma.201908040
10.1021/acs.nanolett.1c03557
10.1038/s41467-023-39705-w
10.1063/1.882324
10.1002/adma.201504779
10.1126/science.aad8609
10.1162/089976602760407955
10.1021/acs.nanolett.9b01419
10.1002/adma.201901300
10.1002/adma.202107754
10.1038/s41467-018-05326-x
10.1126/science.abg3161
10.1038/s41928-017-0006-8
10.1002/adma.202004469
10.1002/adfm.202004609
10.1038/s41928-022-00872-1
10.1063/1.5035419
10.1002/adma.201002743
10.1007/s11433-022-2056-1
10.1002/adma.201803249
10.1038/s41928-019-0313-3
10.1038/s41467-017-02337-y
10.1038/36069
10.1103/PhysRevLett.117.097601
10.1002/advs.201900314
10.1002/adma.202370267
10.1038/s41467-020-20257-2
10.1038/s41565-019-0501-3
10.1126/sciadv.1501326
10.1038/s41467-022-28235-6
10.1002/adfm.202009999
10.1038/s41565-019-0466-2
10.1109/VLSIT.2018.8510652
10.1038/s41467-021-22047-w
10.1021/acs.nanolett.9b00180
10.1002/adfm.202313010
10.1002/aelm.202001276
10.1109/MSP.2012.2205597
10.1038/s41565-023-01343-0
10.1063/1.1494122
10.1038/s41565-020-0724-3
10.1007/s12274-020-2640-0
10.1002/adma.202005620
10.1021/acs.nanolett.5b00491
10.1109/IEDM.2017.8268425
10.1021/acs.inorgchem.8b01950
10.1021/acsnano.1c09136
10.1038/s41928-022-00778-y
10.1002/smll.202005217
10.1021/acs.nanolett.9b02312
10.1021/acs.nanolett.7b04852
10.1002/adfm.202304657
10.1038/nature06932
10.1038/s41928-019-0338-7
10.1038/s41699-019-0114-6
10.1038/s41928-020-00510-8
10.1021/acsnano.3c05771
10.1038/s41467-023-43097-2
10.1002/aelm.201900818
10.1126/science.1254642
10.1021/acsnano.8b02152
10.1038/s41928-019-0350-y
10.1038/s41699-018-0063-5
10.1021/acsami.3c00590
10.1038/s41928-023-01073-0
10.1038/s41467-021-22332-8
10.1021/acsnano.0c08921
10.1002/adfm.202306486
10.1038/s41563-019-0291-x
10.1016/j.chip.2023.100059
10.1038/s41928-023-01018-7
10.1021/acsnano.0c03869
10.1002/adfm.201705250
10.1038/s41467-024-44759-5
10.1002/advs.202305679
10.1002/aelm.201800600
10.1039/D0MH01863E
10.1038/s41467-021-27617-6
10.1038/s41928-020-0441-9
10.1038/s41467-022-31148-z
10.1038/s41565-021-01059-z
10.1038/nmat4703
10.1002/adma.201300757
10.1038/s41928-022-00847-2
10.1038/s41467-021-24296-1
10.1002/adfm.201808606
10.1103/PhysRevLett.118.236801
10.1038/s41467-019-09669-x
10.1002/adfm.201908210
10.1002/smll.201805431
10.1021/acsami.2c04032
10.1038/s41467-022-29171-1
10.1103/PhysRevLett.128.067601
10.1002/adfm.202011083
10.1002/adma.202008709
10.1038/s41928-020-00501-9
10.1002/adfm.202305822
10.1038/s41699-022-00298-5
10.1021/acsnano.5b04592
10.1038/nmat1797
10.1126/science.abm5734
10.1021/acsnano.2c07281
10.1021/acsnano.1c00968
10.1002/adma.201803732
10.15252/msb.20156651
10.1038/s41467-023-41991-3
10.1002/adma.202007081
10.1126/science.abd3230
10.1021/acs.nanolett.8b02688
10.1109/TCSVT.2019.2910119
10.1103/PhysRevLett.120.227601
10.1002/brx2.24
10.1126/sciadv.aar7720
10.1063/1.3119215
10.1002/smtd.202101583
10.1038/s41928-019-0331-1
10.1038/s41563-021-01099-9
10.1021/acs.nanolett.2c01768
10.1038/ncomms14736
10.1002/adma.202103376
10.1002/inf2.12198
10.1103/PhysRevLett.115.157401
10.1038/s41565-021-01003-1
10.1002/adfm.201803738
10.1073/pnas.2115703118
10.1002/adfm.202003683
10.1038/s41467-021-21320-2
10.1103/PhysRevLett.105.166602
10.1021/acsnano.8b01810
ContentType Journal Article
Copyright 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.202400332
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed


Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC11733831
38739927
10_1002_adma_202400332
ADMA202400332
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Research Grants Council of Hong Kong
  funderid: AoE/P‐701/20; 14206721; 14220022; 14203623
– fundername: CRF Group Research Scheme
  funderid: C4050‐21EF; C1015‐21EF; C4028‐20EF
– fundername: RGC Postdoctoral Fellowship
  funderid: PDFS2223‐4S06
– fundername: CUHK Postdoctoral Fellowship
– fundername: CUHK Fund for Joint Research Labs
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2023B1515120049
– fundername: CUHK Group Research Scheme
– fundername: Research Grants Council of Hong Kong
  grantid: 14203623
– fundername: CRF Group Research Scheme
  grantid: C1015-21EF
– fundername: RGC Postdoctoral Fellowship
  grantid: PDFS2223-4S06
– fundername: CRF Group Research Scheme
  grantid: C4050-21EF
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  grantid: 2023B1515120049
– fundername: Research Grants Council of Hong Kong
  grantid: 14220022
– fundername: CRF Group Research Scheme
  grantid: C4028-20EF
– fundername: Research Grants Council of Hong Kong
  grantid: AoE/P-701/20
– fundername: RGC Postdoctoral Fellowship
  grantid: PDFS2223‐4S06
– fundername: Research Grants Council of Hong Kong
  grantid: AoE/P‐701/20; 14206721; 14220022; 14203623
– fundername: CRF Group Research Scheme
  grantid: C4050‐21EF; C1015‐21EF; C4028‐20EF
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
53G
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c4692-6daaf18fe01ae61ad0bd1d3b4d82cc76c637a902f3231f43148048c6ab1d46003
IEDL.DBID 24P
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262177000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Tue Nov 04 02:04:49 EST 2025
Sun Nov 09 12:24:13 EST 2025
Fri Jul 25 22:38:30 EDT 2025
Thu Apr 03 07:02:27 EDT 2025
Tue Nov 18 20:57:42 EST 2025
Sat Nov 29 07:21:08 EST 2025
Wed Jan 22 17:12:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ferroelectric device
in‐memory computing
in‐sensor computing
neural network
2D materials
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4692-6daaf18fe01ae61ad0bd1d3b4d82cc76c637a902f3231f43148048c6ab1d46003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0509-9508
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202400332
PMID 38739927
PQID 3155521023
PQPubID 2045203
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11733831
proquest_miscellaneous_3054840091
proquest_journals_3155521023
pubmed_primary_38739927
crossref_primary_10_1002_adma_202400332
crossref_citationtrail_10_1002_adma_202400332
wiley_primary_10_1002_adma_202400332_ADMA202400332
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2018; 560
2002; 14
2014; 138
2010; 105
2019; 10
2019; 15
2019; 14
2020; 16
2019; 19
2020; 15
2019; 18
2020; 14
2020; 13
2020; 12
2020; 11
2024; 34
2022; 21
2022; 22
2010; 22
2018; 9
2018; 2
2023; 66
2018; 4
2009; 94
2018; 1
2024; 7
2022; 34
2007; 6
2019; 29
2020; 579
2018; 30
2012; 29
2018; 28
2019; 3
2019; 6
2019; 5
2019; 31
2019; 30
2019; 2
2002; 81
2024; 11
2020; 32
2024; 15
2024; 19
2016; 12
2016; 5
2018; 18
1998; 391
2016; 7
2016; 2
2015; 115
2020; 30
2022; 4
1989; 246
2022; 5
2022; 6
2022; 8
2022; 13
2022; 14
2021; 373
2021; 372
2018; 12
2016; 28
2022; 16
2022; 17
2018; 120
2022; 376
2017; 8
2021; 21
2023; 35
2013; 25
2023; 33
2017; 4
2020; 63
2023; 6
2018; 124
2003; 14
2023; 1
2023; 2
2017; 111
2017; 118
2020; 6
2021; 32
2020; 3
2021; 31
2023; 22
2021; 33
2021; 118
2016; 353
2016; 117
1998; 51
2022; 128
2009; 324
2021; 8
2015; 15
2021; 7
2015; 6
2023; 14
2021; 4
2021; 89
2021; 3
2021; 2
2023; 17
2023; 18
2023; 15
2015; 9
2021; 15
2021; 12
2023
2017; 17
2017; 16
2018
2017
1999; 75
2008; 453
2014; 345
2012; 8
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_171_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
Pang Y. (e_1_2_8_96_1) 2023
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_172_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_176_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
Albawi S. (e_1_2_8_170_1) 2017
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_173_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_177_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 12
  start-page: 6700
  year: 2018
  publication-title: ACS Nano
– volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 53
  year: 2021
  publication-title: Nat. Commun.
– volume: 12
  start-page: 878
  year: 2016
  publication-title: Mol. Syst. Biol.
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 29
  year: 2024
  publication-title: Nat. Electron.
– volume: 2
  start-page: 580
  year: 2019
  publication-title: Nat. Electron.
– volume: 75
  start-page: 1610
  year: 1999
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 5109
  year: 2019
  publication-title: Nano Lett.
– volume: 453
  start-page: 80
  year: 2008
  publication-title: Nature
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 51
  start-page: 22
  year: 1998
  publication-title: Phys. Today
– volume: 3
  start-page: 466
  year: 2020
  publication-title: Nat. Electron.
– volume: 8
  year: 2022
  publication-title: Adv. Electron. Mater.
– volume: 3
  start-page: 904
  year: 2021
  publication-title: InfoMat
– volume: 13
  start-page: 574
  year: 2022
  publication-title: Nat. Commun.
– volume: 19
  start-page: 2044
  year: 2019
  publication-title: Nano Lett.
– volume: 22
  start-page: 5507
  year: 2010
  publication-title: Adv. Mater.
– volume: 18
  start-page: 55
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 2204
  year: 2017
  publication-title: Nat. Commun.
– volume: 15
  start-page: 5689
  year: 2021
  publication-title: ACS Nano
– volume: 324
  start-page: 63
  year: 2009
  publication-title: Science
– volume: 14
  start-page: 6778
  year: 2023
  publication-title: Nat. Commun.
– volume: 2
  start-page: 480
  year: 2019
  publication-title: Nat. Electron.
– volume: 4
  start-page: 54
  year: 2021
  publication-title: Nat. Electron.
– volume: 18
  start-page: 1253
  year: 2018
  publication-title: Nano Lett.
– volume: 28
  start-page: 4278
  year: 2016
  publication-title: Chem. Mater.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2428
  year: 2020
  publication-title: Nat. Commun.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2023
  publication-title: Chip
– volume: 14
  start-page: 7304
  year: 2023
  publication-title: Nat. Commun.
– volume: 6
  start-page: 658
  year: 2023
  publication-title: Nat. Electron.
– volume: 5
  year: 2016
  publication-title: Light: Sci. Appl.
– volume: 391
  start-page: 874
  year: 1998
  publication-title: Nature
– volume: 17
  start-page: 5508
  year: 2017
  publication-title: Nano Lett.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 173
  year: 2024
  publication-title: Nat. Nanotechnol.
– volume: 18
  start-page: 309
  year: 2019
  publication-title: Nat. Mater.
– volume: 15
  start-page: 513
  year: 2024
  publication-title: Nat. Commun.
– volume: 5
  start-page: 761
  year: 2022
  publication-title: Nat. Electron.
– volume: 29
  start-page: 82
  year: 2012
  publication-title: IEEE Signal Process. Mag.
– volume: 12
  start-page: 7291
  year: 2021
  publication-title: Nat. Commun.
– volume: 81
  start-page: 715
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 372
  start-page: 1458
  year: 2021
  publication-title: Science
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 15
  start-page: 1497
  year: 2020
  publication-title: ACS Nano
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 6
  start-page: 8
  year: 2007
  publication-title: Nat. Mater.
– volume: 4
  year: 2017
  publication-title: Appl. Phys. Rev.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3143
  year: 2018
  publication-title: Nat. Commun.
– volume: 124
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 1109
  year: 2021
  publication-title: Nat. Commun.
– volume: 18
  start-page: 6340
  year: 2018
  publication-title: Nano Lett.
– volume: 353
  start-page: 274
  year: 2016
  publication-title: Science
– start-page: 1
  year: 2017
  end-page: 6
– volume: 560
  start-page: 336
  year: 2018
  publication-title: Nature
– volume: 14
  start-page: 746
  year: 2019
  publication-title: ACS Nano
– volume: 12
  start-page: 2143
  year: 2021
  publication-title: Nat. Commun.
– volume: 6
  year: 2023
  publication-title: InfoMat
– volume: 2
  start-page: 88
  year: 2021
  publication-title: SmartMat
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 1485
  year: 2022
  publication-title: Nat. Commun.
– volume: 14
  start-page: 2531
  year: 2002
  publication-title: Neural Comput.
– volume: 14
  start-page: 776
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 170
  year: 2017
  publication-title: Nat. Mater.
– volume: 13
  start-page: 1897
  year: 2020
  publication-title: Nano. Res.
– start-page: 19.7.1
  year: 2017
  end-page: 19.7.4
– volume: 21
  start-page: 9318
  year: 2021
  publication-title: Nano Lett.
– volume: 4
  year: 2022
  publication-title: InfoMat
– volume: 14
  start-page: 1569
  year: 2003
  publication-title: IEEE Trans. Neural Networks
– volume: 128
  year: 2022
  publication-title: Phys. Rev. Lett.
– volume: 345
  start-page: 668
  year: 2014
  publication-title: Science
– year: 2023
  publication-title: Small
– volume: 15
  start-page: 545
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 1775
  year: 2019
  publication-title: Nat. Commun.
– volume: 16
  start-page: 5418
  year: 2022
  publication-title: ACS Nano
– volume: 18
  start-page: 493
  year: 2023
  publication-title: Nat. Nanotechnol.
– volume: 1
  year: 2023
  publication-title: Brain‐X
– volume: 5
  start-page: 715
  year: 2022
  publication-title: Nat. Electron.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 4
  start-page: 598
  year: 2022
  publication-title: ACS Appl. Electron. Mater.
– volume: 12
  start-page: 4976
  year: 2018
  publication-title: ACS Nano
– volume: 17
  start-page: 367
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 7
  year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 6
  start-page: 18
  year: 2022
  publication-title: npj 2D Mater. Appl.
– volume: 14
  start-page: 668
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 246
  start-page: 1400
  year: 1989
  publication-title: Science
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 17
  start-page: 27
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 22
  year: 2018
  publication-title: Nat. Electron.
– volume: 111
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 14
  start-page: 7628
  year: 2020
  publication-title: ACS Nano
– volume: 22
  start-page: 6435
  year: 2022
  publication-title: Nano Lett.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 372
  start-page: 1462
  year: 2021
  publication-title: Science
– volume: 15
  start-page: 313
  year: 2023
  publication-title: Nanoscale
– volume: 3
  start-page: 31
  year: 2019
  publication-title: npj 2D Mater. Appl.
– start-page: 89
  year: 2018
  end-page: 90
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 3111
  year: 2012
  publication-title: Small
– volume: 2
  start-page: 596
  year: 2019
  publication-title: Nat. Electron.
– volume: 14
  start-page: 223
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 66
  year: 2023
  publication-title: Sci. China: Phys., Mech. Astron.
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 28
  start-page: 2923
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 43
  year: 2020
  publication-title: Nat. Electron.
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 6
  start-page: 852
  year: 2023
  publication-title: Nat. Electron.
– volume: 6
  start-page: 6136
  year: 2015
  publication-title: Nat. Commun.
– volume: 14
  start-page: 4270
  year: 2023
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3587
  year: 2022
  publication-title: Nat. Commun.
– volume: 21
  start-page: 195
  year: 2022
  publication-title: Nat. Mater.
– volume: 30
  start-page: 1683
  year: 2019
  publication-title: IEEE Trans. Circuits Syst. Video
– volume: 19
  start-page: 5703
  year: 2019
  publication-title: Nano Lett.
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 12
  start-page: 4030
  year: 2021
  publication-title: Nat. Commun.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 579
  start-page: 62
  year: 2020
  publication-title: Nature
– volume: 94
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 22
  start-page: 1499
  year: 2023
  publication-title: Nat. Mater.
– volume: 1
  start-page: 333
  year: 2018
  publication-title: Nat. Electron.
– volume: 9
  start-page: 7160
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 376
  start-page: 973
  year: 2022
  publication-title: Science
– volume: 8
  start-page: 1472
  year: 2021
  publication-title: Mater. Horiz.
– volume: 373
  start-page: 1353
  year: 2021
  publication-title: Science
– volume: 3
  start-page: 664
  year: 2020
  publication-title: Nat. Electron.
– volume: 25
  start-page: 3357
  year: 2013
  publication-title: Adv. Mater.
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 57
  year: 2018
  publication-title: Inorg. Chem.
– volume: 12
  start-page: 1798
  year: 2021
  publication-title: Nat. Commun.
– volume: 5
  start-page: 386
  year: 2022
  publication-title: Nat. Electron.
– volume: 63
  start-page: 1612
  year: 2020
  publication-title: Sci. China Technol. Sci.
– volume: 138
  start-page: 3
  year: 2014
  publication-title: Neurocomputing
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 18
  year: 2018
  publication-title: npj 2D Mater. Appl.
– volume: 15
  start-page: 3808
  year: 2015
  publication-title: Nano Lett.
– ident: e_1_2_8_23_1
  doi: 10.1063/1.124770
– ident: e_1_2_8_180_1
  doi: 10.1016/j.neucom.2013.06.052
– ident: e_1_2_8_69_1
  doi: 10.1038/ncomms7136
– ident: e_1_2_8_92_1
  doi: 10.1038/s41928-023-01056-1
– ident: e_1_2_8_146_1
  doi: 10.1002/adfm.202214745
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.nanolett.7b02198
– ident: e_1_2_8_61_1
  doi: 10.1002/smll.201200752
– ident: e_1_2_8_108_1
  doi: 10.1126/sciadv.aay5225
– ident: e_1_2_8_29_1
  doi: 10.1038/s41467-020-16291-9
– ident: e_1_2_8_68_1
  doi: 10.1021/acsami.0c09951
– ident: e_1_2_8_171_1
  doi: 10.1007/s11431-020-1582-8
– ident: e_1_2_8_54_1
  doi: 10.1021/acs.chemmater.6b01073
– ident: e_1_2_8_35_1
  doi: 10.1038/lsa.2016.131
– ident: e_1_2_8_125_1
  doi: 10.1021/acsaelm.1c00970
– ident: e_1_2_8_172_1
  doi: 10.1002/adma.202211598
– ident: e_1_2_8_3_1
  doi: 10.1038/s41565-019-0361-x
– ident: e_1_2_8_5_1
  doi: 10.1126/science.246.4936.1400
– ident: e_1_2_8_179_1
  doi: 10.1109/TNN.2003.820440
– ident: e_1_2_8_14_1
  doi: 10.1038/ncomms14956
– ident: e_1_2_8_43_1
  doi: 10.1038/s41586-018-0336-3
– ident: e_1_2_8_102_1
  doi: 10.1063/1.4974072
– ident: e_1_2_8_120_1
  doi: 10.1002/smm2.1020
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.jpclett.8b03654
– ident: e_1_2_8_91_1
  doi: 10.1038/s41565-023-01539-4
– ident: e_1_2_8_123_1
  doi: 10.1002/aelm.202200343
– ident: e_1_2_8_149_1
  doi: 10.1038/s41928-018-0092-2
– ident: e_1_2_8_152_1
  doi: 10.1038/s41565-022-01257-3
– ident: e_1_2_8_45_1
  doi: 10.1126/science.abe8177
– ident: e_1_2_8_124_1
  doi: 10.1002/adma.202204949
– ident: e_1_2_8_132_1
  doi: 10.1038/s41586-020-2038-x
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.202005098
– ident: e_1_2_8_12_1
  doi: 10.1038/ncomms12357
– ident: e_1_2_8_66_1
  doi: 10.1063/1.4992113
– ident: e_1_2_8_38_1
  doi: 10.1088/1361-6528/ac0ac5
– ident: e_1_2_8_65_1
  doi: 10.1021/acsnano.9b07687
– ident: e_1_2_8_107_1
  doi: 10.1002/smll.201900966
– ident: e_1_2_8_113_1
  doi: 10.1016/j.nanoen.2021.106439
– ident: e_1_2_8_119_1
  doi: 10.1021/acsami.9b23595
– ident: e_1_2_8_167_1
  doi: 10.1039/D2NR05720D
– ident: e_1_2_8_82_1
  doi: 10.1002/inf2.12490
– ident: e_1_2_8_162_1
  doi: 10.1002/adma.202211598
– ident: e_1_2_8_8_1
  doi: 10.1126/science.1168636
– ident: e_1_2_8_62_1
  doi: 10.1038/ncomms11502
– start-page: 1
  volume-title: 2017 Int. Conf. on Engineering and Technology (ICET)
  year: 2017
  ident: e_1_2_8_170_1
– ident: e_1_2_8_118_1
  doi: 10.1002/inf2.12317
– ident: e_1_2_8_138_1
  doi: 10.1038/s41563-023-01676-0
– ident: e_1_2_8_77_1
  doi: 10.1002/adma.201908040
– ident: e_1_2_8_83_1
  doi: 10.1021/acs.nanolett.1c03557
– ident: e_1_2_8_97_1
  doi: 10.1038/s41467-023-39705-w
– ident: e_1_2_8_7_1
  doi: 10.1063/1.882324
– ident: e_1_2_8_67_1
  doi: 10.1002/adma.201504779
– ident: e_1_2_8_10_1
  doi: 10.1126/science.aad8609
– ident: e_1_2_8_174_1
  doi: 10.1162/089976602760407955
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.nanolett.9b01419
– ident: e_1_2_8_100_1
  doi: 10.1002/adma.201901300
– ident: e_1_2_8_122_1
  doi: 10.1002/adma.202107754
– ident: e_1_2_8_70_1
  doi: 10.1038/s41467-018-05326-x
– ident: e_1_2_8_155_1
  doi: 10.1126/science.abg3161
– ident: e_1_2_8_151_1
  doi: 10.1038/s41928-017-0006-8
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.202004469
– ident: e_1_2_8_95_1
  doi: 10.1002/adfm.202004609
– ident: e_1_2_8_173_1
  doi: 10.1038/s41928-022-00872-1
– ident: e_1_2_8_27_1
  doi: 10.1063/1.5035419
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201002743
– ident: e_1_2_8_4_1
  doi: 10.1007/s11433-022-2056-1
– ident: e_1_2_8_142_1
  doi: 10.1002/adma.201803249
– ident: e_1_2_8_176_1
  doi: 10.1038/s41928-019-0313-3
– ident: e_1_2_8_175_1
  doi: 10.1038/s41467-017-02337-y
– ident: e_1_2_8_58_1
  doi: 10.1038/36069
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevLett.117.097601
– ident: e_1_2_8_143_1
  doi: 10.1002/advs.201900314
– ident: e_1_2_8_85_1
  doi: 10.1002/adma.202370267
– ident: e_1_2_8_161_1
  doi: 10.1038/s41563-023-01676-0
– ident: e_1_2_8_99_1
  doi: 10.1038/s41467-020-20257-2
– ident: e_1_2_8_131_1
  doi: 10.1038/s41565-019-0501-3
– ident: e_1_2_8_105_1
  doi: 10.1126/sciadv.1501326
– ident: e_1_2_8_39_1
  doi: 10.1038/s41467-022-28235-6
– ident: e_1_2_8_94_1
  doi: 10.1002/adfm.202009999
– ident: e_1_2_8_73_1
  doi: 10.1038/s41565-019-0466-2
– ident: e_1_2_8_20_1
  doi: 10.1109/VLSIT.2018.8510652
– ident: e_1_2_8_136_1
  doi: 10.1038/s41467-021-22047-w
– ident: e_1_2_8_158_1
  doi: 10.1021/acs.nanolett.9b00180
– ident: e_1_2_8_140_1
  doi: 10.1002/adfm.202313010
– ident: e_1_2_8_182_1
  doi: 10.1002/aelm.202001276
– ident: e_1_2_8_166_1
  doi: 10.1109/MSP.2012.2205597
– ident: e_1_2_8_128_1
  doi: 10.1038/s41565-023-01343-0
– ident: e_1_2_8_24_1
  doi: 10.1063/1.1494122
– ident: e_1_2_8_104_1
  doi: 10.1038/s41565-020-0724-3
– ident: e_1_2_8_15_1
  doi: 10.1007/s12274-020-2640-0
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.202005620
– ident: e_1_2_8_145_1
  doi: 10.1021/acs.nanolett.5b00491
– ident: e_1_2_8_19_1
  doi: 10.1109/IEDM.2017.8268425
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.inorgchem.8b01950
– ident: e_1_2_8_81_1
  doi: 10.1021/acsnano.1c09136
– ident: e_1_2_8_133_1
  doi: 10.1038/s41928-022-00778-y
– ident: e_1_2_8_109_1
  doi: 10.1002/smll.202005217
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.nanolett.9b02312
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.nanolett.7b04852
– ident: e_1_2_8_129_1
  doi: 10.1002/adfm.202304657
– ident: e_1_2_8_147_1
  doi: 10.1038/nature06932
– ident: e_1_2_8_21_1
  doi: 10.1038/s41928-019-0338-7
– ident: e_1_2_8_181_1
  doi: 10.1038/s41699-019-0114-6
– ident: e_1_2_8_137_1
  doi: 10.1038/s41928-020-00510-8
– ident: e_1_2_8_126_1
  doi: 10.1021/acsnano.3c05771
– ident: e_1_2_8_40_1
  doi: 10.1038/s41467-023-43097-2
– ident: e_1_2_8_144_1
  doi: 10.1002/aelm.201900818
– ident: e_1_2_8_150_1
  doi: 10.1126/science.1254642
– ident: e_1_2_8_51_1
  doi: 10.1021/acsnano.8b02152
– ident: e_1_2_8_71_1
  doi: 10.1038/s41928-019-0350-y
– ident: e_1_2_8_72_1
  doi: 10.1038/s41699-018-0063-5
– ident: e_1_2_8_98_1
  doi: 10.1021/acsami.3c00590
– ident: e_1_2_8_49_1
  doi: 10.1038/s41928-023-01073-0
– ident: e_1_2_8_116_1
  doi: 10.1038/s41467-021-22332-8
– ident: e_1_2_8_114_1
  doi: 10.1021/acsnano.0c08921
– ident: e_1_2_8_163_1
  doi: 10.1002/adfm.202306486
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.201803249
– ident: e_1_2_8_148_1
  doi: 10.1038/s41563-019-0291-x
– ident: e_1_2_8_101_1
  doi: 10.1016/j.chip.2023.100059
– ident: e_1_2_8_56_1
  doi: 10.1038/s41928-023-01018-7
– ident: e_1_2_8_168_1
  doi: 10.1021/acsnano.0c03869
– ident: e_1_2_8_75_1
  doi: 10.1002/adfm.201705250
– ident: e_1_2_8_63_1
  doi: 10.1038/s41467-024-44759-5
– ident: e_1_2_8_103_1
  doi: 10.1002/advs.202305679
– ident: e_1_2_8_154_1
  doi: 10.1002/aelm.201800600
– ident: e_1_2_8_37_1
  doi: 10.1039/D0MH01863E
– ident: e_1_2_8_86_1
  doi: 10.1038/s41467-021-27617-6
– ident: e_1_2_8_88_1
  doi: 10.1038/s41928-020-0441-9
– ident: e_1_2_8_117_1
  doi: 10.1038/s41467-022-31148-z
– year: 2023
  ident: e_1_2_8_96_1
  publication-title: Small
– ident: e_1_2_8_48_1
  doi: 10.1038/s41565-021-01059-z
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat4703
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201300757
– ident: e_1_2_8_178_1
  doi: 10.1038/s41928-022-00847-2
– ident: e_1_2_8_57_1
  doi: 10.1038/s41467-021-24296-1
– ident: e_1_2_8_76_1
  doi: 10.1002/adfm.201808606
– ident: e_1_2_8_139_1
  doi: 10.1021/acsnano.3c05771
– ident: e_1_2_8_157_1
  doi: 10.1103/PhysRevLett.118.236801
– ident: e_1_2_8_42_1
  doi: 10.1038/s41467-019-09669-x
– ident: e_1_2_8_74_1
  doi: 10.1002/adfm.201908210
– ident: e_1_2_8_106_1
  doi: 10.1002/smll.201805431
– ident: e_1_2_8_90_1
  doi: 10.1021/acsami.2c04032
– ident: e_1_2_8_134_1
  doi: 10.1038/s41467-022-29171-1
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevLett.128.067601
– ident: e_1_2_8_111_1
  doi: 10.1002/adfm.202011083
– ident: e_1_2_8_84_1
  doi: 10.1002/adma.202008709
– ident: e_1_2_8_130_1
  doi: 10.1038/s41928-020-00501-9
– ident: e_1_2_8_160_1
  doi: 10.1002/adfm.202305822
– ident: e_1_2_8_47_1
  doi: 10.1038/s41699-022-00298-5
– ident: e_1_2_8_64_1
  doi: 10.1021/acsnano.5b04592
– ident: e_1_2_8_6_1
  doi: 10.1038/nmat1797
– ident: e_1_2_8_50_1
  doi: 10.1126/science.abm5734
– ident: e_1_2_8_55_1
  doi: 10.1021/acsnano.2c07281
– ident: e_1_2_8_89_1
  doi: 10.1021/acsnano.1c00968
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201803732
– ident: e_1_2_8_165_1
  doi: 10.15252/msb.20156651
– ident: e_1_2_8_80_1
  doi: 10.1038/s41467-023-41991-3
– ident: e_1_2_8_153_1
  doi: 10.1002/adma.202007081
– ident: e_1_2_8_44_1
  doi: 10.1126/science.abd3230
– ident: e_1_2_8_87_1
  doi: 10.1021/acs.nanolett.8b02688
– ident: e_1_2_8_169_1
  doi: 10.1109/TCSVT.2019.2910119
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevLett.120.227601
– ident: e_1_2_8_141_1
  doi: 10.1002/brx2.24
– ident: e_1_2_8_30_1
  doi: 10.1126/sciadv.aar7720
– ident: e_1_2_8_59_1
  doi: 10.1063/1.3119215
– ident: e_1_2_8_93_1
  doi: 10.1002/smtd.202101583
– ident: e_1_2_8_156_1
  doi: 10.1038/s41928-019-0331-1
– ident: e_1_2_8_177_1
  doi: 10.1038/s41563-021-01099-9
– ident: e_1_2_8_121_1
  doi: 10.1021/acs.nanolett.2c01768
– ident: e_1_2_8_159_1
  doi: 10.1038/ncomms14736
– ident: e_1_2_8_112_1
  doi: 10.1002/adma.202103376
– ident: e_1_2_8_115_1
  doi: 10.1002/inf2.12198
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.115.157401
– ident: e_1_2_8_52_1
  doi: 10.1021/acsnano.2c07281
– ident: e_1_2_8_135_1
  doi: 10.1038/s41565-021-01003-1
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201803738
– ident: e_1_2_8_26_1
  doi: 10.1073/pnas.2115703118
– ident: e_1_2_8_110_1
  doi: 10.1002/adfm.202003683
– ident: e_1_2_8_127_1
  doi: 10.1038/s41563-023-01676-0
– ident: e_1_2_8_164_1
  doi: 10.1002/advs.202305679
– ident: e_1_2_8_79_1
  doi: 10.1038/s41467-021-21320-2
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevLett.105.166602
– ident: e_1_2_8_78_1
  doi: 10.1021/acsnano.8b01810
SSID ssj0009606
Score 2.648936
SecondaryResourceType review_article
Snippet The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2400332
SubjectTerms 2D materials
Data transmission
ferroelectric device
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Free surfaces
Image processing
in‐memory computing
in‐sensor computing
Memory devices
Network latency
neural network
Neural networks
Review
Sensors
Two dimensional materials
Title Emerging 2D Ferroelectric Devices for In‐Sensor and In‐Memory Computing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202400332
https://www.ncbi.nlm.nih.gov/pubmed/38739927
https://www.proquest.com/docview/3155521023
https://www.proquest.com/docview/3054840091
https://pubmed.ncbi.nlm.nih.gov/PMC11733831
Volume 37
WOSCitedRecordID wos001262177000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KkkN7SJs-ErdpcKHQk4n1sCUfl26XliYhtA3szehlshC8YTcJ5Jaf0N_YX9IZedfZJZRCezE2GsmypBl9I8nfALxnyhTCViGrpBWZdI3NqpL5rNJFaFxRcO0ju_6ROjnR43F1uvIXf8cP0S-4kWZEe00Kbuz88J401PjIG0RnIIVAI7zJmFA0rrk8vafdLWN0TdrtwzpIvaRtzPnhev71aekB1nx4ZHIVysa5aPT0_7_iGWwvcGg66AbODjwK7XN4ssJO-AK-0oIVxTBK-TAdhdls2sXMmbh0GKKBSRHxpl_aX3c_v6M3jPem9d3zMR3gvU27mBFYxEs4G3368fFztoi9kDl0mHlWemMappuQMxNKZnxuPfPCSq-5c6p0pVCmynkjECA2iEKkRlvgSmOZlwiixCvYaKdt2IO0CIqokHHiCwq91WCtDFVumoDQVBsuE8iWTV-7BTE5xce4qDtKZV5TI9V9IyXwoZe_7Cg5_ii5v-zJeqGa81oggirI0RUJvOuTUalop8S0YXqNMghk0fNFLJXAbtfx_auEVkTmqxLQa0OiFyDC7vWUdnIeibsZU7QigIXyOCb-Uv16MDwe9E-v_yXTG3jMKWBxXDPah42r2XV4C1vu5moynx1EXcGrGusD2Bx-G50d_QZaGBan
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7KptD20KY_ad0krQuFnkysH1vyccl2ScjuEtIEcjOyJJOF4C2bpNBbH6HP2CfpjOx1soRSKL1ZWJZlaWb0zUj-BuAjUyYTVeGTQlYikbaukiJnLil05mubZVy7wK4_UbOZPj8vjrvThPQvTMsP0QfcSDOCvSYFp4D03i1rqHGBOIgOQQqBVnhDoixlA9gYnYzPJrfMu3lIsEkbftgNqVfMjSnfW29hfWW6Bzfvn5q8i2bDcjR-9h8-ZBOedlg0HrbC8xwe-OYFPLnDUPgSjihoRXmMYj6Kx365XLR5c-Y2HvlgZGJEvfFh8-vHzy_oEeO1aVxbntIh3u9xmzcCm3gFZ-PPp_sHSZd_IbHoNPMkd8bUTNc-ZcbnzLi0csyJSjrNrVW5zYUyRcprgSCxRiQiNdoDm5uKOYlASmzBoFk0_g3EmVdEh4yLn1fosfqqkr5ITe0RnmrDZQTJauxL25GTU46My7KlVeYlDVLZD1IEn_r6X1tajj_W3FlNZdmp51UpEEVl5OyKCD70t1GxaLfENH5xg3UQzKL3i3gqgtftzPevEloRoa-KQK_JRF-BSLvX7zTzi0DezZiiqAA2yoNQ_KX75XA0Hfalt__y0Ht4dHA6nZSTw9nRNjzmlMA4xJB2YHC9vPG78NB-u55fLd91qvMbr64ZnA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KWkpy6Ctp43bbulDIycR62JKPS7dLlyTLQlvIzciSTBaCN2wekFt_Qn9jf0lnZK-TJZRCyM1CD8uSZvTNSP4G4DNTJhNV4ZNCViKRtq6SImcuKXTma5tlXLvArn-oplN9fFzMutuE9C9Myw_RO9xIMoK-JgH3Z67ev2ENNS4QB9ElSCFQCz-WGSpaIneWsxve3TyE16TjPuyE1CvexpTvr9df35fugM27dyZvY9mwGY2fP8BnvIBnHRKNh-3SeQmPfPMKtm7xE27DAbmsKIpRzEfx2C-XizZqztzGIx9UTIyYN540f379_o72MD6bxrXpI7rCex23USOwiR34Of7648u3pIu-kFg0mXmSO2NqpmufMuNzZlxaOeZEJZ3m1qrc5kKZIuW1QIhYIw6RGrWBzU3FnEQYJV7DRrNo_C7EmVdEhoxbn1dor_qqkr5ITe0RnGrDZQTJauxL21GTU4SM07IlVeYlDVLZD1IEe335s5aU458lB6upLDvhPC8FYqiMTF0Rwac-G8WKzkpM4xeXWAahLNq-iKYieNPOfP8qoRXR-aoI9Nqa6AsQZfd6TjM_CdTdjCnyCWCjPCyK_3S_HI6Ohn3q7X0qfYSns9G4PJxMD97BJqfoxcGBNICNi-Wlfw9P7NXF_Hz5IcjNXxMEF4U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+2D+Ferroelectric+Devices+for+In%E2%80%90Sensor+and+In%E2%80%90Memory+Computing&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Chunsheng&rft.au=Zhou%2C+Yaoqiang&rft.au=Tong%2C+Lei&rft.au=Pang%2C+Yue&rft.date=2025-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=37&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202400332&rft.externalDBID=10.1002%252Fadma.202400332&rft.externalDocID=ADMA202400332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon